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Previous studies have highlighted the occurrence and intensity
of El Niño–Southern Oscillation as important drivers of the inter-
annual variability of the atmospheric CO2 growth rate, but the
underlying biogeophysical mechanisms governing such connec-
tions remain unclear. Here we show a strong and persistent cou-
pling (r2 ≈ 0.50) between interannual variations of the CO2 growth
rate and tropical land–surface air temperature during 1959 to
2011, with a 1 °C tropical temperature anomaly leading to a 3.5 ±
0.6 Petagrams of carbon per year (PgC/y) CO2 growth-rate anom-
aly on average. Analysis of simulation results from Dynamic Global
Vegetation Models suggests that this temperature–CO2 coupling is
contributed mainly by the additive responses of heterotrophic res-
piration (Rh) and net primary production (NPP) to temperature
variations in tropical ecosystems. However, we find a weaker
and less consistent (r2 ≈ 0.25) interannual coupling between CO2

growth rate and tropical land precipitation than diagnosed from
the Dynamic Global Vegetation Models, likely resulting from the
subtractive responses of tropical Rh and NPP to precipitation anom-
alies that partly offset each other in the net ecosystem exchange (i.
e., net ecosystem exchange ≈ Rh − NPP). Variations in other climate
variables (e.g., large-scale cloudiness) and natural disturbances (e.g.,
volcanic eruptions) may induce transient reductions in the tem-
perature–CO2 coupling, but the relationship is robust during
the past 50 y and shows full recovery within a few years after
any such major variability event. Therefore, it provides an im-
portant diagnostic tool for improved understanding of the con-
temporary and future global carbon cycle.
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Significant statistical relationships have been reported be-
tween interannual variations in the atmospheric CO2 growth

rate and global temperatures (1–4), precipitation (5), and El
Niño–Southern Oscillation (ENSO) (2, 6–8). However, because
the variability of the CO2 growth rate is governed by many
interacting processes of the coupled climate–carbon cycle sys-
tem, interpreting the biogeophysical mechanisms underlying
these statistical relationships remains a difficult task. For in-
stance, studies on the lagged negative correlations (r ≈ −0.4)
between CO2 growth rate and global temperature (3, 9) attrib-
uted such lagged couplings to delayed vegetation responses to
temperature in the northern mid- to high (40° N to 60° N)
latitudes, but studies on ENSO–CO2 correlations (jrj ≈ 0.5)
(7, 10) suggested that these largely synchronous couplings are
contributed from the responses of tropical ecosystems to con-
current climate variations. Early studies (2, 6) tended to focus on
ENSO’s impacts on oceanic carbon fluxes, whereas later analyses
on isotope data (11, 12) and atmospheric inversion results (13–
16) showed that terrestrial ecosystems have larger controls on
CO2 growth-rate variability. Process-based global terrestrial

ecosystem models have been used to address this question (e.g.,
refs. 7, 17, 18). Driven with observed climate, several model
simulations suggested that the interannual variability of CO2
growth rate is mainly influenced by precipitation-regulated var-
iations of tropical net ecosystem exchange (NEE) (7, 17).
However, the sensitivity of modeled NEE to precipitation var-
iations needs to be verified with independent observations (19,
20). After all, model simulated global NEE can only explain
∼25% (r2 ≈ 0.25) of the interannual variance of CO2 growth rate
(7, 17), not significantly better than the explanation power of
ENSO indices.
In this study, by using up-to-date atmospheric CO2 and land-

surface climate observations, we present rigorous correlation
analysis in support of ENSO’s direct (i.e., with response times of
a few months) regulation on the CO2 growth-rate variability via
its impacts on tropical (24° S to 24° N) NEE (2, 7, 8). Impor-
tantly, this ENSO forcing appears to be exerted mainly through
tropical temperature rather than precipitation. Our analysis also
confirms previous findings (3, 9) that land surface temperatures
in the tropics or other latitudes are negatively correlated with the
CO2 growth rate at response time lags of ∼1.5 y. However, these
delayed negative correlations are weaker than the direct positive
coupling between tropical temperatures and the CO2 growth rate,
and are secondary in explaining the atmospheric CO2 variability.
Because correlations do not necessarily imply causality, we
carefully examine the biogeophysical processes that plausibly
underpin the identified coupling between tropical temperature
and the atmospheric CO2 growth rate.

Data and Methods
We compiled monthly atmospheric CO2 concentration data be-
tween 1959 and 2011 from the National Oceanic and Atmo-
spheric Administration Earth System Research Laboratory
(ESRL) (2, 21, 22) and two sets of long-term climate data from
three main sources, including global surface temperature (23)
from National Aeronautics and Space Administration Goddard
Institute for Space Studies, temperature and precipitation from
the Climatic Research Unit–National Centers for Environmental
Prediction (CRU-NCEP) climate dataset (18), and precipitation
records from the Global Precipitation Climatology Project (24).
Monthly CO2 growth rate is first calculated as the first-order
difference of atmospheric CO2 concentrations between two
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successive months. The long-term (50-y) mean seasonal cycle is
then removed from the data before a 12-mo moving sum is ap-
plied to the data series to convert the monthly values into annual
CO2 growth rates. The annual CO2 growth rate data are smoothed
by multimonth running averages, and their long-term trend is
removed by using a simple linear regression. Because CO2
growth rates calculated from the Mauna Loa data (1959–2011)
and those of the global network (1980–2011) (22) are highly
consistent over the common period of 1980 to 2011, we com-
bined the two data sources into one time series following the
approach in ref. 18. Monthly tropical temperature and pre-
cipitation time series are aggregated over vegetated land surface
area between latitudes 24° N and 24° S based on a land-cover
map (25). Similar to the processing of CO2 data series, 12-mo
running averages are used to aggregate the monthly climate
anomalies to annual values. We detrended the temperature and
precipitation anomalies by linear regressions with a multiyear
moving window. Detrending the data by alternative approaches
did not qualitatively change the results discussed in the paper.
The detrended time series of CO2 growth rate, tropical (24° S to
24° N) land-based temperature, and precipitation (reversed in
sign for easier comparison) are shown in Fig. 1.
We obtained gridded global simulations of carbon fluxes from

terrestrial biosphere models of the Dynamic Global Vegetation
Model (DGVM) comparison project [http://dgvm.ceh.ac.uk (17);
model runs are the same as published in ref. 18]. The dataset
provides annual estimates of ecosystem component fluxes by four
DGVMs for the period of 1901 to 2008 and a fifth one for 1958
to 2008. The same CRU-NCEP climate fields were used to drive
the five DGVMs. We calculated detrended anomalies of the
annual carbon fluxes following the methods described earlier.
Other datasets used in this study include the Multivariate ENSO
Index (MEI) (26) and the Global Fire Emissions Database
Version 3 (available from 1997 onward) (27).
We conducted correlation analysis by using time series of CO2

growth rate and climate anomalies following the standard

procedures (28). Because there are serial correlations in the time
series induced by the smoothing of the data, we test the statistical
significance of the correlation coefficients by Monte Carlo
experiments to ensure the rigor of the statistical analysis. We also
verify the significance tests by subsampling monthly data to an-
nual time steps to remove the serial correlations (29). Both
methods render consistent test results in our analysis.

Results and Discussion
Fig. 2 shows the lagged correlations between the detrended CO2
growth rate and tropical (24° S to 24° N) land-based climate
variables. The strongest coupling (r ≈ 0.7, P < 0.0001) is found
between the CO2 growth rate and the concurrent tropical land
temperature (Fig. 2), the latter alone explaining ∼50% (i.e., r2 ≈
0.50) of the variance of the former. Regression analysis of the
two variables further indicates that a 1 °C temperature anomaly
leads to a CO2 growth rate anomaly of 3.5 ± 0.6 PgC/y (Peta-
grams, or 1015 grams of carbon per year), with the SD (σ) of the
temperature-related CO2 growth rate variations being ∼0.7 PgC/y
(Fig. 1). In comparison, the correlations of the CO2 growth rate
with the MEI or with the (reversed) tropical precipitation
anomalies peak at r ∼ 0.5 with a time lag of ∼6 mo (Fig. 2;
positive lags here and throughout the manuscript indicate that
climate variables lead CO2). MEI or tropical precipitation
explains only ∼25% (i.e., r2 ≈ 0.25) of the variance of the CO2
growth rate, matching half of the corresponding explanatory
power of tropical temperature. The correlations of the CO2
growth rate with MEI or tropical precipitation become statistically
insignificant when the time lag further increases to 1 to 2 y,
whereas those with temperature in the tropics or other latitudes
change to significant negative values (r ≈ −0.4; Fig. 2).
The positive coupling between the CO2 growth rate and con-

current tropical land temperature was previously reported (4)
and confirmed in this study. The negative correlations between
the CO2 growth rate and the lagged global temperatures were
studied previously (3) and mainly attributed to delayed vegetation

Fig. 1. Detrended anomalies of the atmospheric CO2 growth rate, tropical (24°S to 24°N) land-surface air temperature, and tropical land precipitation. The
precipitation anomalies are reversed in sign for easier comparison with the CO2 growth rate and temperature. The background shading shows the occurrence
and intensity of El Niño events as defined by the MEI.
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responses to temperature variations in the northern mid- to high
latitudes (9). However, these lagged negative correlations are
significantly weaker than the concurrent positive temperature–
CO2 coupling (Fig. 2) (4). Partial-correlation analysis also indi-
cates that the lagged temperature (or MEI and tropical pre-
cipitation) anomalies are secondary to the concurrent tropical
temperature in explaining the interannual variations of the CO2
growth rate during the past 50 y (Fig. S1). In addition, whereas
the lagged negative correlations seem to be contributed by
temperatures in all latitudes (Fig. 2), the concurrent positive
temperature–CO2 coupling has a clear spatial predominance in
the tropics (Fig. 2 and Fig. S2) and is directly associated with the
influence of ENSO (as detailed later).
The fact that the CO2 growth rate is more strongly coupled

with tropical land temperature than with MEI or tropical land
precipitation requires particular attention. Variations of tropical
temperature and precipitation are usually driven by ENSO
events and are therefore highly correlated with MEI as well as
with each other (jrj ≈ 0.7; Fig. 1). Because zonal shifts of tropical
precipitation patterns respond more rapidly to ENSO develop-
ments than tropic-wide air temperature anomalies (30, 31), there
is no apparent time lag between MEI and the land-based pre-
cipitation, and both lead temperature anomalies by ∼5 mo (Fig.
1). Despite the time lags, the covarying relationships among
these climate fields make it difficult to disentangle their in-
dividual influence on the atmospheric CO2 growth rate (Fig. S3).
However, these covarying relationships were lost during 1991 to
1994, when tropical temperature and precipitation anomalies
were both much lower than would be expected from their normal
couplings with ENSO and deviated from their usual negative
correlation with each other (Fig. 1). These unusual climate
anomalies were induced by the major volcanic eruption of
Mount Pinatubo in June 1991, which injected large amounts of
aerosols into the stratosphere to reduce incident solar energy
(30, 32, 33). The period from 1991 to 1994 was also a period
when MEI and tropical precipitation variations were decoupled
from those of the CO2 growth rate (r = 0.0–0.2; Fig. S3). During
this period, the anomalies of tropical precipitation and the
CO2 growth rate varied in the opposite direction from their

normal coupling (Fig. 1), complicating their explanation through
the same relationship (as discussed later). In contrast, the
corresponding temperature–CO2 coupling, although weakened,
remained within its normal level and statistically significant (P <
0.05; Fig. S3).
Global CO2 fluxes from land-use changes and fossil fuel

emissions have relatively small interannual variability (σ = 0.1–
0.3 PgC/y) (18), accounting for 10% of the variance (σ2) of the
CO2 growth rate (σ = 1.0 PgC/y; Fig. 1). Estimates of the in-
terannual variability (σ) of global ocean CO2 uptake are in the
range of 0.2 to 0.5 PgC/y (14, 34, 35); however, ocean carbon
processes operate to absorb, rather than release, extra CO2
during El Niño years (35–37), which is different from the iden-
tified coupling between atmospheric CO2 growth rate and MEI
or the associated tropical climate anomalies. Emissions from
wildfires can occasionally exceed 0.5 PgC/y during extreme years
[e.g., the Indonesian peat-forest burning in 1997 and 1998 (38)],
but their overall variability is low (σ = 0.26 PgC/y), at least during
the period of the GFED dataset since 1997 (Fig. S4) (27). There-
fore, it is generally believed that variations in global NEE—
primarily the difference between heterotrophic respiration (Rh)
and net primary production (NPP)—are mainly responsible for the
interannual variability of the CO2 growth rate (14, 18, 39). Satellite
data-driven and ground observation-based estimates indicate that
∼60% of global NPP and Rh are distributed in the tropics (40–43).
Atmospheric inversion experiments (16, 44) and global vegetation
model simulations (17, 18) also suggest that more than 60% of the
interannual variance of global NEE originates from tropical land
ecosystems (Fig. S5), consistent with the correlation analyses shown
in Figs. 1 and 2.
However, the observation that tropical land temperature is a

better predictor than precipitation in explaining tropical NEE
(and the CO2 growth rate) variability (Figs. 1 and 2) is not fully
reproduced by the analyzed DGVM simulations (17). Rather,
the interannual variability of tropical NEE in these models is
dominated by the NPP component (Fig. S5 and Table S1), with
the latter (i.e., NPP) being regulated mainly by tropical pre-
cipitation anomalies. The DGVM-simulated tropical NEE (and
NPP) variations have a magnitude (σ = 1.0 PgC/y; Table S1)

Fig. 2. Lagged correlations between interannual variations of the atmospheric CO2 growth rate and tropical (24° S to 24° N) climate variables, including land
surface temperature, land precipitation (reversed in sign), and the MEI. Positive time lags indicate that the climate variables lead the CO2 growth rate. To
facilitate comparisons with the findings of previous studies (3, 9), also shown here are the lagged correlations of CO2 growth rate with land temperatures in
northern latitudes (30° N to 70° N), southern latitudes (70° S to 30° S), and over the globe (90° S to 90° N). A time window of 42 y is applied to the time series so
they have the same data length and the correlations have the same degrees of freedom. All the land-based climate variables are aggregated only over
vegetated areas. The critical values for the correlations at 95% significance levels (i.e., P < 0.05) are estimated through two independent methods including
Monte Carlo experiments with 10,000 samples (Data and Methods).
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directly comparablewith themagnitude of theCO2 growth rate (σ=
1.0 PgC/y; Fig. 1). However, the simulated tropical (and global)
NEE anomalies are only moderately correlated with the CO2
growth rate anomalies (r = 0.4–0.5; Table S2), explaining 25% (r2 ≈
0.25) of the variance of the latter. These discrepancies suggest that
the analyzed DGVMs may have a common bias to overestimate
the sensitivity of tropical NEE (and NPP) to precipitation.
To diagnose which bias in the DGVM formulations (or

settings) produces their oversensitivity to precipitation would
require detailed factorial simulations or response-function
comparisons to idealized temperature and precipitation anom-
alies, which is beyond the scope of this study. Instead, we
empirically determine a linear combination of the DGVM-
simulated tropical NPP and Rh that best explains the observed
variations of the CO2 growth rate. We find that, by reducing the
simulated tropical NPP variability to the magnitude of the sim-
ulated Rh variability (σ = 0.4–0.5 PgC/y; Table S1), we not only
reduce the SD of the simulated tropical NEE anomalies to 0.7
PgC/y (Fig. 3) so that it is more consistent with the magnitude
inferred from the coupling between tropical temperature and the
CO2 growth rate (Fig. 1), but also significantly improve the
correlation (r) between the simulated NEE and the observed
CO2 growth rate from 0.5 to 0.7 (Fig. 3 and Table S2). The
mechanism for this correlation improvement is illustrated in
Fig. 3. Because tropical NPP and Rh are both positively regu-
lated by precipitation (40, 45), their responses to precipitation
variations are subtractive and partly offset each other in control-
ling tropical NEE anomalies. In contrast, tropical temperature

regulates NPP and Rh in opposite directions [e.g., warmer
anomalies in the tropics increase Rh and decrease NPP (4, 46, 47)],
and such additive responses amplify the influence of tropical
temperature on NEE (Fig. 3).
The finding that the analyzed DGVMs tend to overestimate

the response of tropical NEE to precipitation variations ques-
tions their suitability for future carbon-cycle projections (48, 49).
Some of the climatic events linked to such concerns are the se-
vere droughts experienced by the Amazon basin in 2005 and
2010, which reportedly reduced tropical forest NPP by 1.6 to 2.2
PgC/y and increased tree mortality (50, 51). However, com-
mensurate positive CO2 growth-rate anomalies were not ob-
served during 2005 or 2010—indeed, the responses of the CO2
growth rate to the 2005 and the 2010 Amazon droughts were
small compared with other ENSO-related droughts in the past
50 y (Fig. 1). Assuming that the large reductions of tropical NPP
reported previously (50, 51) are realistic, the absence of marked
variations of the global CO2 growth rate after the 2005 and 2010
Amazon droughts may imply that the drought conditions also
coincidently reduced tropical Rh along with NPP, resulting in
(relatively) small NEE anomalies.
We further diagnose the impacts of climate extremes on the

tropical carbon cycle by examining how the CO2 growth rate
deviates from the expected value predicted through a linear
statistical model of CO2 growth rate vs. tropical temperature
anomalies. These deviations define a residual anomalous carbon
flux (σ = 0.7 PgC/y, corresponding to the 50% unexplained in-
terannual variance of the CO2 growth rate; Fig. 4) that accounts

Fig. 3. Interannual variations in tropical terrestrial carbon fluxes (NPP, Rh, and NEE) simulated by four different previously described DGVMs (17, 18). The
green lines represent the ensemble means of the DGVMs, with the magnitudes of the NPP and the Rh anomalies being optimized so the resulting NEE (Rh-
NPP) best explains the variations of the observed atmospheric CO2 growth rate (gray dashed line, Bottom; text and Tables S1 and S2]. The orange lines show
the corresponding carbon fluxes estimated through linear regressions using concurrent tropical land-surface air temperature and land-based precipitation as
the explanatory variables, which respectively capture 79%, 55%, and 83% of the variance of the model-simulated NPP, Rh, and NEE (green lines) by the r2

statistics of the regression analyses. The orange and the blue shading, plotted as one stacking on another, indicate the individual contributions from tem-
perature and precipitation to the estimated fluxes. As shown, tropical temperature and precipitation significantly (P < 0.001) contribute to the variability of
NPP and Rh (Top and Middle). However, because precipitation positively regulates tropical NPP and Rh, its net effects on tropical NEE are weakened and
statistically insignificant, such that the blue shading becomes indiscernible (Lower). In contrast, temperature regulates tropical NPP and Rh differently in sign
so that its net effects on NEE (orange shading, Bottom) are strengthened.
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for variations of NPP and Rh responding to climate drivers other
than those represented by tropical temperature and variations in
other carbon fluxes (e.g., fossil fuel emissions, wildfires vari-
ability). The estimated residual anomalies are robust in that
they do not qualitatively change when either tropical land pre-
cipitation or MEI is included in the regression. For reasons
discussed earlier, no significant residual-carbon-flux anomalies
were observed following the 2005 Amazon drought in three
consecutive years, or following the 2010 Amazon drought to the
present (Fig. 4). A large positive anomaly (1.2 PgC/y) was seen
after 2008, but it quickly switches to be negative in 2009 (−1.5
PgC/y; Fig. 4). The latter is too large to be explained by the 1.3%
decrease (0.11 PgC/y) of fossil fuel emissions during the 2008
to 2009 global economic crisis (52), but most likely reflects
the natural variability of the global carbon cycle induced by
drivers other than tropical temperature or precipitation (as
described later).
The most outstanding feature of Fig. 4 concerns the significant

negative residual-carbon-flux anomalies (−1.7 PgC/y) during
1990 to 1994, which indicate an enhanced terrestrial carbon sink
not explained by tropical land temperature and coincide with the
decrease in the temperature’s decadal correlations with the CO2
growth rate (Fig. S3). Previous studies attributed these anoma-
lies to reduced Rh (2, 33) and/or increased NPP in the northern
hemisphere, the latter perhaps promoted by a transient increase
in the diffuse fraction of solar radiation after the eruption of
Mount Pinatubo in June 1991 (53–55). However, such mecha-
nisms alone cannot fully explain the temporal evolution of the
residual carbon flux anomalies, in which the switch to the extra
sink started in mid-1989, approximately 2 y before the Pinatubo
eruption (Fig. 4) and amid a period of greater than normal
warmth (Fig. 1). We also do not see a similar extra carbon sink,
but rather an extra source not explained by tropical temperature,
in the residual carbon flux anomalies following the eruption of
El Chichón in April 1982 (Fig. 4). Therefore, the extra carbon
sink of 1990 to 1994 was most likely induced by multiple factors
that concurred during that time (56). For instance, the shift of
the residual carbon anomalies from an extra source in 1983 to

1989 to an extra sink in 1990 to 1994 may be more coherently
explained by taking into account the increases in tropical (and
global) NPP that were favored by the widespread declines in
cloud cover over light-limited tropical rainforests in late-1980s
and through 1990s (40, 57–59). Finally, we would like to point
out that, if we calculate the residual carbon flux anomalies solely
from the statistical coupling between the CO2 growth rate and
the tropical land-based precipitation, the estimated extra carbon
sink for 1990 to 1994 will be significantly larger (3.1–3.8 PgC/y in
absolute values; Fig. S6) than discussed earlier, and therefore
more difficult to explain by the previously proposed biogeophysical
mechanisms. This discrepancy imposes additional questions on the
sensitivity of tropical ecosystems to precipitation variations at in-
terannual time scales (19, 20, 49).
In summary, the strong and robust coupling between interannual

variations of the atmospheric CO2 growth rate and concurrent
tropical temperature during the past 50 y provides a key di-
agnostic for our understanding of the global carbon cycle. This
coupling cannot be justified by the delayed responses of mid- to
high-latitude ecosystems to global temperature variations, nor
may it be interpreted as an indirect reflection of the coupling
between the CO2 growth rate and tropical precipitation anom-
alies, which indeed is found to be weaker and less consistent.
Instead, analyses of process-based global vegetation models in-
dicate that this strong temperature–CO2 coupling is best explained
by the additive responses of tropical terrestrial respiration and
primary production to temperature variations, which reinforce
each other in enhancing temperature’s control on tropical NEE.
Although this explanation inherits the uncertainties associated
with the current estimates of global carbon fluxes and needs to be
further verified, we emphasize that the coupling itself, along with
other observational constraints, must be reproduced by vegetation
(or other related) models to realistically simulate the current
status of the global carbon cycle and project its future changes.
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indicate carbon fluxes into the surface (sinks). The background shading is the same as in Fig. 1. As shown, the extra carbon sink of 1990 to 1994 may have
started 1 to 2 y before the eruptions of Mount Pinatubo. Therefore, it was most likely induced by multiple factors that concurred during that time (56) as
detailed in the text.

Wang et al. PNAS | August 6, 2013 | vol. 110 | no. 32 | 13065

EN
V
IR
O
N
M
EN

TA
L

SC
IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219683110/-/DCSupplemental/pnas.201219683SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219683110/-/DCSupplemental/pnas.201219683SI.pdf?targetid=nameddest=SF6


comments on this manuscript; and F. Melton, S. Ganguly, G. Zhang,
A. Michaelis, P. Votava, J. Xiong, and L. Xu for assistance in the analysis.
This research was made possible using the NASA Earth Exchange (https://
c3.nasa.gov/nex/), a “science as a service” collaborative for the geosciences
community. NEX combines supercomputing, Earth system modeling, remote

sensing data from NASA and other agencies, and a scientific social
networking platform to deliver a complete work environment in which
users can explore and analyze large Earth science data sets, run modeling
codes, collaborate on new or existing projects, and share results within and/
or among communities.

1. Kuo C, Lindberg C, Thomson DJ (1990) Coherence established between atmospheric
carbon dioxide and global temperature. Nature 343(6260):709–714.

2. Keeling CD, Whorf TP, Wahlen M, van der Plicht J (1995) Interannual extremes in the
rate of atmospheric carbon dioxide since 1980. Nature 375(6533):666–670.

3. Braswell BH, Schimel DS, Linder E, Moore B III (1997) The response of global terrestrial
ecosystems to interannual temperature variability. Science 278(5339):870–873.

4. Adams JM, Piovesan G (2005) Long series relationships between global interannual
CO2 increment and climate: evidence for stability and change in role of the tropical
and boreal-temperate zones. Chemosphere 59(11):1595–1612.

5. Yang X, WangM (2000) Monsoon ecosystems control on atmospheric CO2 interannual
variability: Inferred from a significant positive correlation between year-to-year
changes in land precipitation and atmospheric CO2 growth rate. Geophys Res Lett
27(11):1671–1674.

6. Bacastow RB (1976) Modulation of atmospheric carbon dioxide by the Southern Os-
cillation. Nature 261(5556):116–118.

7. Zeng N, Mariotti A, Wetzel P (2005) Terrestrial mechanisms of interannual CO2 vari-
ability. Global Biogeochem Cycles 19(1), 10.1029/2004GB002273.

8. Raupach MR, Canadell JG, Le Quéré C (2008) Anthropogenic and biophysical con-
tributions to increasing atmospheric CO2 growth rate and airborne fraction. Bio-
geosciences 5(6):1601–1613.

9. Vuki�cevi�c T, Braswell BH, Schimel D (2001) A diagnostic study of temperature controls
on global terrestrial carbon exchange. Tellus B 53(2):150–170.

10. Raddatz TJ, et al. (2007) Will the tropical land biosphere dominate the climate-carbon
cycle feedback during the twenty first century? Clim Dyn 29(6):565–574.

11. Keeling CD, Revelle R (1985) Effects of El Niño/southern oscillation on the atmo-
spheric content of carbon dioxide. Meteoritics 20(2):437–450.

12. Nakazawa T, Morimoto S, Aoki S, Tanaka M (1993) Time and space variations of
the carbon isotopic ratio of tropospheric carbon-dioxide over Japan. Tellus B
45(3):258–274.

13. Ciais P, Tans PP, Trolier M, White JWC, Francey RJ (1995) A large northern hemisphere
terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2. Science
269(5227):1098–1102.

14. Bousquet P, et al. (2000) Regional changes in carbon dioxide fluxes of land and oceans
since 1980. Science 290(5495):1342–1347.

15. Röedenbeck C, Houweling S, Gloor M, Heimann M (2003) CO2 flux history 1982-2001
inferred from atmospheric data using global inversion of atmospheric transport.
Atmos Chem Phys 3(6):1919–1964.

16. Baker DF, et al. (2006) TransCom 3 inversion intercomparison: impact of transport
model errors on the interannual variability of regional CO2 fluxes, 1988-2003. Global
Biogeochem Cycles 20(1):GB1002, 10.1029/2004GB002439.

17. Sitch S, et al. (2008) Evaluation of the terrestrial carbon cycle, future plant geography
and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models
(DGVMs). Glob Change Biol 14(9):2015–2039.

18. Le Quéré C, et al. (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci
2(12):831–836.

19. Schwalm CR, et al. (2011) Does terrestrial drought explain global CO2 flux anomalies
induced by El Niño? Biogeosciences 8(9):2493–2506.

20. Ponce Campos GE, et al. (2013) Ecosystem resilience despite large-scale altered hy-
droclimatic conditions. Nature 494(7437):349–352.

21. Conway T, et al. (1994) Evidence of interannual variability of the carbon cycle from
the NOAA/CMDL global air sampling network. J Geophys Res 99(D11):22831–22855.

22. Masarie KA, Tans PP (1995) Extension and integration of atmospheric carbon dioxide
data into a globally consistent measurement record. J Geophys Res 100(D6):11593–11610.

23. Hansen J, Ruedy R, Glascoe J, Sato M (1999) GISS analysis of surface temperature
change. J Geophys Res 104(D24):30997–31022.

24. Adler RF, et al. (2003) The version-2 Global Precipitation Climatology Project (GPCP)
monthly precipitation analysis (1979-present). J Hydrometeorol 4(6):1147–1167.

25. Friedl MA, et al. (2002) Global land cover mapping fromMODIS: Algorithms and early
results. Remote Sens Environ 83(1):287–302.

26. Wolter K, Timlin MS (2011) El Niño/Southern Oscillation behaviour since 1871 as
diagnosed in an extended multivariate ENSO index (MEI.ext). Int J Climatol 31(7):
1074–1087.

27. van der Werf GR (2010) Global fire emissions and the contribution of deforestation,
savanna, forest, agricultural, and peat fires (1997-2009). Atmos Chem Phys 10(23):
11707–11735.

28. Enders W (1995) Applied Econometric Time Series (Wiley, New York).
29. Ebisuzaki W (1997) A method to estimate the statistical significance of a correlation

when the data are serially correlated. J Clim 10(9):2147–2153.

30. Gu G, Adler RF (2011) Precipitation and temperature variations on the inter-annual
time scale: Assessing the impact of ENSO and volcanic eruptions. J Clim 24(9):
2258–2270.

31. Wallace JM, et al. (1998) On the structure and evolution of ENSO-related climate
variability in the tropical pacific: Lessons from TOGA. J Geophys Res 103(C7):
14241–14259.

32. Dutton EG, Bodhaine BA (2001) Solar irradiance anomalies caused by clear-sky
transmission variations above Mauna Loa: 1958-99. J Clim 14(15):3255–3262.

33. Lucht W, et al. (2002) Climatic control of the high-latitude vegetation greening trend
and Pinatubo effect. Science 296(5573):1687–1689.

34. Patra PK, et al. (2005) Interannual and decadal changes in the sea-air CO2 flux from
atmospheric CO2 inverse modeling. Global Biogeochem Cycles 19(4):GB4013, 10.1029/
2004GB002257.

35. Park G-H, Lee K, Wanninkhof R, Feely RA (2006) Empirical temperature-based esti-
mates of variability in the oceanic uptake of CO2 over the past 2 decades. J Geophys
Res 111(C7), 10.1029/2005/JC003090.

36. Feely RA, et al. (2002) Seasonal and interannual variability of CO2 in the equatorial
Pacific. Deep Sea Res Part II Top Stud Oceanogr 49(13):2443–2469.

37. McKinley GA, Follows MJ, Marshall J (2004) Mechanisms of air-sea CO2 flux variability
in the equatorial Pacific and the North Atlantic. Global Biogeochem Cycles 18(2):
GB2011, 10.1029/2003GB002179.

38. Page SE, et al. (2002) The amount of carbon released from peat and forest fires in
Indonesia during 1997. Nature 420(6911):61–65.

39. Canadell JG, et al. (2007) Contributions to accelerating atmospheric CO2 growth from
economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci
USA 104(47):18866–18870.

40. Nemani RR, et al. (2003) Climate-driven increases in global terrestrial net primary
production from 1982 to 1999. Science 300(5625):1560–1563.

41. Beer C, et al. (2010) Terrestrial gross carbon dioxide uptake: Global distribution and
covariation with climate. Science 329(5993):834–838.

42. Zhao M, Running SW (2010) Drought-induced reduction in global terrestrial net pri-
mary production from 2000 through 2009. Science 329(5994):940–943.

43. Jung M, et al. (2011) Global patterns of land-atmosphere fluxes of carbon dioxide,
latent heat, and sensible heat derived from eddy covariance, satellite, and meteo-
rological observations. J Geophys Res 116(G3), 10.1029/2010JG001566.

44. Keeling CD, Piper SC (2001) Exchanges of atmospheric CO2 and 13CO2 with the ter-
restrial biosphere and oceans from 1978 to 2000: IV. Critical overview. SIO Ref Ser
01-09:1–23.

45. Meir P, Metcalfe DB, Costa ACL, Fisher RA (2008) The fate of assimilated carbon
during drought: Impacts on respiration in Amazon rainforests. Philos Trans R Soc Lond
B Biol Sci 363(1498):1849–1855.

46. Clark DA, Piper SC, Keeling CD, Clark DB (2003) Tropical rain forest tree growth and
atmospheric carbon dynamics linked to interannual temperature variation during
1984-2000. Proc Natl Acad Sci USA 100(10):5852–5857.

47. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition
and feedbacks to climate change. Nature 440(7081):165–173.

48. Rammig A, et al. (2010) Estimating the risk of Amazonian forest dieback. New Phytol
187(3):694–706.

49. Cox PM, et al. (2013) Sensitivity of tropical carbon to climate change constrained by
carbon dioxide variability. Nature 494(7437):341–344.

50. Phillips OL, et al. (2009) Drought sensitivity of the Amazon rainforest. Science
323(5919):1344–1347.

51. Lewis SL, Brando PM, Phillips OL, van der Heijden GMF, Nepstad D (2011) The 2010
Amazon drought. Science 331(6017):554.

52. Friedlingstein P, et al. (2010) Update on CO2 emissions. Nat Geosci 3(12):811–812.
53. Jones CD, Cox PM (2001) Modeling the volcanic signal in the atmospheric CO2 record.

Global Biogeochem Cycles 15(2):453–465.
54. Gu L, et al. (2003) Response of a deciduous forest to the Mount Pinatubo eruption:

enhanced photosynthesis. Science 299(5615):2035–2038.
55. Mercado LM, et al. (2009) Impact of changes in diffuse radiation on the global land

carbon sink. Nature 458(7241):1014–1017.
56. Angert A, Biraud S, Bonfils C, Buermann W, Fung IY (2004) CO2 seasonality indicates

origins of post-Pinatubo sink. Geophys Res Lett 31(11), 10.1029/2004GL019760.
57. RossowWB, Schiffer RA (1999) Advances in understanding clouds from ISCCP. Bull Am

Meteorol Soc 80(11):2261–2287.
58. Wielicki BA, et al. (2002) Evidence for large decadal variability in the tropical mean

radiative energy budget. Science 295(5556):841–844.
59. Arias PA, Fu R, Hoyos CD, Li W, Zhou L (2010) Changes in cloudiness over the Amazon

rainforests during the last two decades: Diagnostic and potential causes. Clim Dyn
37(5):1151–1164, 10.1007/s00382-010-0903-2.

13066 | www.pnas.org/cgi/doi/10.1073/pnas.1219683110 Wang et al.

https://c3.nasa.gov/nex/
https://c3.nasa.gov/nex/
www.pnas.org/cgi/doi/10.1073/pnas.1219683110

