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Abstract 
This review focuses on grasshoppers that are polymorphic for Robertsonian translocations be-
cause in these organisms the clarity of meiotic figures allows the study of both chiasma 
distribution and the orientation of trivalents and multivalents in metaphase I. Only five species of 
such grasshoppers were found in the literature, and all of them were from the New World: 
Oedaleonotus enigma (Scudder) (Orthoptera: Acrididae), Leptysma argentina Bruner, Dichroplus 
pratensis Bruner, Sinipta dalmani Stål, and Cornops aquaticum Bruner. A general feature of the-
se species (except O. enigma) is that fusion carriers suffer a marked reduction of proximal and 
interstitial (with respect to the centromere) chiasma frequency; this fact, along with the reduction 
in the number of linkage groups with the consequent loss of independent segregation, produces a 
marked decrease of recombination in fusion carriers. This reduction in recombination has led to 
the conclusion that Robertsonian polymorphic grasshopper species share some properties with 
inversion polymorphic species of Drosophila, such as the central-marginal pattern (marginal 
populations are monomorphic, central populations are highly polymorphic). This pattern might be 
present in D. pratensis, which is certainly the most complex Robertsonian polymorphism system 
in the present study. However, L. argentina and C. aquaticum do not display this pattern. This 
issue is open to further research. Since C. aquaticum is soon to be released in South Africa as a 
biological control, the latitudinal pattern found in South America may repeat there. This experi-
ment’s outcome is open and deserves to be followed. 
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Introduction 
 
The study of chromosomal polymorphisms 
occupies a distinguished place in the frame of 
the modern synthesis on evolutionary biology. 
Dobzhansky laid the empiric foundations of 
population genetics early in the twentieth cen-
tury through the study of paracentric 
inversions of Drosophila (see review in Dob-
zhansky 1970). Heritable variability is the 
basis of  population thinking, which debunked 
the pre-darwinian—and now obsolete—
typological thinking. In the words of Mayr, 
“The populationist stresses the uniqueness of 
everything in the organic world” (Mayr 1970). 
For the population thinker, only the individu-
als composing populations have any reality. 
For the typologist, the type (eidos) is real and 
the variation an illusion, while for the popula-
tionist the type (average) is an abstraction and 
only the variation is real. Both visions are 
diametrically different (Mayr 1959). 
 
Population thinking is the basis of the biologi-
cal species concept, which regards species as 
a genetic pool, a reservoir of genes that can 
flow across generations due to sex and are 
subject to the Mendelian laws. Population 
studies are conducted within the frame of 
population genetics, the organizing principle 
of the modern synthesis (Dobzhansky 1970). 
The study of chromosomal polymorphisms 
and the assignation of different fitness values 
to different karyotypes was the pioneer man-
ner in conducting genetic population studies. 
The emergence of molecular biology did not 
mean the demise of population cytogenetics; 
rather, cytogenetics grew as a complement to 
molecular biology. Molecular biology and 
classic cytogenetics united in what became 
known as molecular cytogenetics, a renewed 
way of studying chromosome polymorphisms 

with new tools available for the population 
cytogeneticist. 
 
Chromosome polymorphisms in in-
sects 
 
Most chromosome polymorphisms were stud-
ied in Drosophila species, given the ease of 
analyzing the polytenic chromosomes; how-
ever, the study of chromosome 
polymorphisms in short-horned grasshoppers 
(Orthoptera: Acrididae: Acridoidea) has been 
by no means negligible. Most chromosome 
polymorphisms in drosophilids are paracentric 
inversions (Powell 1997), while those of 
grasshoppers are mainly pericentric inversions 
and Robertsonian autosomal (Rb) transloca-
tions, and supernumerary heterochromatin 
(supernumerary segments and B chromo-
somes) (Hewitt 1979). This review focuses on 
Rb polymorphisms in grasshoppers. The clari-
ty and crispness of meiotic configurations in 
Rb polymorphic grasshoppers has allowed the 
study of chiasma frequency and position in 
relation to the orientation of trivalents and 
multivalents in metaphase I (Hewitt 1979). 
 
Roberts (1941) divided short-horned grass-
hoppers into two sections, Cryptosacci and 
Chasmosacci, on the basis of phallic struc-
tures. Both groups are karyologically 
conservative groups with respect to number 
and form. In fact, most male Cryptosacci have 
23 chromosomes, and most female have 24, 
due to an X0/XX sex determination system 
(2n = 11 II + X0/XX). All chromosomes are 
acro- or telocentric. However, it should be 
noted that this conservatism is only superfi-
cial, given that DNA content and chromatin 
composition vary widely (John and Hewitt 
1966). Upon this ancestral karyotype there 
may be derived karyotypes that vary in chro-
mosome number due to fixed (i.e., non-
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polymorphic) chromosome rearrangements, 
most frequently Rb translocations (= centric 
fusions), where two acro- or telocentric non-
homologous chromosomes fuse at the centro-
mere level, usually with the elimination of a 
centric fragment (Hewitt 1979). The fusion of 
the X chromosome and an autosome is a fre-
quent situation and creates a sex-
determination mechanism called “neoX-
neoY” (See review in Castillo et al. 2010). 
 
The case of Oedaleonotus enigma 
 
The first thorough study of Rb polymorphism 
from a population point of view was that of 
Hewitt and Schroeter (1968) in the grass-
hopper Oedaleonotus enigma Scudder 
(Melanoplinae: Acrididae). This species, con-
fined to the western United States, bears a 
basic karyotype of 2n = 20 + neoX-neoY, and 
all chromosomes are telocentric with the ex-
ception of the neoX, which is sub-metacentric. 
A neoX-neoY bivalent regularly shows a het-
erochromatic X-arm and a euchromatic Y-
arm. The corresponding homologue is neoY. 
The newly attached autosome, however, will 
remain euchromatic, as will its homologue, 
now the neo-Y. White (1954) and Sáez (1963) 
argued that the neoY becomes progressively 
more heterochromatic and genetically distinct 
due to the elimination of crossing over. The 
neoX-neoY bivalent of O. enigma remains 
euchromatic in its “new” portion, suggesting a 
recent origin of this sex determination system. 
 
With respect to chromosome polymorphisms, 
the O. enigma population (Coalinga, Fresno 
County, California) had a polymorphism for a 
centric fusion between telocentrics 4 and 5 of 
the basic complement, for a centric shift in 
chromosome 8 (probably due to a pericentric 
inversion), for a supernumerary segment in 
the smallest member of the complement, 
chromosome 10, and for a B chromosome 

(Hewitt and Schroeter 1968). The behavior of 
the trivalent in the fusion heterozygote is quite 
regular, stemming from the fact that most of 
the orientation in the trivalent is alternate (i.e., 
disjunctional, the only orientation that may 
render viable gametes) and not linear (i.e., 
non-disjunctional, which would produce invi-
able gametes). The production of viable 
gametes in heterozygotes is necessary for the 
maintenance of any polymorphism, given that 
heterozygotes with reduced fitness would pro-
duce the loss of the polymorphism (Hedrick 
1983, see further discussion below). Conse-
quently, most metaphase II are euploid. 
Fusion heterozygotes are not, thus, subjected 
to negative heterosis, which is vital for the 
survival of the polymorphism. Remarkably, 
there is a relative excess of heterokaryotypes 
for the fusion when compared to the Hardy-
Weinberg expectations (Hewitt and Schroeter 
1968). An excess of heterozygotes might be 
indicative of heterosis, although not necessa-
rily so; heterosis in turn would favor the 
maintenance of the polymorphism (Hedrick 
1983). 
 
Given that O. enigma normally has terminal 
chiasmata (see discussion below), no chiasma 
redistribution is needed. No interchromosomal 
chiasma effects were detected. 
 
The case of Leptysma argentina 
Bruner 
 
Leptysma argentina Bruner (Orthoptera: Ac-
rididae) is a semiaquatic acridid that lives and 
lays eggs in connection with Cyperaceae (it is 
a Leptysmine grasshopper, and thus its ovi-
position is endophytic). Its habitat extends 
from central Argentina and Uruguay to south-
ern Brazil, and its habitat is semiaquatic, in 
connection with Cyperaceae (Amedegnato 
1974; Roberts 1978). The karyotype of L. ar-
gentina is predominantly telocentric 
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chromosomes (2n = 21 in males and 22 in fe-
males) with a unique sub-metacentric, 
probably a product of a centric fusion of two 
telocentrics (Bidau and Hasson 1984). Super-
imposed to this basic karyotype are three other 
polymorphisms in most studied populations: a 
centric fusion between chromosomes 3 and 6 
of the basic complement (fusion 3/6), an inter-
stitial supernumerary segment in the smallest 
chromosome of the complement (pair 11), and 
a medium-sized B chromosome (Bidau and 
Hasson 1984). 
 
In respect to the effects of the polymorphic 
centric fusion on recombination, it was shown 
that it affects chiasma frequency and distribu-
tion. The carriers of this rearrangement 
display a lower chiasma count than the non-
carriers, this effect being roughly additive, 
i.e., more marked in fusion homozygotes than 
in heterozygotes (Colombo 1989). The lower 
chiasma frequency is explained mainly by a 
decrease in proximal chiasma localization 
(Colombo 1990). Superimposed to this inter-
chromosomal effect (i.e., not present in the 
chromosomes that are not involved in the cen-
tric fusion), a different intrachromosomal 
effect (on the chromosomes involved in the 
fusion) was found. Fusion homozygotes show 
a much lower proximal chiasma frequency in 
the submetacentric bivalent 3/6; furthermore, 
chiasma frequency decreases almost to 2 (one 
chiasma per submetacentric 3/6) in trivalent 3-
3/6-6 of fusion heterozygotes (Colombo 1987, 
1990). As a consequence of this decrease, av-
erage chiasma frequency and position 
decrease along with the increase of fusion 3/6 
frequency in different populations (Colombo 
1989).  
 
This double decrease of proximal chiasma 
frequency would lead to a diminution of ge-
netic recombination in fusion carriers. This 
effect should be added to an automatic conse-

quence of a centric fusion—the reduction in 
the number of linkage groups. In fact, a cen-
tric fusion causes two originally unlinked 
chromosome pairs that would otherwise seg-
regate independently to become physically 
linked, which would reduce drastically the 
number of chromosome combinations in the 
gametes. This reduction is intensified because 
proximal chiasmata in the trivalent (the only 
case in which genetic recombination between 
the fused metacentric and the un-fused acro-
centric might arise) are almost suppressed. 
Hence, polymorphic Rb translocations would 
have a similar effect as polymorphic inver-
sions, namely a suppression of recombination 
between the two pairs of chromosomes in-
volved in the rearrangement. The arisal of 
coadapted gene complexes might provide a 
possible explanation of why Rb polymorph-
isms occur in nature (see discussion below) 
(Dobzhansky 1970; Colombo 1989; Bidau 
1993).  
 
Correlation with morphological 
changes 
 
All the focus on chiasma effects is due to the 
fact that in grasshoppers, as in other organ-
isms that are not amenable to genetic analysis, 
chiasma frequency is the only measurable 
variable to assess the amount of genetic re-
combination. This measuring is possible 
because meiotic figures are extremely clear in 
grasshoppers and chiasma distribution can be 
detected with accuracy (Hewitt 1979). 
 
Another reason for the emphasis on chiasma 
effects is that, until recently, it was generally 
accepted that chromosomal rearrangements 
had no effect on the external phenotype 
(Lande 1979). However, in 1989, it was de-
tected that fusion 3/6 in L. argentina was clear 
and consistently related to changes in body 
size (Colombo 1989). Centric fusion 3/6 is 



 

Journal of Insect Science: Vol. 13 | Article 43  Colombo 

Journal of Insect Science | www.insectscience.org  5 
 
 

associated with an increase in body size in 
carriers, and this effect is additive, i.e., its ef-
fect is more marked in fusion homozygotes 
than in heterozygotes in both males (Colombo 
1989, 1997) and females (Colombo et al. 
2004). This relation is the reason why body 
size is correlated with fusion 3/6 frequency in 
some populations (Colombo 1989, 1997). 
 
In organisms such as Drosophila that are bet-
ter suited to genetic research than 
grasshoppers due to their life-history charac-
teristics, the effects of paracentric inversions 
on selection components, such as longevity, 
fertility, larval viability, hatching, and so on, 
have been thoroughly studied (see Powell 
1997 for a review). Temperate-region grass-
hoppers, such as L. argentina, can also be 
studied because the grasshopper’s generations 
are discrete and synchronized. By studying 
fusion 3/6 frequency in young and aged males 
in two populations of this species, male lon-
gevity was assessed, determining that fusion 
3/6 increases male longevity in carriers 
(Colombo 1993, 2002). A later study identi-
fied the effect of fusion 3/6 on body size-
related traits, such as femur length, as the 
cause for this increase in longevity of fusion 
carriers (Norry and Colombo 1999). Body 
size-related traits also seem to be the reason 
for the effect of fusion 3/6 on other selection 
components. Mating success in L. argentina 
was increased in males (Colombo et al. 2001) 
and females (Colombo et al. 2004) correlated 
with an increase in femur length associated to 
this fusion. 
 
The case of Dichroplus pratensis 
 
Although the karyotype of Dichroplus praten-
sis Bruner (Orthoptera: Acrididae) was 
described by Mesa (1956) and Sáez (1956), 
and a hint of its complex system of Rb poly-
morphisms and polytypisms was summarily 

exposed by Sáez and Pérez Mosquera (1970), 
it was not until 1988 (Bidau and Mirol 1988) 
that many papers started to emerge describing 
the unusual characteristics of D. pratensis.  
 
The male standard karyotype of D. pratensis 
consists of 2n = 18 + X0 telocentric chromo-
somes, divided into 6 large (L1- L6) and 3 
small (S7- S9) chromosome pairs; the X is 
slightly smaller than L4 (Bidau and Martí 
1995; Martí and Bidau 1995). L bivalents 
have a proximal distal chiasma pattern, while 
S bivalents always show a single chiasma.  
 
So far, 63 natural populations from different 
habitats and latitudes have been chromosom-
ally examined (Martí and Bidau 2001a, 
2001b; Bidau and Martí 2002), and eight Rb 
translocations were identified among all 6 
long autosomes (1/2, 1/4, 1/6, 2/4, 2/5, 3/4, 
3/5, and 5/6). There may be up to 4 different 
combinations in one population, which creates 
monobrachial homologies, i.e., pairs of meta-
centrics that are homologous for only one 
arm, for example fusions 5/6 and 1/6, that are 
homologous for only arm 6. Monobrachial 
homology arises in hybrid zones. With few 
exceptions (see below), all populations are 
usually polymorphic for one to four fusions 
whose characteristics are very different. The 
frequency of fusion chromosomes is generally 
high, except in marginal populations (see be-
low), where most or all individuals may bear 
an all-telocentric karyotype (Martí and Bidau, 
2001a, 2001b; Bidau and Martí 2002). Some 
fusions are widely distributed (3/4, 1/6), while 
others are restricted to small isolated areas 
(1/2) or even to a single population (3/5). No 
evident geographic pattern has been detected, 
although fusions 1/6 and 3/4 are typical of the 
(temperate) central area of the species’ distri-
bution, while 5/6 is only found in the 
southernmost Patagonian populations. 
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It was suggested that the fusions of D. praten-
sis follow a strict central-marginal model (see 
below). The largest wealth of fusions per 
population, as well as their highest frequen-
cies, is in central-eastern Argentina 
(ecologically more favorable for the species), 
whereas northwards, westwards and south-
wards, the frequency and diversity of 
rearrangements decrease clinally. At the ex-
treme margins of the geographic range, 
fusions practically disappear, marginal popu-
lations being monomorphic and all-
telocentric. Furthermore, average fusion num-
ber per individual and average chiasma 
frequency per cell (a measure of recombina-
tion; see below) are negatively correlated 
(Bidau et al. 2003). Hence, marginal popula-
tions have a higher level of recombination, 
which is probably reflected in the degree of 
morphological variability within populations 
(Martí and Bidau 2001a, 2001b; Bidau and 
Martí 2002, 2005).  
 
Effects of Rb translocations on chi-
asma frequency and distribution 
 
Since the behavior of heterozygous Rb con-
figurations is strongly affected by chiasmata, 
the effects of the fusions on chiasma fre-
quency and localization were studied. The 
results may be summarized as the following:  
 
1) Telocentric bivalents have a predominant 
proximal-distal chiasma distribution (Bidau 
1990, 1993; Bidau and Martí 1995, 2002; 
Martí and Bidau 1995, 2001a, 2001b).  
 
2) Fused bivalents and trivalents have less to-
tal and proximal chiasmata than telocentric 
ones, and show a shift of chiasmata towards 
distal positions in both sexes. No significant 
differences between fusion bivalents and tri-
valents exist, nor between sexes.  
 

3) The intrachromosomal reduction in  total 
chiasma frequency depends on the size of the 
involved telocentrics, as telocentric length and 
chiasma frequency per bivalent or trivalent are 
significantly correlated.  
 
4) Fusions have a homogenizing effect, pro-
ducing the same chiasma frequency in all 
chromosomes and chromosome combinations 
(about one distal chiasmata per chromosome 
arm) in both sexes (Bidau 1990; Bidau and 
Martí 1995, 2002; Martí and Bidau 1995).  
 
5) There are no differences between males and 
females with identical Rb karyotypes, with the 
exception of the X bivalents of females, which 
has a typical proximal-distal chiasma pattern. 
 
6) Intrachromosomal recombination within 
populations, when assessed by a chiasma posi-
tion-based recombination index, is negatively 
correlated with the number and frequency of 
fusions (see below). This effect is added to the 
instant reduction of intrachromosomal recom-
bination produced by the combination of two 
linkage groups in one due to each individual 
centric fusion.  
 
The hybrid zones: chromosomal and 
genetic studies 
 
An extensive and complex Rb polymorphism 
involving fusions 1/2, 3/4, 5/6 and 1/6 that 
occurs in Sierra de la Ventana (Buenos Aires 
province, Argentina) has been interpreted as 
the result of hybridization between two chro-
mosomal races sharing fused chromosomes 
with monobrachial homologies. In this region, 
a southern race, geographically very restricted 
between Sierra de la Ventana and the sea, and 
polymorphic for fusions 1/2, 3/4 and 5/6, con-
tacts the widespread northern race 
polymorphic for fusions 1/6 and 3/4. Thus, 
because of reproductive interactions between 



 

Journal of Insect Science: Vol. 13 | Article 43  Colombo 

Journal of Insect Science | www.insectscience.org  7 
 
 

individuals of both races, complex Rb hetero-
zygotes with reduced fertility due to the 
formation of multiples are produced in the hy-
brid zone (Bidau 1991, 1996).  
 
Within the hybrid zone, chromosome frequen-
cies vary widely over relatively short 
distances and altitudes, with fusions 1/2 and 
5/6 generally associated with higher altitudes 
(rocky tops of hills) (Tosto and Bidau 1991). 
The irregular distribution of both races within 
the hybrid zone possibly is because of the 
complexity and heterogeneity of the Sierra de 
la Ventana environment, which transitions 
between radically different biogeographic 
zones (the grasslands of the Pampas to the 
north and the Patagonian steppes to the south). 
Hence, the hybrid zone has been interpreted as 
a mottled zone (Mirol and Searle 1995) with 
very complex relationships between both rac-
es, whose internal distribution reveals a 
notorious spatial heterogeneity (Tosto and Bi-
dau 1991). 
 
Many populations include individuals from 
both races, as well as complex structural 
chromosomal hybrids. The latter are of the 
following three types, according to the in-
volved monobrachial homologies (Bidau et al. 
2003):  
 
1. Type "561"; besides the chromosomes 
shared by both races, they have two Rb meta-
centrics (1/6 and 5/6) and two telocentrics (1 
and 5) that engage in the formation of a quad-
rivalent (5-5/6-6/1-1). 
 
2. Type "612"; quadrivalent: 6-6/1-1/2-2. 
 
3. Type "5612"; quinquivalent: 5-5/6-6/1-1/2-
2. 
 
The frequency of non-alternate (linear) orien-
tations in metaphase I is high for all 

multivalent types (Bidau 1991, 1996), espe-
cially for 612 and 5612. Desynapsis is very 
frequent (up to 18% of the cells in some indi-
viduals) and it always involves the telocentric 
chromosomes, particularly 5 and 6. Linear 
orientations of multivalents in prometaphase I 
are even more frequent than in metaphase I in 
all hybrids, reaching frequencies of 75% in 
some specimens (Bidau 1991, 1996; Martí and 
Bidau 1995).  
 
Abnormal (aneuploid and diploid) secondary 
spermatocytes are significantly more abundant 
in complex hybrids than in regular heterozy-
gotes, and a highly significant positive 
correlation exists between their frequency and 
the frequency of abnormal (non-disjunctional) 
first metaphases. Nevertheless, the frequency 
of abnormal spermatocytes II is almost always 
lower than that of linear orientations, suggest-
ing again that further reorientation occurs at 
metaphase I. 
 
Genetic studies in the hybrid zone 
 
The genetic structure of populations of D. 
pratensis from northern and southern races in 
the hybrid zone was examined (Chiappero et 
al. 2004; Miño et al. 2011). Genetic differ-
entiation among parental races was 
significant, even though no fixed alleles for 
any particular race were found. Hybrid popu-
lations are genetically more similar to the 
southern than to the northern race. This differ-
ence is most likely because the northern race 
probably colonized the areas previously occu-
pied by the southern. In this scenario, the 
populations from within the hybrid zone have 
been in contact with the northern race for 
longer. The results support the hypothesis that 
the northern race invaded its present range, 
displacing the southern one that at present is 
only represented within the zone by relictual 
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populations on the top of the hills (Bidau et al. 
2003). 
 
Meiotic behavior of single and mul-
tiple Rb heterozygotes 
 
The orientation at metaphase I of six hetero-
zygous fusions in males and two in females of 
D. pratensis was studied. Linear (non-
convergent) orientation at prometaphase I 
varied between 4% and 40% for any individ-
ual trivalent in different individuals, and the 
mean values for four different trivalents were 
not statistically significantly different. Reori-
entation takes places at two points, in 
metaphase I and in second spermatocytes. In 
all cases, metaphase I linear orientations are 
significantly lower than in prometaphase I; 
furthermore, the frequency of aneuploid and 
diploid secondary spermatocytes are always 
lower than that expected from the metaphase I 
orientations (Bidau and Mirol 1988; Bidau 
and Martí1995). This discrepancy between the 
metaphase I and metaphase II data suggests 
that additional reorientation must occur during 
metaphase I, and that the effects on fertility of 
a given rearrangement must not be inferred 
exclusively from its metaphase I behavior 
(Bidau and Martí 1995).  
 
In double and triple heterozygotes, the situa-
tion is similar. As expected, the frequencies of 
linear orientation are higher than those of sin-
gle heterozygotes and roughly additive for all 
combinations of fusions analyzed. The levels 
of metaphase I linear orientation can be as 
high as 36% in some individuals (Bidau and 
Mirol 1988; Mirol and Bidau 1994; Bidau and 
Martí 1995). Also, in these individuals, a con-
siderable degree of metaphasic reorientation 
seems to take place, and the frequencies of 
anomalous spermatocytes II are relatively 
low, although higher than those observed in 
single heterozygotes (Bidau et al. 2003). 

 
Factors affecting meiotic orientation 
of Rb multivalents 
 
Orientation of Rb multivalents is conditioned 
by the distance between centromeres, which in 
turn depends on the size of the involved 
chromosomes and the localization and fre-
quency of chiasmata, which determine the 
symmetry of the configuration (Narasinga Rao 
and Sybenga 1984; Arundhati et al. 1986; Bi-
dau 1991, 1996; Mirol and Bidau 1991; Bidau 
and Martí 1995). 
 
The number of centromeres in the multiple is 
also relevant. Multiple regression analysis in-
volving the comparison of linear orientations 
in four trivalent types (1/2, 3/4, 5/6, and 1/6) 
at prometaphase and metaphase I in relation 
with arm length, arm ratio, and frequency of 
proximal chiasmata, revealed that the sole fac-
tor significantly affecting orientation in both 
stages was proximal chiasma frequency (Mi-
rol and Bidau 1992). 
 
Higher order Rb multivalents also show a 
strong dependence on proximal and interstitial 
chiasmata for their orientation and, in this 
case, a highly significant positive correlation 
for all multivalent types occurs. Total length 
of the configuration is also important because 
linear orientation frequencies increase with 
multivalent size (561 < 612 < 5612; see be-
low) (Bidau 1991, 1996; Bidau and Martí 
1995). 
 
The case of Sinipta dalmani Stål 
 
In Sinipta dalmani Stål (Acrididae: Gom-
phocerinae), which is widely distributed 
throughout Argentina and Uruguay, a poly-
morphism for a centric fusion between the X 
chromosome and an autosome was found in 
three populations confined to a restricted pro-
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tected area in central east Argentina (Remis 
1990, 2008). The centric fusion involving the 
sex chromosome is present in a polymorphic 
state (Remis 1990), a unique situation in Or-
thoptera, although there are several instances 
in which fixed X-autosome fusions allow the 
distinction between related Orthoptera races 
or species (Hewitt 1979). Especially remark-
able is the case of Podisma pedestris, a 
flightless alpine grasshopper with two chro-
mosomal races, one bearing an X0 and the 
other a neo-XY sex chromosome system 
(John and Hewitt 1970; Hewitt 1975; Mason 
et al. 1995); however, this is not a polymor-
phism but a polytypism. A similar case has 
recently been described in the brachypterous 
grasshopper Podisma sapporensis (Kowal-
czyk et al. 2008; Warchalowska-Sliwa et al. 
2008b). The frequency of the fusion in the dif-
ferent samples of S. dalmani was low, and 
there were no statistical differences among 
populations or among years. This fusion was 
associated both with an increase in terminal 
chiasma frequency in the fused pair (Remis 
2008) and with a decrease in the frequency of 
functional sperm (Remis 1993). Thus, based 
on the temporal stability, the influence on 
sperm formation, and the particular effect on 
genetic recombination, it is tempting to sug-
gest a non-neutral explanation for the 
maintenance of this fusion at a low frequency 
(Remis 1993). 
 
The case of Cornops aquaticum 
Bruner 
 
The water-hyacinth grasshopper, Cornops aq-
uaticum Bruner (Orthoptera: Acrididae), is 
another New World leptysmine grasshopper 
that lives, feeds, and oviposits on plants of the 
genus Eichhornia (Adis and Junk 2003; Adis 
et al. 2004). C. aquaticum has been poised for 
release in Africa as a natural control of water-
hyacinths (Oberholzer and Hill 2001), which 

have become a serious water weed (Centre et 
al. 2002). In its natural environment, C. aq-
uaticum lives between 23º N and 35º S, i.e., 
between the south of Mexico and east-central 
Argentina and Uruguay. This case is the most 
recently studied case of Rb polymorphisms in 
grasshoppers (Colombo 2007, 2008, 2009), 
although the occurrence of polymorphic Rb 
rearrangements in a Uruguayan population of 
this species was first reported by Mesa (1956) 
and Mesa et al. (1982). In the southernmost 
extreme of its geographic distribution, three 
polymorphic Rb rearrangements were found 
that follow a north-south cline (Colombo 
2008). These centric fusions severely affect 
chiasma distribution in the chromosomes af-
fected by the rearrangements, shifting 
chiasmata from proximal and interstitial to 
more distal positions (Colombo 2007).  
 
C. aquaticum has 2n = 23 chromosomes in 
males and 24 in females, with a X0/XX sex 
determination system. All chromosomes are 
acro-telocentric. Upon this basic karyotype, 
three Rb translocations took place between 
pairs 1/6, 2/5, and 3/4. (Colombo 2008). The-
se polymorphisms are restricted to the lower 
course of the Paraná River, between Rosario 
and Buenos Aires. Fusion frequencies 
increase southwards, thus showing a geo-
graphical cline. The polymorphisms were 
mostly in keeping with Hardy-Weinberg and 
gametic phase equilibria (Colombo 2008). 
The rearrangements cause a drastic chiasma 
re-patterning in the fusion bivalents (or triva-
lents), reducing proximal chiasma frequency 
(Colombo 2007). Recombination is also re-
duced due to the loss of independent 
segregation. A recombination index (Colombo 
1992) that takes into account both factors cor-
relates negatively with the number of pairs 
affected by fusions among populations (Co-
lombo 2008). 
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Chiasma studies in C. aquaticum 
 
Chiasma reorganization in trivalents of het-
erozygotes would be necessary if the 
polymorphisms were to be maintained, since 
proximal chiasmata would lead to non-
disjunctional orientation of the trivalent. Chi-
asma frequency and distribution were 
analyzed in five Argentine populations. This 
study revealed a strong redistribution of chi-
asmata in fusion carriers, with a reduction of 
proximal chiasma frequency and an increase 
of distal ones in the fusion bivalents and triva-
lents, when all three karyotypes were 
compared. However, when only fusion biva-
lents and trivalents were compared, proximal 
chiasma frequency reduction in trivalents of 
heterozygotes is more marked than in the 
submetacentric bivalents of fusion homozy-
gotes (Colombo 2007). It is argued that 
proximal chiasma frequency reduction (with 
respect to unfused bivalents) in fusion biva-
lents may be due to interference across the 
centromere (Colombo and Jones 1997; Co-
lombo 2007), but this may only be the case in 
fusion homozygotes, as interference need a 
complete synaptonemal complex in order to 
operate. Proximal chiasma reduction in het-
erozygotes is due to another cause, namely an 
adaptation to the polymorphic situation (Co-
lombo 1993a), or else to synaptic problems in 
fusion bivalents and trivalents, as proposed in 
the case of D. pratensis (Martí and Bidau 
2001c). 
 
Study of trivalent orientation in 
metaphase I in C. aquaticum 
 
Twenty-one out of the 27 males used in this 
study were captured from two highly poly-
morphic populations of C. aquaticum. Three 
other males from a mostly monomorphic pop-
ulation (all-metacentric) of C. aquaticum were 
used in order to have some representatives of 

tives of the “zero trivalent” class. In each of 
the males, we sought to find out whether there 
was any relationship between the frequency of 
linear orientation and the number and position 
of chiasmata. It was clear from multivariate 
and univariate analyses that a high chiasma 
number favors linear orientation (as shown by 
standard correlation with arcsin transforma-
tion due to the presence of proportions); 
among these chiasmata, proximals and inter-
stitials are the ones that would lead to linear 
orientation, distal chiasmata being associated 
with convergent orientation. 
 
Individuals with no heterozygous fusions, and 
with one, two, and three trivalents, were com-
pared with respect to their formation of 
diploid or tetraploid spermatids. The regres-
sion of the proportion of abnormal spermatids 
on the number of trivalents was significant, as 
expected. There seems to be no interaction 
between trivalents; rather, the effects are 
roughly accumulative. The regression of the 
percentage of abnormal spermatids on the 
percentage of linear orientation was not sig-
nificant (Colombo 2009). 
 
Aneuploidy was rare in metaphase II and ana-
phase I in C. aquaticum, suggesting that 
segregation of trivalents is generally normal. 
A total of 149 metaphase II plates were ob-
served, and aneuploidy was seen in only five 
cases. Anaphase I cells were rare, but their 
quality was much better. A total of 53 ana-
phase I cells were observed. Segregation of 
trivalents was always normal, showing the 
submetacentric pointing towards one pole and 
the two acrocentrics migrating towards the 
other. Hence, as in D. pratensis, a great deal 
of reorientation of linearly oriented trivalents 
must be taking place. All the results from this 
and other studies are consistent in suggesting 
that the polymorphic centric fusions of C. aq-
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uaticum are indeed stable ones (Colombo 
2009). 
 
Comparative study of spontaneous 
and polymorphic centric fusions 
 
Polymorphic centric fusions usually produce a 
marked chiasma redistribution from proximal 
and interstitial to more distal positions with 
respect to the centromere in the fusion triva-
lent of heterozygotes (see below). However, 
there is evidence that this redistribution is not 
due to an automatic effect of the rearrange-
ment on chiasma position. Southern (1967) 
observed no intrachromosome effect of the 
spontaneous M5/M6 fusion on the chiasma 
pattern in Myrmeleotettix maculates. Polani 
(1972) also failed to find chiasma restriction 
in a heterozygote for a newly arisen 6-15 cen-
tric fusion in Mus musculus. Futhermore, it 
does not seem to be true for a 2/3 heterozy-
gote of the grasshopper Staurorhectus 
longicornis (Vilardi 1984). Peters (1982) re-
ported the recurrence of centric fusions in 
interpopulational synthetic hybrids of the pyr-
gomorphid Atractomorpha similis. Although 
there are no details about presumed effects on 
chiasma distribution, it is inferred from the 
text and the figures of Peters (1982) that the 
high frequency of proximal and interstitial 
chiasmata remains unchanged. A spontaneous 
centric fusion in the grasshopper Valanga ni-
grocornis had a strong interchromosome 
effect, reducing chiasma frequency of both 
long and medium sized chromosomes, but no 
intrachromosome effect was reported (Teoh 
and Yong 1983). Finally, López Fernández et 
al. (1984) found a slight reduction in proximal 
chiasma frequency in the short arm of the 
metacentric originated through a spontaneous 
centric fusion between pairs 5 and 8 of the 
grasshopper Chorthippus jucundus. Addition-
ally, a few cases of spontaneous X-autosome 
fusions were observed. John and Hewitt 

(1968) reported a case in Arcyptera [Parar-
cyptera] kheili. No shift of chiasmata to distal 
positions was observed. The same seemed to 
occur in a possible spontaneous mutant stud-
ied by Mesa and Mesa (1967) in Leiotettix 
politus. In Baeacris punctulatus, the mutant 
showed strict distal localization of the single 
chiasma, but this result could be due to a gen-
eral tendency for distal chiasma formation in 
the species (Castillo et al. 2010). 
 
In two cases, a spontaneous and a poly-
morphic centric fusion were tested for 
chiasma effects in the same species: one male 
in a population of L. argentina heterozygous 
both for a 5/7 spontaneous fusion and the 3/6 
polymorphic one (Colombo 1987). The orien-
tation of the 5-5/7-7 trivalent in metaphase I 
was irregular (36% linear orientation) and no 
intrachromosomal effect on chiasma fre-
quency or distribution was detected. In 
contrast, trivalent 3-3/6-6 orientation in the 
double heterozygote was much more regular 
(3%), not significantly different from non mu-
tant heterozygotes. As already reported, there 
is a marked effect of the polymorphic fusion 
reducing the frequency of chiasmata in the 
trivalent and shifting them to more distal posi-
tions (Colombo 1987). 
 
In Sinipta dalmani, a heterozygous individual 
was found for a spontaneous M6/M7 centric 
fusion. In the same and nearby populations, 
another polymorphic X/M5 centric fusion 
took place (Remis 1990). Hence the mutant 
and the polymorphic centric fusions occur in 
the same population, but not in the same indi-
vidual. Again, the spontaneous M6-M6/M7-
M7 trivalent shows an irregular meiotic be-
havior (77% of linear orientation) leading to 
51% of aneuploid metaphase II (in the case of 
L. argentina, MII plates are usually not ana-
lyzable), and chiasma frequency and position 
remain unaffected. By contrast, the poly-
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morphic X/M5 fusion triggers a significant 
reduction in the frequency of chiasmata and 
their displacement to terminal position (Remis 
1990, 2008). 
 
Thus, in both cases, a chiasma redistribution 
accompanied a stable (convergent) behavior 
of the polymorphic trivalent, as already shown 
in D. pratensis and C. aquaticum. However, 
no change in chiasma frequency or position 
was noticed in the spontaneous centric fusions 
trivalents, accompanied by a high incidence of 
linear (non-linear, non-convergent) orienta-
tion. These findings suggest that the chiasma 
effects found in both cases are due to an adap-
tation to the polymorphic situation (see 
below). 
 
Chiasma redistribution due to Rb 
polymorphisms 
 
Rb translocations are frequent among the rear-
rangements that are involved in the 
evolutionary divergence throughout the ani-
mal and plant kingdoms (Capanna 1982; 
Baker and Bickham 1986; King 1993). When 
hybrids between species or chromosomal 
races that differ in one or several Rb rear-
rangements arise, the behavior of the resulting 
trivalent(s) is frequently erratic, leading to 
imbalanced gametes due to linear configura-
tions in metaphase I. Therefore, fusion 
heterozygotes should have negative heterosis 
for fitness. Given that polymorphisms with 
negative heterosis are unstable (Hedrick 
1983), there should hardly be polymorphic 
centric fusions; however, this is not the case 
(Hewitt and Schroeter 1968; Mayr et al.1984; 
Colombo 1989, 2007; Bidau 1990; Remis 
1990; Fan and Fox 1991; Nachman 1992; 
Pascoe et al. 1996; Narain and Fredga 1998, 
to mention only a few). Evidently, in these 
cases, the depressing effects of structural het-
erozygosis on fitness are somehow 

suppressed. In fact, when trivalent orientation 
is studied, convergent orientation is the norm 
and linear orientation the exception (Bidau 
and Mirol 1988; Mirol and Bidau 1991, 1992; 
Colombo 2009).  
 
This result is partly because convergent orien-
tation requires distal chiasmata, given that too 
many proximal chiasmata (with respect to the 
centromere) would spatially obstruct the bend-
ing of the trivalent at the level of the 
centromere, which leads to balanced segrega-
tion. Frequently, centric fusions trigger a 
chiasma redistribution from proximal to more 
distal positions both in grasshoppers (Hewitt 
and Schroeter 1968; Bidau 1990; Colombo 
1989, 1990, 1993, 2007) and in mice (Davison 
and Akeson 1993; Dumas and Britton-
Davidian 2002). What follows is a brief dis-
cussion about the possible causes of this 
redistribution. 
 
Chiasma redistribution in centric 
fusion carriers: a common feature 
 
Among polymorphic centric fusions, the fre-
quency of chiasmata (especially proximal) is 
always reduced (Hewitt and Schroeter 1968; 
Colombo 1989, 1990, 1993, 2007; Bidau 
1990; Bidau and Martí 2005). This reduction 
was suggested to be due to an adaptation to 
the polymorphism (Colombo 1989, 1993). Al-
ternatively, it was attributed to a direct effect 
of delayed synapsis in the trivalents (Davisson 
and Akeson 1993; Bidau and Martí 2001). 
However, this feature is restricted to Rb pol-
ymorphisms.  
 
The populations of the European house mouse 
(Mus domesticus) are polymorphic and/ or 
polytypic for several Rb rearrangements 
(Garagna et al. 2001). Studies on this species 
show that both chiasma conditions and genetic 
recombination are affected by Rb rearrange-
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ments, leading to a decrease in the number of 
proximal chiasmata (Davisson and Akeson 
1993; Bidau et al. 2001; Dumas and Britton-
Davidian 2002; Bidau and Martí 2005). How-
ever, they frequently deal only with fusion 
and acrocentric homozygotes by comparing 
populations that differ in several Rb re-
arrangements. Instead, when hybrids between 
Rb races of mice are compared, proximal chi-
asma frequency increases rather than decrease 
in the trivalents of heterozygotes (Bidau et al. 
2001). Furthermore, it has been claimed, at 
least in some cases, that a partial asynapsis, or 
rather a delay in pairing due to structural het-
erozygosis, is correlated with proximal 
chiasma suppression (Davisson and Akeson 
1993; Bidau and Martí 2001). But is asynapsis 
a cause of the proximal chiasma suppression, 
or a consequence? In species with strict chi-
asma localization, it is usually accompanied 
by asynapsis, though in these cases no struc-
tural hybridity obstructs synapsis (Fletcher 
1977; Del Cerro et al. 1997; Viera et al, 
2009). We predict that, when proximal chi-
asma suppression in Rb trivalents is observed, 
it will be in heterozygotes of Rb polymorph-
isms, rather than in hybrids (natural or 
otherwise) between different chromosomal 
races. This  prediction can be easily falsified 
by testing chiasma distribution in hybrid mice. 
So far, the only such studies revealed that chi-
asma frequency per chromosome arm in 
trivalents is the same or even higher than that 
of telocentrics, whereas metacentric bivalents 
have a lower chiasma frequency per chromo-
some arm (Wallace et al. 1992, 2002; Bidau et 
al. 2001; Castiglia and Capanna 2001), thus 
confirming our hypothesis. 
 
However, a general feature of the meiosis of 
polytypic or polymorphic Rb heterozygotes is 
that fusion bivalents also show a more distal 
redistribution of chiasmata, although the 
change is not necessary for the maintenance of 

the polymorphism. This change is milder than 
that observed in trivalents (Bidau 1990; 
Colombo 1993, 2009; Bidau et al. 2001, Bi-
dau and Martí 2005) and is also present in 
fusion homozygotes even though the trivalents 
of heterozygotes do not show proximal chi-
asma suppression (Bidau et al. 2001). To 
explain this fact, we take into account that 
chiasma interference can act through the cen-
tromere (Colombo and Jones 1997), contrary 
to the classical belief, which can be traced 
back to Mather (1938). Broman and Weber’s 
(2000) study on human meiosis using genetic 
markers confirmed that interference was 
“blind” to centromeres. Hence, we propose 
that the chiasma redistribution found in Rb 
bivalents (when compared to the homologous 
unfused chromosomes) is due to the action of 
interference across the centromere. This pro-
posal cannot be the case in trivalents given 
that interference and a complete synaptonemal 
complex are usually connected (Sym and 
Roeder 1994; Börner et al. 2004). Hence, we 
also predict that, when chiasma redistribution 
is seen in Rb bivalents and trivalents, it is of a 
diverse nature because they are due to differ-
ent causes. 
 
The central-marginal model in 
Robertsonian polymorphic 
grasshoppers 
 
In natural populations of Drosophila, it has 
been found that the most central populations 
(both from an ecological and a geographical 
point of view) tend to be more polymorphic 
for paracentric inversions, whereas the mar-
ginal populations tend to monomorphism. 
This was termed the “central-marginal model” 
(Powell 1997). Da Cunha and Dobzhansky 
(1954) proposed, in Drosophila willistoni, that 
the level of inversion polymorphism is di-
rectly related to the diversity of the habitat 
occupied by the populations. The idea is that 
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the greater the environmental diversity, the 
more inversions it can maintain due to diversi-
fying selection. Another explanation of the 
central-marginal pattern, by Carson (1955, 
1959), states that central populations are well 
adapted and hence recombination disrupts 
well-adapted combinations of genes. As in-
versions suppress recombination in the 
mutually inverted sequences of heterozygotes, 
the low frequency of inversions in marginal 
populations would be reflecting the need for 
new combinations of genes in populations that 
are challenged by environmental instability. 
 
Centric fusions also reduce recombination due 
to the lack of independent segregation of two 
pairs of chromosomes that before the re-
arrangement used to migrate independently. 
Furthermore, as has been sufficiently exposed, 
polymorphisms for centric fusions reduce 
proximal and interstitial chiasma frequency in 
the trivalent; contrary to distal chiasmata, 
proximal and interstitial are the only ones that 
may produce genetic recombination. Conse-
quently, they are expected to produce the 
same effects as polymorphic inversions, al-
lowing the preservation of co-adapted gene 
complexes (i.e., groups of genes that work 
together interrelated by tightly woven threads 
of epistasis, thus allowing the adaptation to 
different environments, and that occasionally 
are tightly linked and inherited together, thus 
forming supergenes; Dobzhansky 1970), and 
thus amenable to display a central-marginal 
pattern. 
 
However, in L. argentina, it was found that 
the southernmost populations had a higher 
fusion frequency and the lowest degree of re-
combination (Colombo 1989), even if in many 
aspects it could be said that these southern 
populations from temperate climates are mar-
ginal for a species whose distribution is 
mainly tropical and subtropical. 

 
However, a different case seems to be that of 
D. pratensis. This species is polymorphic 
and/or polytypic for eight different Rb re-
arrangements throughout Argentina, and all of 
them cause a chiasma re-patterning leading to 
a reduction in recombination (Bidau 1990). 
Cytogeographic study (Bidau et al. 1991; Bi-
dau and Martí 2002) found that heterozygosis 
in central populations is highest, diminishing 
in clearly marginal ones, such as those sited in 
northern Argentina and in Patagonia; this ge-
ographic pattern was interpreted by the 
authors as a central-marginal one. They ana-
lyzed chiasma frequency (dependent on the 
frequency of centric fusions) in relation to the 
variation of six exomorphological characters 
(expressed as their Coefficients of Variation). 
Central populations, which inhabit ecologi-
cally optimal regions, exhibit a high level of 
fusions and consequently low chiasma fre-
quency. On the other hand, marginal 
populations from Patagonia and the Precordil-
lera have very low levels of chromosomal 
polymorphism and hence high chiasma fre-
quencies (Xt = 11.66 in the southernmost 
population at 45° 57´ S, and X t= 12.01 in the 
northernmost one sited at 23° 55´ S). The pro-
gressive increase in recombination 
frequencies toward the margins of the geo-
graphic range is negatively correlated with the 
decrease in frequency of chromosomal poly-
morphisms, but also positively correlated with 
augmented levels of morphological varia-
bility. This evidence would indicate a central-
marginal pattern. 
 
In C. aquaticum this central-marginal pattern 
does not seem to be the case, and in many as-
pects C. aquaticum resembles L. argentina. It 
is clear that the mouth of the Paraná river is a 
marginal environment for this species—in 
fact, it is by far the southernmost extreme of 
its distribution—and yet it is there where the 
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highest frequency of centric fusions was 
found. Furthermore, populations from the cen-
ter of the geographical distribution, such as 
those from the state of Pernambuco in Brazil, 
at latitude 8º S (Rocha et al. 2004) and Trini-
dad and Tobago at latitude 10.30º N 
(Colombo 2008), do not show any chromo-
somal polymorphism. In C. aquaticum, 
recombination is lowest in a place where mar-
ginality is more extreme (Buenos Aires, 
latitude 34º S), so it clearly contradicts the 
central-marginal model (Colombo 2008). 
Contrary to D. pratensis, which seems to be a 
fairly settled case, the meaning of this cline 
and that of L. argentina awaits for further 
sampling and research (see Colombo 2012 for 
further discussion of this issue). 
 
In species of Drosophila where a clinal vari-
ation for inversions was found, notably in D. 
subobscura (Prevosti et al. 1988), the clines 
have tended to reproduce wherever this spe-
cies was transported accidentally by human 
transport. In fact, a north-south cline for para-
centric inversions in Europe has repeated 
itself in the Pacific coast of North America, 
and it reversed and became a south-north cline 
in the Pacific coast of South America. This 
invasion of the New World by an Old World 
species has been called by Ayala et al. (1989) 
“a grand experiment in evolution.” A similar 
pattern of latitudinal clines in both hemi-
spheres exists for D. melanogaster 
(Lemeunier and Aulard 1992). As C. aquati-
cum is poised for introduction in South Africa 
as a biological pest control (Oberholzer and 
Hill 2001), it is tempting to say that the clines 
found in South America may repeat there, if 
only the founder populations contained the Rb 
polymorphisms. We will be looking forward 
to the outcome of this new experiment in evo-
lution. 
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