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Abstract

Primary loss of photoreceptors caused by diseases such as retinitis pigmentosa is one of the main causes of blindness
worldwide. To study such diseases, rodent models of N-methyl-N-nitrosourea (MNU)-induced retinal degeneration are
widely used. As zebrafish (Danio rerio) are a popular model system for visual research that offers persistent retinal
neurogenesis throughout the lifetime and retinal regeneration after severe damage, we have established a novel MNU-
induced model in this species. Histology with staining for apoptosis (TUNEL), proliferation (PCNA), activated Miiller glial cells
(GFAP), rods (rhodopsin) and cones (zpr-1) were performed. A characteristic sequence of retinal changes was found. First,
apoptosis of rod photoreceptors occurred 3 days after MNU treatment and resulted in a loss of rod cells. Consequently,
proliferation started in the inner nuclear layer (INL) with a maximum at day 8, whereas in the outer nuclear layer (ONL) a
maximum was observed at day 15. The proliferation in the ONL persisted to the end of the follow-up (3 months),
interestingly, without ongoing rod cell death. We demonstrate that rod degeneration is a sufficient trigger for the induction
of Miller glial cell activation, even if only a minimal number of rod cells undergo cell death. In conclusion, the use of MNU is
a simple and feasible model for rod photoreceptor degeneration in the zebrafish that offers new insights into rod
regeneration.
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Introduction cells [7,18,19]. In a constant-light damage model, approximately
50% of Miiller glial cells co-labeled for PCNA, a marker for
mitosis [7,15]. Injection and in vivo electroporation of PCNA
morpholinos inhibited Miiller glial cell proliferation and blocked
regeneration of the retina. These data suggest that Miiller glial cell
division is necessary for proper photoreceptor regeneration in the
light-damaged zebrafish retina and that Miiller glial cells serve as
the source of neuronal progenitor cells [15]. The difference of
these two light-induced models (ultra-high-intensity vs. constant-
light induced damage model) were analysed by Thomas et al. [20].
Whereas constant bright light primarily damages rod photorecep-
tors, ultra-high treatment with UV light results in significant
damage to both rods and cones [20]. In mechanically induced
injury to the retina (either with a needle [21] or by surgically
removing a small part of the retina [22]), the same proliferating
Miiller glial cells were observed replacing the damaged retina.
Miiller glial cells also have the potential to regenerate neurons of

Zebrafish (Danio rerio) provide an important model system in
visual research, especially due to their cone-rich retina and
persistent retinal neurogenesis throughout the zebrafish lifetime
[1-6]. Under physiological conditions, the ciliary marginal zone
(CMZ) is the source of all types of neurons in the adult zebrafish
retina [7]. In addition, Miiller glial cells located in the inner
nuclear layer (INL) of the retina are able to generate rod
progenitors, which reside in the outer nuclear layer (ONL) [7].
These two sources provide lifelong retinal growth and neurogen-
esis, which is necessary to maintain a stable rod density in a
continuously growing eye [8-12]. When retinal damage occurs,
cells in the INL give rise to multipotent progenitors, which
proliferate and substitute all types of neurons to reconstitute the
previous tissue architecture [7,11,13-17]. Barnados et al. have
investigated these proliferating cells in an ultra-high-intensity light
treatment model in transgenic zebrafish in which Miiller glial cells the inner retina, as observed in a model of inner retina destruction

expressed green fluorescence protein [18,19]. They concluded that with intravitreal injection of ouabain [14] or after optic nerve
the proliferating cells in the INL were de-differentiated Miiller crush [17].

glial cells and are able to migrate from the INL into the ONL

) " ) In rodents, retinotoxic substances such as N-methyl-N-nitroso-
forming rod progenitors and thereby regenerating photoreceptor

urea (MNU) are used to induce photoreceptor degeneration
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[23,24]. MNU is an alkylating agent, widely used as an
experimental cancer-inducing drug leading to benign and
malignant tumors, that appear several months after MNU
treatment [25-27]. In addition, MNU specifically induces
photoreceptor damage in rodents shortly after exposure [23,24],
presumably directly caused by the alkylating DNA damage of the
outer nuclear layer [28]. However, it remains a puzzling question
why photoreceptors, especially rods, are particularly susceptible to
MNU [23,24]. A possible explanation may be the very low
concentration (or absence) of glutathione in photoreceptors [29].
Glutathione both catalyzes the decomposition of MNU and
scavenges the produced methylating agent [29,30].

In a new approach, we examined the use of MNU in adult
zebrafish in order to establish a simple chemically induced model
for photoreceptor degeneration.

Materials and Methods

Animals

Wild-type zebrafish (Danio rerio) of the AB (Oregon) strain aged
12 to 24 months were used. The fish were maintained in standard
conditions [31,32] in water with a temperature of approximately
26.5° Celsius and raised in a 14/10 hour light/dark cycle. The
experimental research on animals was approved by the Cantonal
Veterinary Office in Fribourg and adhered to the Association for
Research in Vision and Ophthalmology (ARVO) Statement for
the Use of Animals in Ophthalmic and Vision Research.

MNU treatment protocol

At day 0, zebrafish were incubated in fresh water containing
10 mM phosphate buffer, pH 6.3, with a concentration of 50 mg/
I (group 1) or 150 mg/I (group 2) dry substance of MNU (Sigma,
St. Louis, USA) for 60 minutes. Following exposure, fish were
washed and thereafter maintained under standard conditions.

Histology and cell quantification

After euthanasia, the eyes were enucleated before and at day 1,
3,5, 8, 15, 30, 60 or 90 after MNU treatment and fixed for at least
18 hours with 4% paraformaldehyde in phosphate-buffered saline
(PBS). Then, the eyes were embedded in paraffin, and 5 um
sections were cut. Sagittally oriented central sections of the optic
nerve head were used for measurement purposes. The sections
were stained with hematoxylin and eosin (H&E). In the right eyes
of all of the fish, the number of cells in the ganglion cell layer and
the inner nuclear layer (INL) as well as the number of rods and
cones were determined manually at the same position in the
midperiphery on both sides of the eye (size of the counted area
refers to a retinal section of 150 pm length). Rod and cone
photoreceptors were distinguished by their different morphologies
and position [33,34].

TUNEL and immunohistochemistry

Paraffin tissue sections were also used for TUNEL staining and
immunohistochemistry. An in situ cell death detection kit (TMR
red, Roche Applied Science, Rotkreuz, Switzerland) was applied
to detect TUNEL-positive cells within the retina (n=3 eyes of 3
zebrafish for all time points). When immunohistochemistry was
combined with TUNEL staining, immunohistochemistry was
performed first (as described below; dilution of anti-rhodopsin
antibody 1:200, dilution of anti-zpr-1 antibody 1:200) and directly
followed by TUNEL staining.

Immunohistochemistry was performed with the following
primary antibodies: rabbit anti-PCNA (to detect cell proliferation;
1:200 dilution; Santa Cruz Biotechnology, Santa Cruz, USA),
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rabbit anti-GFAP (to detect activated Miiller glial cells; 1:200; Life
Technologies, Paisley, UK), mouse anti-rhodopsin (to detect rod
photoreceptors; 1:200; NeoMarkers, Fremont, USA) or mouse
anti-zpr-1 (to detect red-green double cones, 1:50; Zebrafish
International Resource Center, Oregon, USA) in Tris-buffered
saline (TBS) with 1% bovine serum albumin (BSA) for 1 hour at
room temperature or overnight at 4° Celsius. As secondary
antibodies, goat anti-rabbit/anti-mouse Alexa 488 nm/594 nm
(1:500; Life Technologies, Paisley, UK) was applied in TBS with
1% BSA for 1 hour at room temperature. To identify proliferating
cells, histological sections were double-stained with the above-
mentioned antibodies for PCNA in addition to GFAP, rhodopsin
and zpr-1, respectively. The first sequence was blocked with TBS
and 10% goat normal serum and 1% BSA, and the second
sequence was blocked with TBS, 5% mouse normal serum and 1%
BSA.

Cell proliferation was assessed in all eyes by counting PCNA-
positive cells according to the method used for counting cells using
H&E staining (size of the counted area refers to a retinal section of
450 pm length). In addition, the number of PCNA-positive cells in
the CMZ, which was defined as the unlaminated retina, was
counted.

Statistical analysis

Statistical analysis was performed using GraphPad software
(version 5.0 ¢, GraphPad Software, La Jolla, USA). Intergroup
comparisons were based on a 1-way analysis of variance (ANOVA)
and the Bonferroni multiple comparison post hoc test. The level
for statistical significance was set at a P value of 0.05. Cell counts
were performed in 6 eyes of 6 zebrafish for the control group and
in 3 eyes of 3 zebrafish for all other time points. For each eye, cells
of two corresponding areas (opposite sides of the optic nerve) were
counted and mean values were calculated.

Results

In the 50 mg/1 group, only minor changes of retinal structure
were observed after MNU treatment (e.g., disruption of the INL
and vacuolation of the ONL between day 1 and 30; Fig. 1A).
Furthermore, no relevant cell count decline of any retinal layer
occurred during follow-up (p>0.05; Fig. 2A). H&E staining in the
150 mg/1 group revealed histological changes starting at day 1
(e.g., disruption of the INL and vacuolation of the ONL), resulting
in massive retinal degeneration that involved a loss of nearly all
rod cells at day 8 (reduction of 79.6% compared to control retina,
p=0.01; Fig. 1B, and 2B). Although all retinal layers displayed
morphological changes after MNU treatment, only rods displayed
distinct cell loss. Significant decreases were not observed for the
other retinal layers (p>0.05). However, cells in the INL showed a
non-significant reduction between day 3 and 60. On days 8 and
15, accumulations of cell clusters were found, mainly in the INL
(Fig. 1B, arrows). These cells stained for proliferating cell
nuclear antigen (PCNA), which is a proliferation marker (see
below).

Following treatment with 50 mg/1 MNU, no TUNEL-positive
cells were seen at baseline or any other time point. In contrast,
zebrafish exposed to 150 mg/1 displayed many TUNEL-positive
cells on day 3 that were located mainly in the ONL (Fig. 3A).
Maximal one (mainly no) TUNEL-positive cell per histological
section was found at any other time point. Strong autofluorescence
of a cone outer segment allows identification of the corresponding
nearby cone nucleus. Based on this assessment, cone photorecep-
tors were TUNEL-negative. To verify this, immunohistochemistry
with zpr-1 (staining double cones) combined with TUNEL staining
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Figure 1. H&E staining of zebrafish retinas at baseline and after MNU exposure. A. MNU 50 mg/l group: only minor changes of retinal
structure were observed after MNU treatment (e.g., disruption of the inner nuclear layer and vacuolation of the outer nuclear layer between day 1
and 30). B. MNU 150 mg/I group: Histological changes already started at day 1 (e.g., disruption of the inner nuclear layer and vacuolation of the outer
nuclear layer), resulting in massive retinal degeneration with loss of nearly all rod cells at day 8. On days 8 and 15, accumulations of cell clusters

(arrows) were found mainly in the inner nuclear layer. GC (ganglion cells), OPL (outer plexiform layer), INL (inner nuclear layer), RN (rod nuclei), CN
(cone nuclei). Scale bar indicates 25 pum.

doi:10.1371/journal.pone.0071064.g001

was performed (Fig. 3B). Again, red-green double cones were segments of rod photoreceptors (in contrast to the labeling of
TUNEL-negative. We also assessed directly if TUNEL-positive apoptotic nuclei by TUNEL), co-localization was observed for
cells are rod photoreceptors by performing a combined staining some rod photoreceptors, especially when the outer segment was

with rhodopsin. Although rhodopsin mainly stains the outer displaced close to the nucleus (Fig. 3C). Taking all together, it can
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Figure 2. Cell counts in different retinal layers for zebrafish exposed to MNU at baseline and follow-up. A. MNU 50 mg/I group: No
relevant decrease in retinal cells was observed (p>0.05). B. MNU 150 mg/l group: Rod cell loss started at day 5; the number of rods was lowest at
day 8 (p=0.01) with a decrease of 79.6%, but fully recovered by day 60. Other retinal layers did not display any relevant decrease of cell numbers
after MNU exposure (p>0.05). GC (ganglion cells), INL (inner nuclear layer), RN (rod nuclei) and CN (cone nuclei). Baseline values are defined as 100%.
Mean values with SEM error bars are represented (* indicates p=0.01 compared with day 0).

doi:10.1371/journal.pone.0071064.g002
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Figure 3. TUNEL staining of zebrafish retina, 3 days after exposure to MNU 150 mg/l. A. TUNEL-positive cells (red) are localized in the
outer nuclear layer. Strong autofluorescence (green) of a cone outer segment allows identification of the corresponding nearby cone nucleus. Based
on this assessment, cone photoreceptors are TUNEL-negative. B. Immunhistochemistry with zpr-1 (staining double cones, green dotted) combined
with TUNEL staining (red) confirmed that cone photoreceptors are TUNEL-negative. C. Immunhistochemistry with rhodopsin (staining rods, green)
and TUNEL staining (red). Co-Localization of rhodopsin and TUNEL exemplarily shows a dying rod photoreceptor (arrow). Cell nuclei are stained with
DAPI (blue). INL (inner nuclear layer), RN (rod nuclei), CN (cone nuclei), CO (cone outer segment). Scale bar indicates 50 um.

doi:10.1371/journal.pone.0071064.g003

be concluded that TUNEL-positive cells localized in the ONL are
rod photoreceptors.

Before MNU exposure, few PCNA-positive cells were found in
the ciliary marginal zone and the ONL (Fig. 4 and 5). In
addition, the INL showed few PCNA-positive cells in the 50 mg/1
group at day 8 (Fig. 5A). In the 150 mg/l group, proliferating
PCNA-positive cells were detected in the INL starting at day 3 and
reached a maximum at day 8 (p=0.0001; Fig. 4 and 5B). PCNA-
positive cells in the ONL were not found before day 5 but reached
a maximum at day 15 (p=0.0001). From day 30 on, almost no
PCNA-positive cells were observed in the INL, whereas prolifer-
ation in the ONL occurred until the end of the follow up at day 90
(Fig. 4 and 5B). About 40-70% (depending on the histological
section; assessed for day 5 to 15) of the PCNA-positive cells in the
INL (but none in the ONL) were co-localized with glial fibrillary
acidic protein (GFAP), which is a marker for glial cells including
activated Miiller glial cells (Fig. 6A and 6B). Accordingly, the
shape of these proliferating cells in the INL was similar to that of
Miiller glial cells. Whereas no rhodopsin was found in the INL of
the untreated control retina (Fig. 6C), about 30-50% of dividing
cells in the INL showed rhodopsin staining (Fig. 6D). At all time
points, PCNA-positive cells in the INL and ONL were not co-
localized with zpr-1, which stains red-green double cones (Fig. 6E;
data shown for day 5).

Discussion

Primary photoreceptor loss is one of the major causes of visual
loss, and retinitis pigmentosa is a typical example of such a retinal
degenerative disease [35,36]. To identify the underlying patho-
mechanisms, different animal models have been developed. One
of the established pharmacological models is the induction of
photoreceptor death by MNU in rodents [23,24]. Here, we
introduce the use of MNU to study retinal degeneration and
subsequent regeneration in the adult zebrafish, which is an
increasingly popular model because its ease of maintenance, high
fecundity and, most notably, cone-rich retina. In contrast with
mammals, zebrafish undergo persistent retinal neurogenesis
throughout their lifetimes and also retinal regeneration after
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severe damage [22,37-40]. Analyzing the mechanisms of retinal
regeneration in the zebrafish may identify cells and pathways with
the potential for regeneration, and allows to study differences
between zebrafish and other species without such regeneration.
With this in mind, we expanded the MNU model to adult
zebrafish. To the best of our knowledge, this is the first chemical
model in zebrafish that induces only photoreceptor degeneration.
In contrast, existing models (e.g., ouabain) lead to damage of the
inner or whole retina [14,40,41]. The MNU model is less invasive
than existing models that employ intravitreal injection of
substances, such as the ouabain model, or surgically induced
techniques [14,22]. MNU can be dissolved directly in the tank
water of the zebrafish without the need for intraperitoneal or
intravitreal injections, which may also lead to better reproducibil-
ity. In contrast to light-induced retinal degeneration models [20],
our model is more specific to rods without any significant cone
loss. The comparison of these models may help to decipher the
specific molecular pathways that are involved in rod versus cone
photoreceptor regeneration.

In this study, we demonstrated a characteristic sequence of
retinal changes. First, histology revealed apoptosis of rod
photoreceptors 3 days after MNU treatment that resulted in
reduced rod cell counts starting at day 5 that reached a minimum
at day 8. Subsequently, proliferation started in the INL at day 3
and reached a maximum at day 8. In the ONL, the first
proliferating cells were observed at day 5 and reached a maximum
at day 15. Thereafter, increased proliferation persisted in the
ONL up to the end of the study, whereas increased proliferation in
the INL was not observed after day 15. Considering the earlier
peak of proliferation in the INL compared to the ONL and
rhodopsin expression in proliferating cells of the INL, it may be
presumed that proliferating (Miiller glial) cells migrate from the
INL to the ONL. This is in accordance with previous studies
[7,18,19,42,43]. We assume that also rod progenitors may
contribute to the regeneration of the retina and are the main
source of proliferation at later time points, since no further PCNA-
positive cells can be observed in the INL after day 15.

In previous studies, regenerating cells in the INL were reported
to be Miiller glial cells [44,45]. Similarly, in our study, dividing
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Figure 4. Cell proliferation in the zebrafish retina exposed to 150 mg/l MNU. Proliferating cell nuclear antigen (PCNA) positive cells (white)
indicate proliferation and were found in the ciliary marginal zone (CMZ) at all time points and in the untreated fish. Furthermore, PCNA-positive cells
were observed in the inner nuclear layer (INL) starting at day 3 and their number was highest at day 8. Proliferating cells in the outer nuclear layer
(ONL) were not found before day 5 but their number was highest at day 15. From day 30 on, nearly no proliferating cells were seen in the INL,
whereas proliferation in the ONL occurred until the end of follow up at day 90. Scale bar indicates 100 pum.
doi:10.1371/journal.pone.0071064.9g004
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Figure 5. Quantification of cell proliferation in zebrafish retina exposed to MNU. A. Before MNU exposure (day 0) few PCNA-positive cells
were found in the ciliary marginal zone (CMZ) and the outer nuclear layer (ONL). Additionally, in the MNU 50 mg/I group, few PCNA-positive cells
were observed in the inner nuclear layer (INL) at day 8, whereas at all other time points, no relevant signs of proliferation were found. Ganglion cells
(GQ) revealed no relevant cell proliferation. B. In the 150 mg/I group, PCNA-positive cells were seen in the INL starting at day 3, and their number was
highest at day 8 (p=0.0001). Proliferating cells in the ONL were not found before day 5, but their number was highest at day 15 (p=0.0001). From
day 30 on, almost no proliferating cells were observed in the INL, whereas proliferation in the ONL occurred until the end of the follow up at day 90

Cell counts refer to retinal sections of 450 um length. Mean values with SEM error bars are represented (* indicates p=0.0001 compared with day 0).
doi:10.1371/journal.pone.0071064.g005
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Figure 6. Co-localization of proliferating cells with GFAP,
rhodopsin, and zpr-1. Proliferating (PCNA-positive, red) cells in the
inner nuclear layer (INL), but not in the outer nuclear layer (ONL: rod
nucleus = RN, cone nucleus = CN), co-localized with GFAP (green)
(arrows) at days 5 (A) and 15 (B). No rhodopsin is observed in the INL of
untreated retina (C), whereas many PCNA-positive cells co-localized
(arrows) with rhodopsin (green) in the ONL and INL during retinal
regeneration after MNU exposure (D; day 15). No co-localization of zpr-
1 stained double cones (green) and PCNA (red) was found (E, day 5).
Cell nuclei are stained with DAPI (blue). Scale bar indicates 50 pum.
doi:10.1371/journal.pone.0071064.g006

cells in the INL displayed a Miiller glial cell like morphology and
were co-localized with GFAP, which is a marker for glial cells
including activated Miiller glial cells. Dividing cells in the ONL
did not co-localize with GFAP or zpr-1 (staining red-green double
cones), which agrees with the findings that cones were not
TUNEL-positive and that H&E staining did not reveal a loss of
cones. In contrast, rod cells were TUNEL-positive and demon-
strated dramatic cell loss (about 80% at day 8). During the
subsequent rod regeneration, dividing cells were co-localized with
rhodopsin. Interestingly, in addition to cells in the ONL, also
several dividing cells in the INL expressed rhodopsin. This may
indicate that their fate to differentiate into rod photoreceptors is
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already determined in the INL. Alternatively, the rhodopsin
staining in the INL may be caused by Miiller glial cells that clear
dying rod photoreceptors. Intriguingly, in a mice model of
inherited retinal degeneration, Miiller glial cells also express
rhodopsin [46]. Taken all together, our findings confirm that
Miiller glial cells have the potential to differentiate into rod
photoreceptors, at least in zebrafish. Recently, similar findings
were also obtained in vitro with human Miiller glial cells [47].

In summary, our MNU model in the zebrafish demonstrates
loss and regeneration of rods. Other cell types, including cones,
were not affected. This agrees with the results of Boudard et al.,
who showed that rods are more susceptible to MNU damage than
cones in the diurnal cone-rich rodent Arvicanthis ansorgei [48,49].
To the best of our knowledge, there is no other chemical model
that induces selective rod degeneration in the zebrafish.

Previously, a model of rod degeneration in the Tg(Xops:mCFP)
transgenic zebrafish line suggested that rod degeneration alone is
not able to induce Miiller glial cell proliferation [50]. In contrast,
Montgomery et al. presented two models of rod degeneration in
transgenic zebrafish in which rod degeneration is activated by
metronidaziole: the TgzopmfsB-EGFP)™'? zebrafish showed
acute loss of all rods followed by Miiller glial cell activation,
whereas in the Tg(zop:nfsB-EGFP)™2° model, only a subset of rods
was ablated, which resulted in activation of rod progenitors, and
not Miiller glial cells [51]. Montgomery et al. postulated that the
extent of rod cell death regulates the origin of regenerated rod
photoreceptors and noted the following prerequisites for Miiller
glial cell activation [51]: massive rod cell death, acute rod loss
and/or loss of fully differentiated rods. Our data confirm that rod
cell loss is sufficient to induce Miiller glial cell activation. We have
further been able to demonstrate that even the death of only few
rod photoreceptors triggers Miiller glial cell activation. The acute
death of fully differentiated rods in our model, as opposed to
chronic loss of premature rod photoreceptors observed in
Tg(zop:fsB-EGFP)"?° zebrafish, may explain this difference.

In our model, PCNA-positive cells were observed in the ONL
(but not in the INL) up to 3 months after MNU damage. Although
other reasons cannot be excluded, it is highly suggestive that the
observed PCNA-positive cells are proliferating rod progenitors.
Remarkably, no further ongoing detectable rod cell death was
observed (which is known to induce proliferation of rod
progenitors [13]). The reason for this prolonged proliferation is
unknown; it might be that low rod cell density alone may trigger
rod progenitors activation [12], but not Miiller glial cell activation.

In the rodent Arvicanthis ansorgei, Boudard et al. revealed a
secondary loss of cones three months after MNU treatment in
addition to the early death of rod photoreceptors immediately
after MNU treatment [48]. This secondary cone loss has been
observed in many species with different degeneration models and
in retinal degenerative diseases in humans [52-55]. Whether this
secondary cone loss 1is caused by deprivation of essential
neurotrophic factors or results from “poisoning” by the death of
rod photoreceptors is an ongoing debate [50,56,57]. The present
model showed massive rod photoreceptor death. However, there
was no secondary death of cone photoreceptors. We speculate that
the absence of the secondary loss of cones in our model may have
been the result of rapid and efficient rod regeneration. This
speculation supports the hypothesis that the secondary loss of
cones in other models of retinal degeneration is caused by
deprivation of essential neurotrophic factors arising from a
prolonged absence of rods and not by the “poisoning” of cone
photoreceptors.

In conclusion, we present a simple and feasible model for
inducing rod photoreceptor degeneration in zebrafish; this model
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1s comparable to degeneration previously described in rodents.
Why subsequent regeneration occurs only in certain species and
not in others remains a puzzling and fascinating question.
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