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Abstract

New DNA sequencing methods will soon make it possible to identify all germline variants in any
individual at a reasonable cost. However, the ability of whole-genome sequencing to predict
predisposition to common diseases in the general population is unknown. To estimate this
predictive capacity, we use the concept of a “genometype”. A specific genometype represents the
genomes in the population conferring a specific level of genetic risk for a specified disease. Using
this concept, we estimated the capacity of whole-genome sequencing to identify individuals at
clinically significant risk for 24 different diseases. Our estimates were derived from the analysis of
large numbers of monozygotic twin pairs; twins of a pair share the same genometype and therefore
identical genetic risk factors. Our analyses indicate that: (i) for 23 of the 24 diseases, the majority
of individuals will receive negative test results, (ii) these negative test results will, in general, not
be very informative, as the risk of developing 19 of the 24 diseases in those who test negative will
still be, at minimum, 50 - 80% of that in the general population, and (iii) on the positive side, in
the best-case scenario more than 90% of tested individuals might be alerted to a clinically
significant predisposition to at least one disease. These results have important implications for the
valuation of genetic testing by industry, health insurance companies, public policy makers and
consumers.

INTRODUCTION

As a result of continuing advances in high-throughput sequencing technologies (1-4),
whole-genome sequencing will soon become an affordable approach to identify all sequence
variants in an individual human. Recent evidence suggests that each human genome has
more than 3 million sequence variants, some common, some infrequent (5). To date, several
thousand genomic variants have been associated with human diseases, either as rare variants
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in Mendelian disorders or as common SNPs in genome-wide association studies (GWAS)
(6, 7). Whole-genome or whole-exome sequencing has recently been used to identify new
disease predisposing variants in various familial disorders, such as familial pancreatic cancer
(8) and Miller syndrome (9). However, the potential utility of genome-wide sequencing for
personalized medicine in the general population is unclear. Suppose, for example, that
sequencing becomes sufficiently inexpensive that all individuals, at birth, could have their
genomes sequenced at negligible cost. What fraction of the population would benefit from
such sequencing? “Benefit” in this context is defined as receiving information indicating
that the risk of disease is increased or decreased to a degree that would alter an individual's
lifestyle or medical management.

On the surface, it might seem impossible to answer this question at present, as there are
millions of genetic variants in every individual and the contribution of nearly all of these
variants to any disease is unknown. However, there is one group of individuals in which this
question can be immediately addressed: monozygotic twin pairs. If one twin of the pair has a
disease, then the probability of the other twin developing that disease is dependent on the
genome whenever that disease has some genetic component. We show below that when this
logic is applied to a large numbers of twins, estimates of the potential benefits of genome-
wide sequencing in the general (non-twin) population can be made.

Conceptual basis

The key to our analysis is the concept of a “genometype”. We do not know the genomic
sequences of the twin pairs analyzed in the studies described herein, but we do know that
each twin pair shares a nearly identical genome (10) and that a genome confers a particular
genetic risk to every disease. For each disease, we group genomes that confer identical
genetic risks into genometypes. For example, genometypes could be grouped into 20 bins,
with genometypes in bin 1 conferring zero genetic risk, genometypes in bin 2 conferring 3%
genetic risk, genometypes in bin 3 conferring 10% genetic risk, etc. We can then estimate
what distributions of genometypes in the population best reflect the observed monozygotic
twin concordancy and discordancy for any given disease.

In twin studies on diseases, heritability (defined in Box 1) is generally based on the
difference in the incidence of a disease in monozygotic versus dizygotic twins (11, 12).
Heritability reflects the average genetic contribution to disease in a twin population. We are
interested in the distribution of genetic risks rather than the average. For example, a 30%
average risk could reflect a small fraction of twin-pairs with genometypes conferring high
genetic risk or a larger fraction of twin-pairs with genometypes conferring a moderate
genetic risk. Among all the distributions of genometypes that are compatible with the twin
epidemiologic data, we wished to find the distributions that maximized or minimized the
potential clinical utility of identifying those genometypes by genomic sequencing.

Whole-genome sequencing-based tests, like any genetic test, can be informative in two
ways: negative and positive tests would indicate a substantially lower or higher risk,
respectively, than that of the general population. The challenge is to define “substantially” in
clinically meaningful and quantitative terms. An example might help put this challenge into
perspective. Suppose a woman receives a whole-genome test result indicating that she has a
90% lifetime risk (the total risk over her entire life) of developing breast cancer. She may
decide to have a prophylactic double mastectomy to prevent this outcome. Similarly, if the
test indicated an 80% or even a 50% lifetime risk of developing breast cancer, she may
consider mastectomy. On the other hand, if the test indicated only a 14% risk of developing
breast cancer, then mastectomies would be considered by very few women, given that most
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women today do not opt for prophylactic mastectomies even though the lifetime risk of
developing breast cancer in the general population is 12%.

This example illustrates that the risk threshold required for clinical utility represents a
balance between the risk reduction afforded by an intervention and its negative
consequences. A precedent exists for defining this threshold, in that the decision to
implement genetic tests is often based on a positive predictive value (PPV) of at least 10%,
implying that more than 1 in 10 patients with a positive test result are expected to develop
disease (13). While the choice of this threshold will depend on the specific intervention and
should ideally be left to the individual, we use this 10% threshold for our population-level
analyses of 20 of the 24 diseases analyzed (table S1). In the other four diseases (chronic
fatigue syndrome, gastro-esophageal reflux disorder, coronary heart disease-related death
and general dystocia), which occur at relatively high frequency in the population, this 10%
threshold is inadequate to distinguish individuals with a significantly increased genetic risk
from the rest of the population. For these four diseases (table S1), a more appropriate
threshold corresponds to one conferring a genetic risk that is at least as great as that of the
non-genetic component. Individuals with genometypes conferring this degree of genetic risk
would therefore have a total risk at least-twice as large as those without any genetic
predisposing factors. This 2x threshold in relative risk is similar to those widely used as
clinical benchmarks for common diseases (14-18).

For whole-genome testing in healthy individuals, we thereby defined a threshold at which a
positive test result would be clinically meaningful as follows. If the non-genetic risk was
<5%, then the threshold was set at 10%. If the non-genetic risk was >5%, then the threshold
was set at 2x the non-genetic contribution. Though we have used these particular thresholds
in most of the examples described below, we also describe how these results varied when
other thresholds were considered.

We collated monozygotic twin pair data from the Swedish Twin Registry, Danish Twin
Registry, Finnish Twin Cohort, Norwegian National Birth Registry and the National
Academy of Science — National Research World War Il Veteran Twins Registry (19-31)
(Table 1). From these registries, we selected data representing 24 diseases of diverse
etiologies including autoimmune diseases, cancer, cardiovascular diseases, genitourinary
diseases, neurological diseases and obesity-associated diseases. Three of these conditions
(coronary heart disease, cancer and stroke) represent the leading causes of mortality in the
United States, accounted for 54.2% of total deaths in 2007, and are therefore of major public
health importance (32). The thresholds for a clinically meaningful test result, as defined
above, were calculated from disease prevalence and non-genetic risks in the populations
from which the twins were drawn (19-31) (Materials and Methods, Table 1 and table S2).

Mathematical model

We then developed computational methods to evaluate possible frequency (/) and genetic
risk () combinations for a population containing 20 genometypes. Genometype frequency is
defined as the proportion of twin pairs in the population that have a given genometype (Box
1). Genometype genetic risk is defined, for each disease, as the absolute increment in risk
that an individual with that genometype will face compared to someone with no genetic risk
at all (Box 1). For any combination of genometypes, each with a certain frequency and
genetic risk, we obtain an expected distribution of disease-affected individuals among a
monozygotic twin cohort. Many different combinations of genometype frequencies and
genetic risks match the observed distributions in monozygotic twins; we are interested in
those combinations (distributions) that maximize or minimize clinical utility, thus putting
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bounds on the expectations from whole-genome sequencing. The mathematical framework
for our study, and associated statistical and technical issues, are detailed in the Material and
Methods.

Clinical implications

These analyses allowed us to address various measures of potential clinical utility. First, for
each disease, what is the maximum and minimum fraction of patients with the disease that
would receive a positive test, i.e., a result indicating that they have a substantially increased
risk of that disease? The answers to this question are graphically shown in Fig. 1 for each of
the 24 diseases (for three diseases, we present different answers for males and females,
resulting in a total of 27 disease categories). As can be seen from Fig. 1, the fraction of
patients that would receive a positive test varies widely from disease to disease. The
majority of patients (>50%) who would ultimately develop 13 of the 27 disease categories
would not test positive, even in the best-case scenario. On the other hand, there were four
disease categories - thyroid autoimmunity, type | diabetes, Alzheimer's disease, and
coronary heart disease-related deaths in males - for which genetic tests might identify more
than 75% of the patients who ultimately develop the disease. Genometype risk and
frequency distributions for all diseases are shown in table S3 and graphically for
representative diseases in fig. S1.

We could also determine the maximum and minimum fraction of individuals in the
population (rather than the fraction of patients with disease) who would receive positive test
results for each disease. As shown in Fig. 2, this fraction is generally small, as expected,
because the incidence of most diseases is relatively low. Do these negative tests, which
would be received by the great majority of individuals for most diseases, have value?
Negative tests could be valuable to individual patients if they indicated a considerably lower
total risk than would be assumed in the absence of testing. As can be seen from Fig. 3,
though, negative tests are generally not very informative in the case of whole-genome
sequencing as they are limited by the non-genetic compoment of risk. For 22 of the 27
disease categories studied, a negative test would not indicate a risk that is less than half that
in the general population, even in the best-case scenario. This level of risk reduction is
probably not sufficient to warrant changes of behavior, lifestyle, or preventative medical
practices for these individuals (33, 34). On the other hand, there was one disease category
(Alzheimer's disease, Fig. 3) in which a negative test result might indicate as little as a ~12%
relative risk of disease compared to the entire twin cohort, at least in the best-case scenario.
Knowledge of such a reduced risk might be comforting and relieve anxiety, particularly to
those with a family history of Alzheimer's disease.

What is the maximum fraction of individuals that could receive at least one positive test
result, i.e., a report indicating that s/he is at risk for at least one of the 24 diseases assessed?
From the data depicted in Fig. 2, we estimate that >95% of men and >90% of women could
receive at least one positive test result if the risk alleles were actually distributed in the way
that produced maximal sensitivity in our model. We assumed that the risk alleles for these
24 diseases were independent in these estimates; if they were not independent, then these
figures represent overestimates. On the other hand, these frequencies may represent
underestimates as there are a number of additional diseases with hereditary components that
have not yet been studied in monozygotic twins or included in our analyses. At the very
least, if we consider only distinct disease categories whose pathogenesis is unlikely to be
shared, our analyses suggest that, in the best-case scenario, the majority of tested individuals
might be alerted to a clinically meaningful risk by whole-genome sequencing.

It was of interest to determine how the results described above varied with the threshold
chosen for the analysis. For example, it might be argued that a threshold of 10% was too low
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for true clinical utility. Our analyses show that the maximum fraction of affected cases
testing positive, as well as the maximum fraction of the total population that tests positive, is
not changed much when the thresholds are changed to 20% (tables S4 and table S5). With
very high thresholds, however, both these measures of sensitivity decrease significantly
(table S4 and table S5). Moreover, the maximum predictive value of a negative test drops
precipitously at higher thresholds (table S6).

DISCUSSION

The general public does not appear to be aware that, despite their very similar height and
appearance, monozygotic twins in general do not always develop or die from the same
maladies (35, 36). This basic observation, that monozygotic twins of a pair are not always
afflicted by the same maladies, combined with extensive epidemiologic studies of twins and
statistical modeling, allows us to estimate upper- and lower-bounds of the predictive value
of whole-genome sequencing.

On the negative side, our results show that the majority of tested individuals would receive
negative tests for most diseases (Fig. 2). Moreover, the predictive value of these negative
tests would generally be small, as the total risk for acquiring the disease in an individual
testing negative would be similar to that of the general population (Fig. 3). On the positive
side, our results show that, at least in the best-case scenario, the majority of patients might
be alerted to a clinically meaningful risk for at least one disease through whole-genome
sequencing.

These conclusions are consistent with what is now known about risk allele loci from
genome-wide association studies (GWAS) (37). In general, GWAS have shown that many
loci can predispose to disease and that each risk allele confers a relatively small effect (38,
39). For example, a recent analysis of large cohorts of individuals with colorectal cancer
showed that only ~1.3% of phenotypic variance could be accounted for by the 10 loci
discovered through GWAS (40). However, it could be argued that the relatively low level of
utility that might be inferred from such studies is misleading. In particular, it is possible that
a more complete knowledge of disease-associated variants and their epistatic relationships
would be able to reliably predict who will and who will not develop disease in the general
population. Our results allow us to estimate the maximum possible reliability of such tests.

Several of our conclusions are based on the genometype frequency and risk distributions that
would maximize the clinical utility of genetic testing, i.e., are best-case scenarios. The actual
frequency and risk distributions of genometypes in the population are not likely to be
distributed in this way. Indeed, other distributions are also consistent with the monozygotic
twin data on which our maxima are determined and all other distributions yield less clinical
utility than those of the maxima, as shown in Figs. 1 to 3. Moreover, in the real world, it is
unlikely that the biomedical correlates of every genetic variant and the epistatic relationships
among these variants will ever be completely known, or that the analytic validity of genetic
testing will be perfect - as we assume in our ideal scenario. Thus, our conclusions purposely
overestimate the value of whole-genome sequencing that will be achieved - they represent
an absolute upper bound that cannot be improved by improvements in technology or genetic
knowledge. As a practical example of this principle, we estimate that a negative whole-
genome sequencing-based test could indicate a ~ two-fold decrease in risk for prostate
cancer in men and a similar two-fold decrease for urinary incontinence in women. But this
two-fold decrease would only apply in a world in which the risk alleles are distributed in a
fashion that maximizes the sensitivity of whole genome testing (Fig. 3). In the real world,
the risk alleles are not likely to be distributed in this ideal fashion, and omniscience about
every variant is not likely to be realized. Thus, the risk of these diseases in patients who test
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negative will likely be even more similar to that of the general population. For diseases with
a lower heritable component, such as most forms of cancer, whole-genome based genetic
tests will be even less informative. Thus, our results suggest that genetic testing, at its best,
will not be the dominant determinant of patient care and will not be a substitute for
preventative medicine strategies incorporating routine checkups and risk management based
on the history, physical status and life style of the patient.

It is important to point out that our study focused on testing relatively common diseases in
the general population and did not address the utility of whole-genome sequencing to
identify the genetic basis of rare monogenic diseases. In such unusual cases, it has already
been shown that whole-genome sequencing can prove highly informative (8, 9).

As with any model-based study, our conclusions have a number of caveats. Our analyses are
based on data from twin studies and the assumptions made therein (11). Specifically, we do
not model gene-environment interactions and rely on the prevalence of disease in the twin
cohorts; this prevalence, as well as the operative non-genetic contributions, may differ from
that in the general population. Though twins are likely to be representative of the general
population, the estimates provided by our model could be improved through analyses of
larger twin cohorts as these become available, as well as through a more complete
phenotypic evaluation of twins of varying ethnicities. Another caveat is that our conclusions
about potential utility are based on thresholds that represent a complex balance of personal
choices, demographic influences, disease characteristics and the clinical intervention(s)
available. We have used a minimum 10% total risk and a minimum relative risk of 2 as the
threshold in our analyses. Other thresholds may be more appropriate and meaningful for
given situations, though the data in table S4 to table S6 show that our major conclusions are
not altered much by the choice of threshold.

In sum, no result, including ours, can or should be used to conclude that whole-genome
sequencing will be either useful or useless in an absolute sense. This utility will depend on
the results of testing, the individual tested, and the perspectives of individuals and societies.
What we hoped to accomplish with this study is to put the debate about the value of such
sequencing in a mathematical framework so that the potential merits and limitations of
whole-genome sequencing, for any disease, can be quantitatively assessed. Recognition of
these merits and limits can be useful to consumers, researchers, and industry, as they can
minimize unrealistic expectations and foster fruitful investigations.

MATERIALS AND METHODS

Twin studies used for genometype analyses

We used data from twin studies arising from population-based twin registries to investigate
the distribution of disease risk within the population (19-31). The registries in our study
included the Swedish Twin Registry, Danish Twin Registry, Finnish Twin Cohort,
Norwegian National Birth Registry and the National Academy of Science — National
Research Council World War 1l Veteran Twins Registry. Traits were chosen that
represented diverse etiologies or were conditions of significant public health importance.
We evaluated diseases in the following categories: autoimmune (T1D, thyroid auto-
antibodies), neoplastic (breast, colorectal and prostate cancer), cerebrovascular (coronary
heart disease-related death and stroke-related death), genitourinary (general dystocia, pelvic
organ prolapse, and urinary incontinence), unknown etiology (irritable bowel syndrome,
chronic fatigue), neurological (Parkinson disease, Alzheimer's disease and dementia) and
obesity-associated (T2D, gallstone disease).

To be included in our analyses, the following data had to be available for each twin study:
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1. n;—total number of monozygotic (MZ) twin pairs where the disease status of each
twin was known.
n.— number of disease-concordant MZ twin pairs.
ngy—number of disease-discordant MZ twin pairs.

np—number of healthy-concordant MZ pairs.

o &~ WD

Heritability (HER) — calculated as the proportion of the polygenic liability variation
associated with genetic factors.

Using the data from population-based twin studies, we define cohort risk (CR) - the fraction
of people in the cohort that had the disease - as follows:

CR=(2nc+ng) [ 2n;) (1)

Model of the predictive capacity of personal genome sequencing

We define the following generative model that characterizes the joint distribution of an
individual having a pre-specified disease and a particular genometype. Each individual is
characterized by: (i) a binary (Bernoulli) random variable, Z, specifying whether or not s/he
has the disease, and (ii) a categorical random variable, G, indicating the genometype of the
individual. This means that of the dassumed extant genometypes, each individual can have
only one of them. The joint distribution of both the disease and genometype for an
individual is given by AZ G). This joint distribution decomposes into a product of the
likelihood of getting the disease given the genometype, AZ| G), and the prior probability of
having the genometype, A G)

P(Z,G)=P(ZIG)P(G) (2

Thus, to proceed, we specify both the likelihood function, AZ| G), and the prior, AG). As
mentioned above, Gis a categorical random variable taking values g1,%,...,94 each of
which with some probability. Therefore we have:

P(G=g)=fi ()

forall ~1,2,...,d. In words, a person can have one of the dassumed extant genometypes, and
the probability of having genometype 7is given by 7;

The probability of having the disease given a genometype is g=AZ= 1|G=g;). Assume that
g;is a sum of a non-genetic risk, e, which is assumed to be constant for the whole
population, and genetic risk, r; that is, g=etr;(note that 0 < g;< 1). Non-genetic risk ( e) is
the proportion of people in the population that would get the disease if all had the most
favorable genometype possible. Non-genetic risk includes all factors that are not inherited,
including environmental exposures (e.g., diet, carcinogens), epigenetic alterations and
stochastic influences. We estimated it as: e = CR(1- HER) (see below). This model assumes
that all risks are either non-genetic or genetic, i.e., no interactions. We require that the
unknown parameters, r;, must be between 0 and 1 - ¢, for all 7 Therefore, for a given
genometype, the likelihood term for genometype 7is given by:

e+r;, if z=1,

P(Z|G=gi)={ | —e—r if z=0. @

Thus, the joint distribution of disease and genometype can be written as:
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P(Z=2,G=g) =file+r)(1 —e—r)"%,z€(0,1},g € {g1,....24}. (5

If the available data included the genometype and disease status of each individual, then
inferring estimates of the parameters, r =(n,...,7y), and f = (4, ...,7;), would be relatively
straightforward. However, the available data include only the disease status of monozygotic
twins. These represent observations of disease status in two individuals with identical
genometypes. Therefore, we can describe a joint distribution for monozygotic twins having
a disease or not. Let Z;= Z( X)) be the Bernoulli random variable indicating whether a
particular individual has disease and let 2, = Z( X)) be the Bernoulli random variable for the
co-twin. Similarly, let G;= G(X)) and Gx= G(Xy) be categorical random variables
indicating whether twin jor & of a pair has some particular genometype. The distribution of
disease within monozygotic twins can be divided into three distinct groups, namely: disease
concordant, discordant, and healthy concordant pairs.

The probability of disease concordant monozygotic twins is given by:

P(2=2:=11Gj=Gi) =) |P(2;=2:=11G =Gi=g)) P (G ,=Gi=g:), gy

=) P (2=11G;=4) P(Zi=1Gi=g) P (G=Gi=g:) (g

=Z(e+r,-)2f,-. (60)

Similarly, the probability of healthy concordant monozygotic twin pairs is given by:

P(2=2:=01Gj=Gi) = ) |P(2;=2:=01G =Gi=g) P (G =Gi=g:), (74
i

ZZ(I —e— ri)zfi- (7b)

And the probability of monozygotic twin pairs discordant for disease is given by:

P(2;# 21G;=Gi)=2) [ (e+rd (1 —e=r) fi. (g,

Optimization

For each disease, let 1., n,and nycorrespond to the number of concordant disease, healthy
and discordant twin pairs. Assuming that there are d genometypes, the expected number of
twin pairs of each of the three types is simply the total number of twin pairs times the
probability of being each kind of twin pair:

E [nc‘] :nt Z (e+ri)2ﬁa (9)

i€[d]
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Elml=n ) (1=e=r)*fi 0

i€l d]

E[n4] =n,Z2 (e+r)(1 —e—r) fi. 1)
ield]

Because we are interested in the limits of utility of genetic testing, we search for a parameter
set that maximizes or minimizes the fraction of patients that will receive a positive test
result, given certain constraints. Formally, we define the positive fraction (PF) as the
proportion, among twin pairs with at least one disease case, that possess a genometype
sufficient to change clinical action. In our notation:

Dieldlir>tfi [(€+Vi)2+ (e+r) (1 —e— ri)]

PF (t,e;f,p)=
Yielafi [(«‘3+7’t)2+ (etr) (1 —e— ri)]

(12)

where tis the genetic risk required for a person to be at the threshold required for clinical
utility and ¢'is the maximum number of genometypes under consideration. The thresholds
for each disease are provided in table S2, and for each disease, ¢is defined as this threshold
minus e.

We therefore seek to solve the following optimization problem, for each disease:

maximize

fr PF (t,e;f,p), (13)

_ 2
subject to fi =0, Zf,-:l, r,€(0,1), Z (nx -E [n.v]) <0.25, (1)
i x€e{c,h,d}

where Eq. (14) enforces that none of the residual errors can be larger than 0.5. The
parameter 1, is the estimated number of twin pairs of each type obtained by plugging the
estimated parameters into Eqgs. (9) — (11). This is therefore a quadratically constrained
nonlinear optimization problem. We utilize the following algorithm to obtain a local
optimum.

For & =2, i.e., starting with &’ = 2 genometypes, we implement a grid search over the
parameter space and select the parameters that maximize the likelihood over a constrained
search space. Let &= (£,1) and ® be the set of all s under consideration, as defined by the
feasible region specified in Eq. (14). We then discretize this space into nine bins for each
element of Fand 100 bins for each element of rand denote AZG) by Py(ZG) to emphasize
the dependence of the joint distribution on the parameter. Thus, we aim to solve the
following optimization problem:

~@  argmax
6 =" E[Pg(zj,zuG,_Gk) 15)

S_ (7 ~0)
where - ' is the parameter estimate assuming only & genometypes. For
each & = 3,...,20, we seek to solve the above optimization problem. To initialize, we pad the
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~(d'+1) ()

. . . . f(o) = [f ,0] A "(‘II”)
previous solution with zeros, yielding and similarly for 7, . Then we
use MATLAB's fminconto find a local maximum of PFgiven the constraints. If no
improvement in PFis obtained for & +1 genometypes using the default “padded”
initialization, we try randomly initializing. We stop trying random initializations if any of
the following criteria are met: (i) if we find an improvement in PFwith the constraints
satisfied, (ii) if we reach 100% PF, or (iii) if we reach 15 random initializations. If criterion
(i) is met, we denote the parameters achieving the improvement 5<d 1) and then increment
a and continue. If criterion (ii) is met, we stop incrementing ¢, as we have achieved the
maximum possible PF, so adding additional genometypes cannot possibly maximize it

S ~(d'+1) ~(d 1 ) ) )

further. If criterion (iii) is met, we let 6 =6 ;thatis, we letour final estimate for
+1 simply be our estimate for ¢ padded with a zero. We then increment .

We repeat the above approach for each disease. The parameters that we determined using
this approach to maximize PFwere then used to estimate the percentage of the population
testing positive for a given disease, as well as the relative risk of disease for those
individuals testing negative, as defined below. We apply this approach separately for each
disease, thus assuming independence. To find the minimum PFs compatible with the twin
data, we used a simiilar procedure.

Relative risk of disease if testing negative

We determined the relative risk of disease of individuals whose whole-genome sequencing
tests were negative after maximizing or minimizing the sensitivity (PF) of the test. Disease
risk in the population testing negative (DR)gp) is the ratio of the number of disease cases
testing negative to the number of individuals in the population testing negative:

Qne+ny) (1 — PF)
2n: Y el i<t fi

DRyg= (16)

To determine the relative risk of disease if testing negative (/Reg), We calculated the ratio

of disease risk of individuals testing negative to the disease risk in the twin cohort (CR):

DR,

an

Calculation of relative risks

We defined relative risk (RR) in table S2 as the minimum total risk of individuals with
genometypes carrying a given genetic risk compared to the total risk of individuals with
genometypes carrying a genetic risk of 0% (i.e., determined solely by non-genetic factors).
The minimum total risk was determined using the standard 10% risk threshold described in
the text as well as others (tables S4 to S6). In all cases,

_PPV+(CR(1 — HER))

RR=——CR( - HER) (19
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Other parameters and models

Equation (14) enforces that none of the residual errors can be larger than 0.5, such that upon
rounding we obtain a perfect fit. Changing this parameter from 0.5 to 0.01 did not alter the
PFs depicted in Fig. 1 for any disease.

Instead of maximizing PFs, we also determined the distributions of genometype risks (r;)
and frequencies (7;) that would minimize the relative risk of disease of individuals whose
whole-genome sequencing tests were negative. This independent optimization yielded
results nearly identical to those reported in Fig. 1, Fig. 2, and Fig. 3.

As noted above, we estimated the non-genetic risk as e= CR(1- HER). This risk is
somewhat higher than that derived from the standard liability threshold (LT) model.
However, it has recently been shown that the LT model underestimates the non-genetic
contribution to disease because it does not take into account synergistic interactions among
genes (41). The model described herein does not make any assumptions about the nature of
the interactions between genes, such as additivity. However, the LT model can also be used
to approximate the maximum capacity of whole genome sequencing to detect individuals at
pre-defined risks under certain simplifying assumptions about the distribution of risk alleles
in the population. The AF predictions from the LT model employing 10% thresholds are
provided in table S4 and can be compared to the results of the current model with 10%
thresholds (table S4).

Finally, our model can be used to calculate the potential clinical utility of whole-genome
sequencing under any assumption about the proportion of non-genetic contributions to
disease risk, or estimates thereof. Representative values for each disease, with non-genetic
contributions ranging from 10% to 90%, are provided in table S7.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Thefraction of cases (i.e., patientswith disease) who would test positive by whole-genome

sequencing

For each disease, the maximum and minimum fraction of cases that would test positive

using the thresholds defined in table S2 are plotted.
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Fig. 2. Percentage of individualsin the general population who would test positive by whole-
genome sequencing

For each disease, the maximum and minimum fraction of individuals in the population that
would test positive using the thresholds defined in table S2 are plotted.
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Fig. 3. Relativerisk of diseasein individuals testing negative by whole-genome sequencing
A relative risk of 100% represents the same risk as the general population, i.e., the cohort

risk. Relative risks were calculated using the genometype frequencies and genometype
genetic risks that maximized or minimized sensitivity for disease detection.
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Table 1
Population-based twin studies used for analysis
Disease/Condition Sex Number of Number MZ Number MZ Disease Reference
MZ Twin Disease Disease Prevalencein
Pairs Concordant Discordant Cohort (CR)
Pairs Pairs
Bladder Cancer Male & Female 15668 5 189 0.6% Lichtenstein et
al, 19
Breast Cancer Female 8437 42 505 3.5% Lichtenstein et
al, 19
Colorectal Cancer Male & Female 15668 30 416 1.5% Lichtenstein et
al. 19
Leukemia Male & Female 15668 2 103 0.3% Lichtenstein et
al. 19
Lung Cancer Male & Female 15668 18 296 1.1% Lichtenstein et
al. (19)
Ovarian Cancer Female 8437 3 125 0.8% Lichtenstein et
al. (19)
Pancreatic Cancer Male & Female 15668 3 123 0.4% Lichtenstein et
al. (19)
Prostate Cancer Male 7231 40 299 2.6% Lichtenstein et
al. (19)
Stomach Cancer Male & Female 15668 11 223 0.8% Lichtenstein et
al. (19)
Thyroid Autoimmunity Male & Female 284 7 17 5.5% Hansen er al. 29
Type 1 Diabetes Male & Female 4307 3 20 0.3% Kaprio et al. @1
Gallstone Disease Male & Female 11073 112 956 5.3% Katsika er al. (22
Type 2 Diabetes Male & Female 4307 29 113 2.0% Kaprio et al. 21
Alzheimer's Disease Male & Female 398 2 8 1.5% Gatz et al. @3
Dementia Male & Female 398 3 16 2.8% Gatz et al. @3
Parkinson Disease Male & Female 3477 7 60 1.1% Tanner et al, @4
Chronic Fatigue Female 1803 133 526 22.0% Sullivan et al. 25
Chronic Fatigue Male 1426 48 266 12.7% Sullivan et al, 25
Gastro Esophageal Reflux Female 1260 63 284 16.3% Cameron et al. 28
Disorder (GERD)
Gastro Esophageal Reflux Male 918 32 185 13.6% Cameron et al. ?9)
Disorder (GERD)
Irritable Bowel Syndrome Male & Female 1252 14 97 5.0% Bengtson et al. @7
Coronary heart disease (CHD) Female 2004 97 424 15.4% Zdravkovic et
Death al. 28)
Coronary heart disease (CHD) Male 1640 153 451 23.1% Zdravkovic et
Death al. 28
Stroke-related Death Male & Female 3852 35 316 5.0% Bak etal 29
General Dystocia Female 928 40 173 13.6% Algovik et al. G
Pelvic Organ Prolapse Female 3376 34 157 3.3% Altman et al, 1)
Stress Urinary Incontinence Female 3376 13 87 1.7% Altman et al. GD

MZ: Monozygotic. Disease prevalence in cohort (cohort risk, CR) was determined as described in the Materials and Methods.
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