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1. Introduction
Lipids spontaneously form bilayered structures when brought into an aqueous environment.
This is the foundation in the architecture of biological cell membranes. However, lipid
bilayers do not lend themselves easily to common biophysical studies; be it of the bilayer
itself or of embedded membrane proteins. Detergents, on the other hand, form small
aggregates known as micelles that readily solubilize membrane proteins and are well-suited
for numerous biophysical methods. However, they are not excellent models of biological
membranes as they may denature the structure of a protein and the curvature of the micelle
may impose a non-native protein folding. When lipid and detergent meet in an aqueous
environment, entities with wholly different properties are formed: lipid bicelles. Bicelles are
made of patches of lipid bilayers that are either encircled or perforated by detergent ‘rims’.
They combine the advantages of both components alone (micelle and lipid bilayer), namely
being good models for a biological membrane and having advantageous properties for
biophysical experiments. An additional advantage of certain bicelle preparations is their
tendency to macroscopically align when brought into a magnetic field. This fact has been
exploited not only in the highresolution structural and dynamics studies of membrane
proteins, but also for globular proteins using nuclear magnetic resonance (NMR)
experiments.

Fig. 1 gives a graphical introduction to the two types of bicellar phases most commonly
employed. At a high detergent concentration and low temperatures, isotropically tumbling
disk-like aggregates are formed, the so-called isotropic bicelles (Fig. 1B). At a high lipid
concentration and in certain temperature ranges, extended bilayered lamellae are formed that
are perforated or delimited by detergent, and have the potential for magnetic alignment (Fig.
1D). Cryo-transmission electron microscopy (TEM) micrographs (A, C) of bicelles taken
from the literature [1] are also included in Fig. 1.

Since their first description in 1988, the great potential of bicelles in the study of membrane
proteins and proteins in general has been realized. A steady stream of remarkable insights
and applications has emerged that is still growing in size. In the present contribution, we will
give an introduction to the properties of lipid bicelle phases with an emphasis on NMR
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experimental measurements. In addition, we will discuss some of the most exciting recent
applications of bicelles in the structural and dynamic studies of membrane proteins.

2. Different types of model membranes used in NMR studies
2.1. Vesicles

Lipid membranes and membrane proteins have been investigated by NMR spectroscopy for
more than 40 years. Numerous types of membrane samples and preparation protocols have
been developed. An overview of the most popular ones is depicted in Fig. 2. The choice of a
certain type of sample depends on the task in hand. The simplest type of lipid bilayer sample
is formed spontaneously when pure lipids are mixed with a buffer. In this case,
multilamellar vesicles (MLVs) are formed, which are approximately spherical aggregates up
to tens or thousands of μm in diameter where large numbers of lipid bilayers are stacked in
the fashion of an onion. Fig. 2A gives a simple schematic idea. By means of sonication, or
by extrusion through the pores of suitable membrane filters, MLV samples can be converted
into small unilamellar vesicles (SUVs, Fig. 2B) made up of small spheres consisting of only
a single lipid bilayer. The size or size distribution of SUVs is governed by the preparation
method employed and is usually much more homogeneous when filter extrusion is
employed [2–4].

For use in conventional NMR spectroscopy, vesicle samples have a drawback: they do not
reorient fast on the NMR time scale, hence the anisotropic NMR interactions (chemical shift
anisotropy, dipolar coupling, quadrupolar coupling) dominate the spectra. This is in stark
contrast to systems usually investigated in solution-state NMR spectroscopy, where fast
molecular reorientation makes anisotropic interactions collapse to an average isotropic
value. A situation of fast isotropic tumbling can be recreated in detergent micelles (Fig. 2E)
which do not form bilayers and, hence, give unreliable environments for mimicking
membrane conditions and may not always preserve the membrane protein structure and
function. Alternatively, anisotropic NMR interactions can be suppressed by rapid spinning
of a vesicle sample around a certain angle with respect to the external magnetic field. This
angle (54°74′) is dubbed as the ‘magic angle’ in solid-state NMR, and magic-angle spinning
(MAS) is one of the most commonly used approaches in solid-state NMR today. MAS
techniques are also used in the specialized area of membrane proteins in vesicle samples,
where MAS has been successfully applied for a long time. MAS at suitable intermediate
speeds can also be used to determine the tensorial quantities of anisotropic NMR
interactions by analysis of spinning sidebands [5]. Since the tensors of anisotropic NMR
interactions observed in peptides or proteins embedded in lipid bilayers are dependent on
molecular alignment, information on the global orientation of such molecules can be
extracted from these tensors [6,7].

2.2. Mechanically-aligned lipid bilayers
In an alternative experimental approach, anisotropic interactions are not suppressed but are
put to good use. By a number of preparation protocols it is possible to generate
macroscopically oriented samples of lipid bilayers. In a well-oriented sample, all lipid
bilayers are parallel to each other and enclose a single, well-defined angle between their
bilayer normal and the external magnetic field of an NMR spectrometer. As a result,
proteins or peptides embedded in the lipid bilayers are also partially oriented with respect to
the external magnetic field. The result is a dramatically improved spectral resolution, and the
possibility to infer geometrical information from the observed values of anisotropic spin
interactions [8]. Most commonly, anisotropic interactions are thus used for angle
measurements and therefore allow imaging molecules at atomic-level resolution.
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The conceptually most straightforward preparation method for macroscopically oriented
lipid bilayer samples involves stacks of glass plates. The space between two adjacent glass
plates in the stack is filled with the lipid preparation of interest [9]. The lipid preparation is
applied to the glass plate in dehydrated form and is then hydrated in an environment of
suitable temperature and humidity. Relative humidity is controlled over saturated solutions
of a salt [10]. During the hydration process, the lipids form well-hydrated bilayers that orient
parallel to the glass plates of the stack. Since thousands of lipid bilayers are typically
enclosed between each pair of glass plates, the data measured in NMR spectroscopic
experiments are not influenced by the glass plates that provide the mechanical support. A
(smaller) number of lipid bilayers oriented between two glass plates is shown schematically
in Fig. 2C. Initial studies on a membrane-embedded fd coat protein [11], gramicidin A
[12,13], and the retinal of bacteriorhodopsin [14] have established the usefulness of the
technique. The Ramamoorthy laboratory has made numerous contributions to the
development and application of macroscopically oriented glass plate samples. It was shown
that the preparation is feasible over a wide range of temperatures [15] and that the quality of
orientation can be decisively improved by including sublimable solids, such as naphthalene
or para-dichlorobenzene, in the preparation process [16]. The mechanism of membrane
disruption by antimicrobial peptides has been investigated in stacked glass plate samples
[17–20], as well as the action of cell signaling peptides [21] and the membrane interaction of
myelin basic protein [22].

2.3. Anodic aluminum oxide nanodisks
Anodic aluminum oxide (AAO) is another viable support material for macroscopic
alignment. AAO is a porous material that is perforated by highly parallel hollow cylinders
ranging in diameter between several nm and several hundred nm [23]. It is commercially
available in flat disks of approximately 60 μm height commonly used as a filter material
[24], but is equally suitable as an orienting medium for bilayer samples. A fully hydrated
liposome preparation can be applied to an AAO disk using an ordinary pipette. Upon contact
with the disk material, the lipid immediately covers the surface of the pores, giving
macroscopically oriented cylinders or ‘nanotubes’ of lipid bilayers which may contain
embedded or attached protein or peptide (Fig. 2D) [25]. The geometrical and dynamic
properties of lipid bilayers in AAO have been carefully characterized [26,27]; the latter
contribution includes a detailed description of the preparation protocol.

The incorporation of the transmembrane (TM) domain TM-A of the membrane protein
acetylenase CREP-1 was a first proof that integral membrane proteins can be studied in
AAO-immobilized lipid bilayers [28]. Similarly, a transmembrane domain of the M2 protein
from influenza virus was investigated in lipid nanotubes, including the use of two-
dimensional 1H-15N-PISEMA spectroscopy [24]. This contribution also discusses the high
conductivity of AAO for heat, which may potentially be advantageous in dissipating the
heating effects of sophisticated NMR pulse sequences. Rhodopsin, a full-length integral
membrane protein with seven transmembrane α-helices, has been successfully aligned in
nanotubes [29]. Most remarkably, it was found that rhodopsin retains its binding affinity for
G protein in the nanotube environment. In the Ramamoorthy laboratory, immediate
alignment in AAO was employed to study membrane damage caused by amyloid-forming
peptides [30]. Such a study is not possible using the glass plate samples where the peptide
aggregation is much faster than the hydration step necessary in preparing stacked glass plate
samples.

Other innovative media examined for the incorporation of membrane proteins include
lipoprotein particles [31–34] and amphipols [35].
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2.4. Bicelles
Bicelles, the topic of this review article, are a type of lipid sample that combines the
advantages of most of the sample preparations introduced so far. Bicelles are formed when
bilayer-forming long-chain lipids are mixed with detergent molecules. Under certain
conditions, the two components mix to form aggregates, but are spatially separated into a
central portion forming an actual lipid bilayer, surrounded or interspersed with ‘rims’ of
detergent molecules. Fig. 2F shows the bilayer patch in light gray and the detergent rims in
dark gray. At low concentration of a long-chain lipid, the aggregates tumble at a rate that is
fast on the NMR time scale, almost comparable to the tumbling rate of detergent micelles
(Fig. 2E). In addition, they offer a bilayer environment for embedded membrane proteins,
making them a far more realistic membrane mimetic than detergent micelles. The term
‘bicelles’ was coined to denote such bilayer-containing mixed micelle-like aggregates, and
the fact that diacylglycerol kinase retains enzymatic activity in bicelles but not in micelles
was a proof of their advantageous properties [36].

When the concentration of a long-chain lipid is increased beyond a certain threshold,
another advantageous property of bicelles is observed: they assume a well-defined
orientation with respect to the magnetic field, see Fig. 2G for a graphic representation. This
behavior is rooted in the geometric shape and the anisotropic magnetic susceptibility of
bicelles. Hence, macroscopically ordered bicelle samples can be prepared with a degree of
alignment that is typically much higher than what is possible in glass plate samples (Fig. 2C)
and anodic aluminum oxide material (Fig. 2D). Magnetically-aligned bicelles are often used
in solid-state NMR experiments, but can easily be converted into the isotropic bicelles
introduced above, which are more amenable for solution-state NMR experiments. Hence,
lipid bicelles form an important bridge linking solid- and solution-state NMR approaches.
Today, lipid bicelles are a frequently utilized tool in NMR studies of protein structure in
both soluble and membrane-bound proteins [8,150,172,236].

It needs to be mentioned that a suitable choice of lipid environment is equally important in
crystallization assays of membrane proteins [37,38], and that bicellar lipid samples have also
found application in this field. In particular, crystallization of bacteriorhodopsin (bR) from
bicelle preparations at 37 °C yielded a novel monomeric structure for bR [39]. A similar
result was later obtained at room temperature using different bicelle formulations [40]. For
bR, crystallized from bicelle formulations, characteristic properties in optical spectroscopy
were reported [41]. A mutant of bR was crystallized from bicelles to investigate structural
differences of the proton pump bR and the homologous phototaxis receptor sensory
rhodopsin II [42]. LeuT, a neurotransmitter sodium symporter, was crystallized in different
crystal forms from bicelles in the presence of a substrate molecule [43]. Membrane protein
crystallization using bicelles has recently received an exclusive review that reports a list of
protein structures solved by bicelle crystallization [44]. A step-by-step protocol for using
bicelles in high-throughput crystallization assays is available in video form [45].

Bicelle formation and morphology can be rationalized by the overall geometry of the
involved molecules, depicted in Fig. 3. All involved molecules have hydrophilic head
groups and hydrophobic acyl chains. In detergent molecules, on the one hand, the
hydrophobic portion tends to be small when compared to the headgroup, giving the
detergent molecule a conical overall shape (Fig. 3A). This geometry explains the tendency
for detergents to form micelles in an aqueous environment (Fig. 2E). In lipid molecules, on
the other hand, the number and size of the acyl chains tend to be larger giving the molecule a
cylindrical overall shape (Fig. 3B), and resulting in the formation of bilayered structures in
aqueous environments (Fig. 2A). The difference in overall shape results in a low miscibility
of lipid and detergent. Hence, lipid and detergent phase-separate into bilayer and rim
portions, which causes the formation of flat bilayer patches, i.e. bicelles.
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A similar conical molecular geometry results when a polyethyleneglycol (PEG) strand is
attached to the head groups of a lipid (Fig. 3C). PEGylated lipids insert readily into lipid
bilayers. Mixed micelles of lipid and PEGylated lipid are formed at very high concentration
of PEGylated lipids. In between both regimes, the formation of flat bilayer disks similar to
isotropic bicelles was observed in mixtures of cholesterol, lipids and PEGylated lipids [46].
These discoidal aggregates do not show a propensity for magnetic- alignment and are not
referred to as bicelles; no specific name has been introduced for them. Discoidal aggregates
can be prepared without cholesterol [47,48]. Their phase behavior has been characterized
[49,50]. The influence of the preparation path [51] and the effect of phospholipid hydrolysis
[52] on aggregate structure have been studied. Special fluorophores were developed to study
the highly curved regions of disks formed by dipalmitoylphosphatidylcholine (DPPC) and
PEGylated distearoylposphatidylethanolamine (DSPE-PEG2000) disks by fluorescence
resonance energy transfer [53]. Discoidal assemblies of PEGylated lipids have been
investigated in a coarse-grained molecular dynamics simulation [54]. Biotin-derivatized
discoidal aggregates can be used as model membrane biosensors in surface plasmon
resonance [55]. A potential pharmaceutical application has been demonstrated for
PEGylated discoidal aggregates, since tight binding of comparably large quantities of
melittin to the rim of the stable and well-defined PEG-stabilized disks may be exploited for
drug delivery purposes [56]. Similar assemblies were observed when PEGylated lipids were
replaced by the more common detergents octaethylene glycol monododecyl ether (C12E8),
hexadecyltrimethylammonium bromide (CTAB), and sodium dodecyl sulfate (SDS) [57]. In
a similar approach, the lipid dimyristoylphosphatidylethanolamine (DMPE) extended by a
diethylenetriaminepentaacetate (DTPA) group chelating a paramagnetic Tm3+ or La3+

lanthanide ion was used instead of PEGylated lipids. Formation of flat discoidal aggregates
was observed, which in the case of Tm3+-doping were slightly orientable in a field of 8 T
[58]. The presence of 16 mol% cholesterol in discoidal aggregates of DMPC, DMPE-DTPA,
and Tm3+ increases the disk size and the propensity for magnetic-alignment [318]. Linear
peptide copolymers with hydrophilic and hydrophobic portions of different length have been
designed that assemble into vesicle-like structures-dubbed as ‘polymersomes’-and bicelle-
like flat discoidal structures [59].

3. What are bicelles?
3.1. General description

Bicelles are formed when long-chain lipids are brought in contact with detergent molecules.
Long-chain lipids alone form lipid bilayers, while detergent molecules on their own form
detergent micelles. When they are mixed, lyotropic mesophases are observed that combine
the properties of both bilayers and micelles. In the simplest case, such a bicellar phase is
made up of disk-like aggregates where a central bilayer patch is enclosed by a ‘rim’ of
detergent molecules. However, this simple picture does not apply to all bicellar phases, see
Section 5 on bicelle morphology. We want to stress three general traits of the bicelle
preparations that are in general use today. First, they contain lipid bilayers with very similar
properties as found in biological membranes. Second, these bilayers form flat patches rather
than having a more or less pronounced curvature found in vesicles. Third, they can
potentially be macroscopically aligned by an external magnetic field. This last trait is
especially relevant for NMR studies.

3.2. Some landmarks in the development of bicelles
There are numerous systems that can be seen as bicelle precursors. For example, mixtures of
sodium decyl sulfate, decanol, sodium sulfate, and water, form disk-like aggregates that
orient in an external magnetic field [60]. Numerous other mixtures of hydrophobic,
hydrophilic, and amphipathic molecules show similar behavior that has been extensively
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investigated in the context of lyotropic liquid crystals [61,62]. However, these systems do
not contain the lipids that are the constituents of biological membranes. At high water
content of at least 80 wt.%, lipid vesicles can be macroscopically ordered by a strong
magnetic field [63]. However, being vesicles, they do not contain flat bilayers. The same
objection is true for small unilamellar vesicles that form spontaneously when long- and
short-chain phospholipids are mixed in certain conditions. (Obviously, these conditions are
different from the conditions favoring the formation of bicelles.) Spontaneously formed
short-chain long-chain unilamellar vesicles (SLUVs) have been introduced by Gabriel and
Roberts [64] and have non-spherical shapes [65]. SLUVs are still of considerable interest
today, and recent contributions have investigated the relationship between SLUVs and
bicelles [67,68]. SLUV and bicellar phases can be inter-converted, and the interconversion
can be used to generate small unilamellar vesicles of path-dependent size distribution and
characteristic shape [68]. Kinetically trapped unilamellar vesicles of uniform size were
prepared by passing through a metastable bicellar phase at 10 °C [69].

Coexistence of spherical and disk-like aggregates has been found in mixtures of bile salt and
phospholipids [70], and in 1988 magnetic field induced order was reported for such mixtures
[71]. This result by the Prestegard laboratory was the first to meet all three criteria for
bicelles that were postulated in the preceding section. A bile salt analog, 3-
(cholamidopropyl)dimethylammonio-2-hydroxy-1-propanesulfonate (CHAPSO), forms
similar bicellar phases with lipids and gives advantageous experimental properties [72].
Lipid/CHAPSO complexes were structurally characterized [73] and used to study the
conformation of glyco- and sulfo- lipids and their interaction with membrane binding
proteins [74–76]. In 1992, it was demonstrated by the Sanders laboratory that the short-chain
phospholipid dihexanoylphosphatidylcholine (DHPC) can be used to replace CHAPSO,
eliminating the need for a potentially disadvantageous non-lipid detergent [77]. In the same
contribution it was shown that long-chain phospholipids and DHPC in bicelles are spatially
separated, presumably into bilayered patches and detergent rims. A first comprehensive
review on bicelles, especially with regard to their potential in the study of membrane
proteins, was published in 1994 [78] and has since been cited by most studies employing
bicelles. Remarkably, the term “bicelles” was not introduced until a year later [36] to denote
“binary, bilayered, mixed micelles bearing a resemblance to the classical model for bile-salt
phosphatidylcholine aggregates (see Müller 1981)”, citing the article that is reference [70] in
the current contribution.

3.3. Bicelle preparation
Most preparation protocols for bicelle samples are straightforward, highly reproducible, and
do not require much time or effort. Protocols usually start with mixing of long-chain and
short-chain lipids. The most popular choice is dimyristoyl-phosphatidylcholine (DMPC) as a
long-chain lipid and dihexanoyl-phosphatidylcholine (DHPC) as a short-chain lipid (or
detergent) component. Section 3.4 below gives an overview of other choices. Care must be
taken to completely remove any residual organic solvent from the ingredients. The dry lipid-
detergent is hydrated by adding a suitable amount of buffer, and after several cycles of
cooling/heating (or freeze/thawing, if possible) the bicelle sample should be ready. It is also
possible, but less convenient and common, to add detergent to pre-formed vesicular samples,
giving the option for a titration with a short-chain lipid component. Preparation protocols
have been reviewed [79,4], and Mäler and Gräslund [4] include a comparison to protocols to
prepare MLVs and SUVs.

At least two parameters are necessary to describe the composition of bicelles and are needed
to establish phase diagrams. The first one is the molar ratio of lipid molecules over detergent
molecules. This ratio is usually denoted with the letter q. In the most common case of
DMPC as a lipid component and DHPC as a detergent, it is
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It has to be noted that q does not reflect the microscopic ratio in bicellar aggregates with full
accuracy. That is because detergents typically have a noticeable solubility in buffer, better
known as the critical micelle concentration (CMC). The CMC of DHPC is around 7 mM.
Since the presence of ‘free’ detergent in micelles may reduce the amount of detergent
available for bicelle formation, an ‘effective-q′-ratio was suggested to take this effect into
account [80]. Similarly, a corrected ratio q* was used to describe the effect of non-negligible
amounts of short-chain phospholipid invading the bilayer fraction [81]. The second
important parameter is the level of hydration. It is usually given as the ratio between the
added lipid and detergent weight with respect to the total weight (or volume) of the sample.

If the ratio of lipid over detergent is raised above a certain threshold, macroscopic alignment
of the bilayer patches in a strong external magnetic field can be observed (Fig. 4). Most
commonly, the normal of the bilayer patches aligns perpendicularly with respect to the
external magnetic field. See Section 3.4 for modifications of this behavior of bicelles.
Magnetic field-induced macroscopic alignment is observed for a magnetic field strength
above about 1 T [82], which is well below the field strength in modern NMR spectrometers.
It has been demonstrated that alignment can be achieved in a weaker field of 0.63 T as used
in X-band EPR spectroscopy [83]. Alignment is possible even without an external magnetic
field, as demonstrated by shear forces in a Couette flow cell, enabling linear dichroism
experiments on embedded molecules [84]. It was shown that the presence of protein, namely
the antimicrobial peptide gramicidin A, changes the alignment as a function of q, probably
because the embedded protein increases the area of the bilayer patch [85]. Magnetic-
alignment can remain present for days after the removal of the external magnetic field [86].
Bicelles with a high concentration of a long-chain lipid or a low hydration level tend to be
very viscous. However, they become much more fluid at lower temperatures, which can be
used for easy handling using common pipettes.

3.4. Popular bicelle modifications
Numerous other constituents have been used to make bicelles different from the most
common choice, DMPC and DHPC. Most bicelle preparations that show magnetic field-
induced alignment are oriented with the bilayer normal perpendicular to the applied
magnetic field (Figs. 4B and 5B). In a number of cases, a parallel alignment would be better
since it can give increased spectral resolution in NMR spectra. Paramagnetic lanthanide
ions, especially ytterbium ions, Yb3+, were found to bind to lipid bilayers and reverse the
sign of the anisotropy in their magnetic susceptibility. This results in bicelles with parallel
magnetic-alignment, often called “flipped” bicelles (Fig. 5A) [87,88]. Lipid-bound chelating
agents can sequester the lanthanide ions and protect embedded proteins from possible
disadvantageous effects [89]. By means of the chelating agent DTPA attached to DMPE
lipids, it was possible to dope bicelles with Cu2+ ions [90]. The paramagnetic ions greatly
increase spin–lattice relaxation, thus reducing T1 by a factor of 10 and speeding up NMR
experiments accordingly. On the other hand, no significant change in the line width was
observed suggesting that the change in the spin–spin relaxation is negligible. Using
relaxation enhancement by Cu2+ ions, it was possible to record SO-FAST- HMQC spectra
within 1 h from a bicelle-embedded antimicrobial peptide that had no isotopic labeling [91].
A special lipid was synthesised that carries a biphenyl group in one of its acyl chains. It
forms bicellar phases over a wide range of temperatures, but only for a fairly limited range
of q-values. Because the biphenyl group causes the anisotropy of magnetic susceptibility to
change its sign, these bicelles have their bilayer normals oriented in parallel to the magnetic
field without the need for added lanthanide ions [92,93].
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Bicellar phases change with the presence of ions and their concentration, with cations
having the stronger effect [94]. Lipids with more stable ether-linkages between their acyl
chains and the glycerol backbone have been used to increase the long-term stability of
bicelles [95]. Phase diagrams for such ether-linked lipid bicelles have been established with
respect to q-ratio, hydration level, and temperature [96]. Ether-lipid bicelles have also been
applied to residual dipolar coupling (RDC) studies of globular proteins [97]. However, the
structure of the antimicrobial peptide novicidin was found to be altered in ether-lipid bicelles
when compared to DMPC/DHPC bicelles [98]. Small amounts of added PEGylated lipids
are another choice to make bicelle samples more stable [99], but their use is not as wide-
spread as that of ether-lipids. Rather, PEGylated lipids have been extensively used in the
study of translational lipid diffusion (see Section 6). Doping of dilute oriented bicelle
preparations with charged amphiphiles improves the stability and the degree of alignment
[100]. The influences of lipid unsaturation and chain length on bicelle stability have been
studied [101]. The addition of cholesterol and especially cholesterol sulfate was reported to
stabilize bicelles thermally, with magnetic-alignment possible in an extended temperature
range [102]. The influence of divalent cations, which are required by many classes of
biomolecules for optimal activity, on the formation and alignment of DMPC/DHPC bicelles
has been studied [319]. It was found that higher concentrations of Zn2+ and Cd2+ disrupt the
magneticallyaligned phase, while Ca2+ and Mg2+ result in more strongly oriented phases.

A number of bicelle modifications have been designed to make bicelles resemble biological
membranes more closely. One important characteristic of biological membranes is their
bilayer thickness, which affects embedded proteins by means of hydrophobic mismatch
[103,21]. Bicelles with different bilayer thickness have successfully been prepared [103].
The effect of varying chain-length in both lipid and detergent components has been
investigated systematically [101]. Bicelles formed by DHPC and the phospholipid 1-
palmitoyl-2-stearoyl-phosphatidylcholine (PSPC), that is 16:0–18:0-PC, have been
investigated [104]. Another important characteristic of biological membranes is their
composition with respect to head group charge and cholesterol content. Acidic bicelles with
the addition of the charged phospholipid dimyristoylphosphatidylglycerol (DMPG) have
been prepared and their stability has been investigated [105,106]. Other researchers have
investigated the effect of cholesterol [107–110], of the unsaturated phospholipid 1-
palmitoyl-2-oleoyl-phosphatidylcholine (POPC) [100], and of polyunsaturated
phosphatidylcholine [110] added to bicelles. It was shown that sphingomyelin, a common
sphingo-lipid in mammalian membranes, and DHPC can form isotropic as well as aligned
bicelles [111]. Morphological effects caused by the addition of ceramide to DMPC/DHPC
bicelles were studied [112]. Cyclofos-6 as detergent formed bicelles with DMPC; since the
critical micelle concentration of Cyclofos-6 is very low (and lower than that of DHPC),
bicelle formation is observed down to and below 0.5% total lipid weight per volume [113].
The T-shaped molecule A6/6, which forms closed vesicles in water, was shown to mix with
DPPC to form bicelles [114]. In studies of membrane proteins, it is practical that the
detergent which is present in the end products of expression, purification, and refolding
protocols may in some cases also be used as the short-chain or detergent component in
aligned bicelles, as demonstrated for the detergents Triton X-100 [115] and
dodecylphosphocholine (DPC) [116] in combination with DMPC.

4. Bicelles in electron paramagnetic resonance (EPR) spectroscopy
A large body of work, mainly by the Lorigan laboratory, has been dedicated to establish
aligned bicelles as a membrane mimetic for electron paramagnetic resonance (EPR)
spectroscopy studies. The first successful preparations of aligned bicelles were reported on
bicellar samples doped with paramagnetic lanthanide ions [117,118]. As described above
and shown in Fig. 5A, bicelles doped in this way orient with their normal parallel to the
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external magnetic field. This effect is caused by the large positive anisotropies in the
magnetic susceptibilities caused by suitable paramagnetic lanthanide ions (Eu3+, Er3+,
Tm3+, Yb3+) in the lipid bilayer, which itself has a negative anisotropy in magnetic
susceptibility. In the comparably weak magnetic field of 0.63 T used in X-band EPR, no
spontaneous alignment of undoped bicelles was observed. However, using Dy3+ lanthanide
ions which enhance the negative anisotropic magnetic susceptibility of the bilayer, it was
possible to achieve alignment of bicelles with their normals perpendicular to the magnetic
field (Fig. 5B) [119,83]. EPR studies require the addition of a spin label to the investigated
bicelles to detect their orientation; doxyl-labeled cholestane and doxyl-labeled stearic acid
were used for this purpose in the studies mentioned so far. Doxyl spin labels attached to
different positions along the acyl chain of stearic acid have been used as a probe to study the
dynamic properties of the bilayer portions of bicelles and have shown that they agree well
with other biological and model membrane systems [120]. Bilayer dynamics and the effect
of temperature were studied in more detail using spin-labeled phosphocholines [121]. In
addition to the mentioned X-band studies at 9 GHz EPR frequency, bicelles were also
introduced for the higher field strength used in Q-band [122] and W-band [123]
spectroscopy at 35 and 94 GHz EPR frequency, respectively. At these higher magnetic field
strengths of 1.25 T and 3.4 T, respectively, reduced concentrations of lanthanide ions were
needed to achieve magneticalignment of bicelles. The magnetic-alignment of bicelles at high
q was investigated by EPR and NMR spectroscopy [124].

EPR spectroscopy was applied to study the effect of cholesterol on bicelle model
membranes using phosphocholine [125] and cholestane [126] with doxyl spin labels. At Q-
band, higher order was observed in cholesterol bicelles than at X-band [126]. Another study
on cholesterol in bicelles compared results from EPR and NMR spectroscopy [108].
Nitroxide spin labels can be introduced into proteins to study their properties by EPR
spectroscopy, but labeling can potentially perturb protein properties. The sidechain
conformation of a nitroxide spin label has been studied in the homodimeric protein CylR2
by comparing results from X-ray crystallography, EPR and NMR spectroscopy [127].
Structural and dynamic properties of the transmembrane protein phospholamban were
determined by EPR of aligned bicelles [128]. The helical tilt of the M2δ transmembrane
peptide of the nicotinic acetylcholine receptor in aligned bicelles was determined [129]. The
analysis method, which is similar to the dipolar waves [130] used in solid-state NMR, is
described in detail elsewhere [131]. Similar results could be obtained in unoriented samples
[132]. The quenching of EPR spin labels by water-soluble reducing agents can be monitored
in real-time to determine details of membrane immersion, as demonstrated for the M2δ
peptide [133]. It was shown by EPR that α-synuclein in bicelles forms an extended α-helix
rather than a helix-turn-helix structure [134].

5. Phase diagrams and morphology of bicelles
The morphology of bicelles is most often described as microscopic disks of lipid bilayers
where the detergent covers the ‘rims’ (see Fig. 2F,G for schematic representations). This
picture holds true only in a limited range of conditions, especially for low q-ratios and fast-
tumbling bicelles, as seen in small-angle neutron scattering (SANS) [135] and electron
microscopy (EM) [94]. In other conditions, more complex models are necessary. To derive
unambiguous conclusions and models of complex morphologies, usually complementary
techniques such as SANS or EM are needed in combination with NMR spectroscopy.

The influence of the ratio q between DMPC and DHPC on the formation of bicellar phases
is shown in Fig. 6. At low q, small isotropically tumbling aggregates are observed, and no
magnetically orientable phase is formed. Only in a limited range of q values between ~2.5
and 7.5 is it possible to obtain magnetic alignment. Above a q of 7.5, morphology similar to
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multilamellar vesicles is present, where the detergent gathers in nanopore defects [136]. At
higher temperatures, annealing of the nanopore defects is observed [137]. 31P- and 2H NMR
are the methods of choice to study the structure and dynamics of lipid phases and to quickly
map out phase diagrams [138–140]. Partial magnetic-orientation can be determined by the
first spectral moments of 31P NMR spectra [141]. The deconvolution of global orientational
distributions of lipid bilayers and local order parameters of embedded molecular reporters
has been demonstrated [142].

The phase behavior of bicelles, including phase diagrams, has been the objective of
numerous studies. The limited miscibility of long- and short-chain lipid components dictates
the separation into bilayer and ‘rim’ proportions and is thus the key to the phase behavior of
bicelles [143,144]. It was possible to predict phase diagrams from miscibility properties
[144]. Based on this insight, lipid mixtures forming bicellar phases in specified
concentration and temperature ranges can be rationally designed [101]. As a general rule, it
is observed that oriented bicellar phases are formed at temperatures above the main lipid
phase transition between the gel state and the liquid–crystalline phase of the long-chain lipid
component [145].

Phase diagrams have been established for pure phospholipids [146] as well as for
lanthanide-doped bicelle mixtures [147]. Phase diagrams for DMPC/DHPC bicelles at
various q-values have been reported [148]. Phase diagrams for ether-lipid bicelles have been
established [96]. A review article dedicated to morphology and phase diagrams of bicellar
phases is available [149]. A very broad general review on bicelles [150] offers a good focus
on morphology. The feasibility of magnetic-alignment of dilute bicellar solutions has been
investigated [151].

The model of flat, microscopic disks for bicelle morphology (Fig. 2F and G) is based on the
fact that DHPC and DMPC are phase separated into bilayer and ‘rim’ regions in oriented
bicelles [77]. A first geometrical model was developed for ideal disk-shaped bicelles [152].
This study also found a new proof in addition to the ones reported [77] that DMPC and
DHPC are indeed spatially separated in oriented bicelles, and mentions the need for an
experimental proof in the case of isotropic bicelles. This need was again stressed in a work
on Mastoparan X in isotropic bicelles [153]. The flat disk model was proven to apply to
isotropic bicelles by 31P NMR, dynamic light scattering, and electron microscopy [154]. An
independent proof was given by small angle neutron scattering and Eu3+-doping [135].
Further support comes from a recent study of a protein embedded in isotropic lipid bicelles
[155].

It has to be noted that from the beginning, the flat disk model has been seen as only tentative
[77]. The existence of DHPC pores in DMPC lamellae (Fig. 7C) was clearly seen as an
alternative structural model for aligned bicelles, and was termed the “Swiss cheese model”
[88]. The high diffusion rate measured for tetramethylsilane (TMS) in oriented bicelles
would require extensive transient edge-to-edge contacts in the disk model [156].
Measurements of high viscosity in orientable bicelles [157,158] contradict the theory of
individual disks and suggest some entangling. The use of optical microscopy and SANS
found yet another bicelle morphology, described as “wormlike micelles” and depicted in
Fig. 7B [159]. The use of SANS experiments has in all cases been able to identify the
morphology that is present in the bicellar phase [149]. It was possible to obtain very clear
cryo-TEM micrographs for isotropic as well as oriented bicellar phases [1,160,161]. The
kinetic pathway of the phase transition from bilayered micelles to perforated lamellae has
been characterized [162]. Stimulated echo-pulsed field gradient (STE-PFG) experiments
were used to measure water diffusion in bicelles [81]. In this study, the fraction of rim-

Dürr et al. Page 10

Prog Nucl Magn Reson Spectrosc. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



located and bilayer-embedded DHPC was determined as a function of q and T. As an
additional parameter, q*, the fraction between edge and planar phospholipid, was introduced.

A single contribution has claimed the observation of tight stacks of disk-like bicelles at very
high hydration levels [163], similar to the elongated stacks reported for disk-like high-
density lipoprotein (HDL) particles [31]. However, the stacking effect claimed for dilute
bicelles has not been reported for other systems.

Molecular dynamics (MD) simulations have in a few instances been carried out on bicelle
systems. Most studies to date have used coarse-grained models. Structures resembling
bicelles were found in the spontaneous aggregation of DPPC into small unilamellar vesicles
[164]. A special coarse-grained force field was developed to model zwitterionic lipid
assemblies; in coarse-grained MD runs, bicelle-like invaginations referred to as ‘buds’ were
observed to form from DPPC monolayers [165]. A coarse-grained force field called
MARTINI was used to simulate discoidal aggregates of PEGylated lipids [54]. A coarse-
grained simulation showed that functionalized carbon nanotubes and lipids form bicellar
assemblies [166]. The influence of line tension on length and shape of bilayer edges was
investigated by course-grained MD of lipid bilayer ribbons of different tail lengths [167].
Only recently, two atomistic simulations on bilayer ribbons were reported which provide
insight into lipid behavior in bicelles: the effect of bilayer edge and curvature on the
partitioning of lipids by tail lengths was investigated [168]. A two-step semi-grand-
canonical mixed Monte Carlo/molecular dynamics approach found a possible mechanism
for attraction and merging of DHPC pores [169]. The three-dimensional structure of
glycolipids embedded in bilayers starts to be investigated by combined use of isotropic
bicelle NMR experiments and molecular dynamics simulations [320].

6. Diffusion studies on bicelles
Molecular diffusion, particularly translational diffusion, is the most fundamental transport
process in nature. Importantly, Brownian motion in lipid bilayers governs a variety of
important biological processes that ranges from signal transduction to the transport of
nutrients across cell membranes such that a significant body of literature is devoted to this
subject matter. However, Brownian motion in lipid membranes can be extremely complex
due to the heterogeneity of most biological systems; only a single elegant coefficient,
namely the lateral diffusion coefficient, i.e. the component of the diffusion tensor that is
perpendicular to the bilayer normal, is required to describe this complicated process. The
elegance of this coefficient lies in the depth of information it holds, particularly the
relationship between the diffusant and its environment. Lateral diffusion coefficients in a
cell membrane vary by orders of magnitude: from the rapidly diffusing phospholipids to the
slowly moving multi-helix membrane proteins. For species whose sizes are comparable to
that of a lipid, their diffusion coefficients seem to follow the free volume model whereas
larger species diffuse according to the hydrodynamic model. Currently, most diffusion
coefficients are obtained via fluorescence recovery after photobleaching (FRAP) while
single molecule tracking is increasingly used to study diffusion of molecules in situ. These
optical techniques are valuable in providing detailed information on molecular diffusion;
yet, these techniques only work if the molecules are inherently fluorescent. Therefore, an
alternative approach is required for molecules that lack such an optical property and where
the introduction of a fluorescent tag is not an option.

NMR spectroscopy provides an alternative means of measuring diffusion coefficients in a
model membrane system. In particular, the pulsed field gradient (PFG) NMR technique
introduced by Stejskal and Tanner [66] has evolved into a powerful tool capable of
determining the diffusion coefficients for a wide range of macro-molecular systems. PFG
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NMR allows for the rapid and simultaneous determination of multiple diffusion coefficients
from different species, provided that their resonances are resolvable. The use of the
stimulated echo (STE) was subsequently found to be advantageous for the measurement of
diffusion coefficients [170]. The seminal publications [66,170] provide the basic theoretical
framework for PFG NMR diffusion measurements. Therefore, only a brief description will
be given here. The diffusion coefficient of a species, D, under isotropic condition, can be
extracted from a STE-PFG NMR experiment by measuring the signal attenuation as a
function of gradient duration (δ), gradient amplitude (g) and diffusion time (Δ) as indicated
in the pulse sequence of Fig. 9. The observed NMR intensity is attenuated according to

(1)

where γ is the gyromagnetic ratio of the observed nucleus and I and I0 are the observed and
the initial signal intensity, respectively [66,170].

Lateral diffusion in a lipid bilayer environment is anisotropic such that the diffusion
coefficient is represented as a diffusion tensor according to

(2)

There is uniaxial symmetry about the bilayer normal and so only two principal components
are required to represent the system. These two components correspond to molecular
diffusion along perpendicular (D⊥) and parallel (D||) directions to the bilayer normal as
illustrated in Fig. 8.

If the gradient is applied along the laboratory z-axis, chosen along the direction of the
external magnetic field B0 (see Fig. 8), then only the Dzz component of the diffusion tensor
in the laboratory frame is measured. The relationship between Dzz and the principal
components in the molecular frame, which align parallel and perpendicular with respect to
the bilayer normal as described above, is given by

(3)

If the molecules forming the phase have a low critical micelle concentration (CMC), as is
typical for lipids in general, then there is no detectable diffusion parallel to the normal of the
bilayer, D|| = 0. Thus, only the term Dzz = D⊥sin2 θ remains in Eq. (3). Interestingly, for the
case where the bilayer normal is perpendicular to the applied gradient, the observed
diffusion coefficient in the laboratory frame (Dzz) is equal to that of the lateral diffusion
(D⊥) in the lipid bilayer. Therefore, in order to measure the diffusion coefficient of a
molecule in a lipid bilayer system, an aligned sample is required and bicelles provide a
suitable medium for the purpose. Recently, Soong and Macdonald [171] demonstrated the
feasibility of measuring diffusion of a polymer-grafted lipid, namely DMPEPEG2000, in
magnetically-aligned bicelles using the STE-PFG NMR technique; the pulse sequence is
shown in Fig. 9.

The diffusion coefficient is measured by monitoring the decay of the 1H signal intensity of
polymer-grafted lipids as a function of the gradient duration. The rapid internal motion of
PEG yields a narrow 1H resonance, which made the measurement feasible. The measured
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diffusion coefficient was found to be comparable in magnitude to the FRAP measurements
of DMPC in the liquid crystalline phase [171]. Therefore, this illustrates the viability of
bicelles as a medium for the lateral diffusion studies of membrane-associated amphiphiles in
a bilayer environment. The results also demonstrate the possibility of extracting the
diffusion coefficient of a membrane protein via STE-PFG NMR, which is important to our
understanding of protein trafficking in lipid bilayers. Therefore, this illustrates that bicelles
are more than just a mere reconstitution medium for membrane proteins; in fact, they can be
used as a platform for lateral diffusion studies via NMR. An interesting result regarding
bicelle morphology was also obtained in these diffusion measurements: the molecular
constituents exhibit free diffusion over micron distances. This observation is consistent with
the perforated lamellae morphology of bicelles [172] and also corroborates with SANS data
[159] and tetramethylsilane diffusion studies in dilute bicelle solutions [156].

Diffusion studies can also be done on bicelles with low q ratios (0.5 ≤ q ≤ 1). Due to their
small size, these bicelles tumble isotropically, hence are suitable for high-resolution studies
of membrane proteins. Interestingly, bicelles with a low q ratio exist as disk-like aggregates
and are relatively monodisperse in their diameter and thickness. At q = 0.5, their estimated
diameter is about 8 nm, double the assumed bilayer thickness [152]. The diameter of these
fast-tumbling bicelles changes in the presence of membrane associated peptides. Recently,
these bicelles have been used for the measurement of lateral diffusion coefficients of
membrane binding peptides and the results are comparable to the literature values. While
these experiments demonstrate the feasibility of using bicelles for diffusion studies, caution
needs to be taken since the lateral diffusion coefficient is measured in a relative sense as all
the components in the sample diffuse at different rates. In particular, the lipid bicelle as a
whole does not provide a stationary reference frame, since it itself undergoes substantial
lateral diffusion. Nevertheless, these bicelles are excellent model membrane systems for the
investigation of binding kinetics of membrane-associated peptides and amphiphiles.

Diffusion measurements by PFG NMR were used to investigate the morphology of three
media that are commonly used in the study of residual dipolar couplings, namely oriented
lipid bicelles, cetylpyridinium bromide, and a mixture of PEG and n-hexanol [156]. The
hydrodynamic radius of micelles and isotropic bicelles has been measured by bipolar pulsed
gradients [173]. In these measurements, lysozyme was used as a reference compound to
correct for the differences in hydrodynamic volume between dry and hydrated protein,
bicelle, or micelle. The motion of constituent lipids in isotropic bicelles was studied by 13C
relaxation, PFG NMR, and EPR [174]. Local mobility was found to depend much more
strongly on the detergent used than on bicelle size. Different peptides were found to have an
impact on apparent dynamics. In a later study, diffusion measurements were used to study
the size and shape of bicelles of low q ratio which tumble isotropically [175]. Three
different long-chain lipid components, namely dilauroylphosphatidylcholine (DLPC),
DMPC, and DPPC, were used to study lipid dynamics as a function of bilayer thickness
[176].

Rotational diffusion concerns a molecule’s rotational degrees of freedom in contrast to
translational motion discussed so far. Lipids as well as proteins in a bilayer sample
experience rotational diffusion, which occurs most freely around the bilayer normal. It is
usually fast on the NMR time scale, as long as proteins and peptides of moderate molecular
size are studied. In NMR spectra, rotational diffusion becomes evident from the observed
NMR lineshape as the averaging of anisotropic spin interactions along the axis of rotation
alters the spectral lineshape and the magnitude of the interaction. As a consequence,
multilamellar vesicles (MLVs) can potentially give the same information as macroscopically
oriented samples [6,7,177,178], and the choice is mostly determined by ease of preparation
and sensitivity issues. However, it was reported that structural measurements for the
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antimicrobial peptide PGLa may be influenced by different hydration levels present in
MLVs compared with data obtained from macroscopically oriented samples made of stacks
of glass plates [7]. For disk-like bicelles, rotational diffusion about the bilayer normal was
found to be fast enough to average the cylindrical distribution about that axis, even in the
rare cases where the embedded protein itself does not undergo rotational diffusion fast
enough for the required averaging [179]. As a result, even very large proteins and protein
complexes are amenable to studies in unflipped bicelles.

7. Separated local field (SLF) NMR studies on bicelles
7.1. Separated local field spectroscopy

Though one-dimensional 31P, 1H and 13C NMR experiments are commonly used to
characterize magnetically-aligned bicelles [180], sophisticated two-dimensional (2D)
experiments are essential to probe the order/disorder of lipid and detergent molecules in
bicelles as well as to measure the interaction of ligand or peptide with hydrophilic and
hydrophobic domains of bicelles. Experiments correlating short-range heteronuclear dipolar
couplings with the chemical shift of a given nucleus, referred to as separated local field
(SLF) experiments, are powerful in providing insights into the atomic-level structure of
bicelles. Magnetically-aligned bicelles were found to be readily accessible objects in 2D
SLF studies [181–183]. Fig. 10 demonstrates how 2D SLF gives piercing insights into
bicelle properties. The chemical structure of a DMPC lipid molecule is shown in Fig. 10A.
The commonly used labeling scheme is indicated: Cα, Cβ, Cγ denote the carbon positions in
the choline headgroup, Cg1, Cg2, Cg3 make up the glycerol backbone, and C1 to C14 the
myristoyl chains. The very high concentration of DMPC molecules in typical bicelle
preparations means that natural abundance 13C NMR of DMPC carbons is sufficient for
one- and two-dimensional NMR experiments.

The one-dimensional 13C chemical shift spectrum in Fig. 10B shows well-resolved
resonances for almost all positions; assignments are available for all resolved resonances
and are given in Fig. 10B. In an SLF experiment, an incrementable time delay is added to
evolve the transverse magnetization under heteronuclear dipolar couplings. The
heteronuclear dipolar couplings (also known as the local field) associated with each
chemically distinct carbon nucleus in the indirect dimension of the 2D spectrum are
separated by the 13C-chemical shift frequency; hence the name ‘separated local field’. The
SLF spectrum in Fig. 10C shows well-resolved dipolar multiplets for each carbon group. A
large splitting corresponds to a large molecular order parameter of the respective 1H–13C
bond, whereas a small splitting indicates a small order parameter. The magnitude of the
dipolar splitting can be plotted versus the carbon position in the lipid molecule, yielding an
order parameter profile over the whole lipid bilayer. In this fashion the dynamics of the
whole lipid molecule, from the headgoup to the acyl chains, can be thoroughly mapped out
via one single 2D experiment. This is similar to order parameter profiles acquired by 2H
NMR spectroscopy [138,139], but does not need deuterated lipids and gives unambiguous
site-specific information. Static and/or macroscopically oriented samples are not a necessary
prerogative for SLF experiments; SLF is equally possible under MAS conditions by re-
introducing dipolar interactions [184,185].

Spectroscopically, SLF experiments can be divided into two categories: laboratory-frame
and rotating-frame experiments. In a rotating-frame SLF, the heteronuclear dipolar
couplings are evolved under the influence of a spin-lock matched at the appropriate
Hartmann–Hahn condition. Prominent examples include polarization inversion spin
exchange at the magic angle (PISEMA) [186], heteronuclear isotropic mixing spin exchange
via local field (HIMSELF) or heteronuclear rotating-frame spin exchange via local field
(HERSELF) [181], and magic-sandwich PISEMA (SAMMY) [187]. The PISEMA
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experiment and its improved derivatives are commonly used to investigate the structure and
dynamics of membrane proteins in aligned lipid bilayers as they provide ultra-high spectral
resolution; since those are not the main focus of this article, they will not be discussed
further. Readers can consult a review article on PISEMA spectroscopy [188].

In the second type of SLF experiment, laboratory-frame SLF, the heteronuclear dipolar
couplings are evolved through the protons and are subsequently transferred, by cross
polarization, to the dilute spin such as 13C or 15N for detection. An example is proton
evolved local field spectroscopy (PELF) [321]. Rotating-frame SLF is preferable
particularly when large dipolar couplings are measured by efficiently suppressing large
homonuclear proton–proton dipolar couplings, as in a single crystal or in transmembrane
proteins. Laboratory-frame SLF, on the other hand, is suitable when motionally averaged
dipolar couplings are present. The latter case is found in magnetically-aligned bicelles.
Consequently, laboratory- frame SLF experiments have recently been successfully applied
to a number of biological problems.

7.2. Application of SLF to study bicelle properties
As a proof of feasibility, our laboratory has recorded 2D 1H-13C-PELF spectra on oriented q
= 3.5 DMPC/DHPC-bicelles [189]. In addition, a 2D correlation spectrum of 13C chemical
shift and 13C–31P dipolar couplings was acquired, which reports on the conformation of the
phosphocholine headgroup region of DMPC. Similar results were obtained with a solution-
state NMR spectrometer using a SAMMY experiment [182]. In a subsequent study,
experimental parameters were optimized to maximize sensitivity and resolution [180].
Ramped cross-polarization [190] and the FLOP-SY- 8 [191] scheme were found to be the
best choices for polarization transfer and heteronuclear decoupling, respectively. By
carefully calibrating the sample temperature and minimizing sample heating, spectral quality
could be further improved. A direct experimental comparison of 2D SLF, PELF, and
rotating-frame SLF schemes proved the superior quality of the PELF approach [183]. The
method was further developed by reintroducing proton-spin diffusion to aid in resonance
assignment of embedded molecules [192].

1H–13C-PELF spectra were used to characterize bilayer properties in bicelles for a wide
range of conditions [193]. For different q-values, temperatures, and hydration
levels, 1H-13C-PELF spectra were recorded. The extracted order parameter profiles are
reproduced in Fig. 11. The order parameter profiles show that at higher q values (higher
DMPC content, Fig. 11B), the bilayered regions become more rigid. The same is true for
lower temperatures (Fig. 11C). More surprising is the fact that mobility seems to be fairly
constant over a large range of hydration levels (Fig. 11D).

It was mentioned above that the order parameter profiles of lipid bilayers can be—and
traditionally have been—recorded using 2H NMR. A tremendous number of results has been
achieved from 2H NMR studies of lipid vesicles [138,139]. The determination of order
parameters of lipid C–C-bonds from 2H quadrupolar splittings has been thoroughly
investigated, and a number of conformational details could be determined [194]. It has been
shown that structural and dynamical details of DMPC in bicelles can be studied by
deuteration [195]. However, there are serious drawbacks to this technique: a study [195]
found that progressive deuteration has an effect on thermotropic behavior. The fact that
partially deuterated molecules were employed, rather than single-site deuteration, makes
their assignments ambiguous. Earlier results on DMPC conformation in crystals [196] or
MLVs [177] were confirmed and refined for the bicelle environment. As described,
the 1H–13C-PELF method gives equivalent results and does not require isotope labeling and
does not suffer from the sensitivity and assignment problems imposed by 2H-labeled

Dürr et al. Page 15

Prog Nucl Magn Reson Spectrosc. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



phospholipids. A promising extension would be the use of order parameters as orientational
angular constraints in molecular dynamics simulations [197].

The DMPC choline head group in DMPC/DHPC bicelles has found particular interest. It
was found that a deuterated head group can be employed as molecular voltmeter, since its
conformation reacts almost linearly to the presence of negatively charged DMPG and
positively charged 1,2-dimyristoyl-3-trimethylammoniumpropane (DMTAP) [198,199].
POPC with site-specific 2H- and 13C-labels was used to record 2H quadrupolar as well
as 13C–31P dipolar splittings, which can be used to provide torsional constraints on
conformation [200]. Again, carbon dipolar couplings with 1H and 31P nuclei can be detected
in 2D HIMSELF or HERSELF experiments without the need for isotopic labeling. In
addition, quadrupolar splittings of the naturally most abundant nitrogen isotope, 14N, can be
employed to report on head group conformation [180,201]. The immersion depth and
orientation of the headgroup of ganglioside GM1, a glycosphingolipid, was investigated in
isotropic DMPC/CHAPSO bicelles by paramagnetic relaxation enhancement experiments
[202].

The application of 1H–13C-PELF to membrane-associated peptides and small molecules has
already yielded interesting results. The antimicrobial peptide MSI-78 (also known as
pexiganan) was found to reduce the order parameter profile smoothly in each position,
indicating that MSI-78 fragments the bicelles into smaller, more dynamic segments [189].
The antidepressant desipramine was found to be localized in the glycerol backbone and head
group regions in DMPC/DHPC bicelles [183]. A 1H–13C-PELF study on the interaction
between curcumin and membranes shows an ordering effect of the lipid acyl chain at low
curcumin concentrations but at a high concentration of curcumin, a disordering of the acyl
chains was observed [203]. The latter two studies dealt with the interaction of small
molecules with lipid bicelles. This topic has also found interest in other types of studies, and
will be further discussed in Section 9.

8. Bicelles under magic-angle spinning (MAS)
Magic-angle spinning (MAS) experiments on macroscopically aligned samples have been
established which used solid supports, such as stacks of round glass plates [204], or a
polymer film wrapped into a cylinder [205]. Similarly, lipid bicelles have been investigated
under magic-angle spinning. It was found by variable- angle sample spinning (VASS) that at
spinning angles smaller than the magic-angle the bilayer normal will align perpendicular to
the rotation axis [206]. It was demonstrated that this fact can be used to determine the
relative signs of dipolar and scalar (or J-) couplings. Perpendicular alignment at spinning
angles smaller than the magic-angle was confirmed by 2H NMR [207]. For spinning angles
larger than 54.7°, the same study found parallel alignment with respect to the spinning axis.
At the magic-angle itself, no preferential orientation is present, and the bilayer normals are
distributed isotropically. In addition, the study described metastable phases with different
alignment behavior whose presence depends on spinning speed and can be manipulated by
switched-angle spinning to yield arbitrary angles between bilayer normal and applied
magnetic field. The width of the distribution of the bilayer normal around its average value,
known as mosaic spread, was the subject of another study [208]. In this study, mosaic spread
in spinning bicelles was investigated by 31P NMR and found to be small at spinning angles
far away from the magic-angle. As the spinning axis approaches the magic-angle, mosaic
spread becomes larger until an isotropic distribution is reached at the magic-angle.

It was shown that studies of peptides and proteins under MAS can benefit from using
bicelles rather than MLVs [209]. Both isotropic and aligned spectra for the study of RDCs in
soluble proteins can be collected from the same sample using bicelles and MAS [210].

Dürr et al. Page 16

Prog Nucl Magn Reson Spectrosc. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Precise values of chemical shift anisotropy (CSA) were determined for a transmembrane
segment of an acetylcholine receptor in bicelles under MAS [211]. Two-dimensional MAS
experiments on bicelles containing a membrane-associated cytochrome b5 have been
reported and the results suggest that bicelles form better model membranes than MLVs or
SUVs [212].

9. Interaction of small molecules with bicelles
Bicelles have in a few cases been used to study the interaction of small organic molecules
with lipid bilayers. Both isotropically tumbling and magnetically-aligned bicelles were used.
Tea catechins interact with isotropic bicelles according to the partition coefficient and their
amphiphilic properties, with attachment mostly to the lipid headgroup region [213].
Erythromycin A, a macrolide antibiotic, showed shallow insertion into isotropic bicelles in a
paramagnetic relaxation enhancement (PRE) study [214]. Salinomycin, an ionophore
antibiotic, showed different conformation in presence and absence of sodium ions in
isotropic bicelles [215]. The conformation found for the salinomycin-sodium complex is
significantly different from the structure found in solution or in a crystal. The conformation
and a model of insertion were established for amphidinol 3, a potent antifungal agent, in
isotropic bicelles [216]. The study of small molecules in isotropic bicelles has been
reviewed [217]. The polyene antibiotic amphotericin B was investigated in aggregates
formed with dioctadecyl dimethylammonium bromide that are presumed to have discoidal
geometry similar to bicelles [218].

Magnetically-aligned bicelles have also been used to study small molecules. RDCs were
measured for ethanol [219]. The orientation and motion of ethanol in its membrane bound
state could be inferred from these measurements. About 4% of ethanol is bound to the
membrane; the lifetime of ethanol association is on the order of a few nanoseconds.
Structural and dynamic properties of stearic acid-d35 in bicelles containing cholesterol have
been studied by 2H NMR [220] and later compared to EPR results [221]. Two cannabinoids
were investigated in the presence of oriented bicelles [222]. In this study, two deuterium
labeled sites yielded orientational constraints from spectra obtained on a solution-state NMR
spectrometer, and were analyzed in terms of structure and dynamics. In an earlier parallel
study, the same two cannabinoids were investigated in isotropic bicelles of high DMPC
content, q = 2.0, which was necessary in order to observe a bilayer-bound conformation
[223]. Another cannabinoid was investigated by 2H NMR in bicelles of different lipid
composition [224]. Glycosidic torsional motions were determined in a bicelle-associated
disaccharide using RDCs [225]. Single-site deuterium labeled epigallocatechin gallate was
found to interact with aligned bicelles [226]. Three fullerene derivatives in magnetically-
alignable bicelles were investigated by EPR spectroscopy and were found to reside as single
molecules just below the hydrophilic/hydrophobic interface with a preferential orientation
[227]. Our own studies on membrane distortion by the antidepressant desipramine [183] are
presented in Section 7.

In biopartitioning chromatography (BPC), a biomembrane-mimetic (e.g. liposomes,
phospholipid monolayers, micelles, or bicelles) is introduced into a chromatographic system
to study drug-membrane interactions [228]. Pure and highly stable phases of PEG-stabilized
bilayer disks (described in Section 2.4) were developed as model membranes for drug
partition studies, and have the potential to give more accurate results than liposomes [229].
Formulations designed to model porcine brush border membrane [230] and plant tissue
[231] in drug partition studies were described. Discoidal aggregates of PEGylated lipids and
lipids were used as pseudostationary phases in capillary electrophoresis to study drug
partitioning [232,233] and the results verified by using a quartz crystal microbalance [233].
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Numerous studies on peptides in bicelles have been conducted, for example on antimicrobial
peptides [234] and neuropeptides [235]. A recent review [236] gives a comprehensive
overview of proteins and peptides studied in bicelles and therefore we do not report on
peptide studies here.

10. Magic touch added to studies of protein structure
The most exciting and fruitful area of bicelle application is without doubt found in structural
biology of membrane proteins. Bicelles can be used in four fundamentally different ways to
study membrane protein structure, as illustrated in Fig. 12. The difference is found in the
proteins studied and in the type of bicelle chosen for their study. Integral membrane proteins
(Fig. 12A and B), soluble proteins (Fig. 12C), and membrane-interacting proteins (Fig. 12D)
have all been studied in bicelles. Both aligned (Fig. 12A and C) and isotropically tumbling
(Fig. 12B and D) bicelles are in common use. In addition, a variation in the lipid:detergent
ratio (the so called q titration) converting one type into the other can be performed and may
be useful for differentiating between structured and mobile residues of membrane proteins
[237]. In this section, a very short and highly subjective overview of the most exciting
results on proteins is presented. For a comprehensive presentation, the reader is referred to
our recent review article [236]. Several other, excellent review contributions on proteins
studied in bicelles are available [8,150,172].

The propensity of bicelles for magnetic-alignment opened a completely new route for the
preparation of macroscopically oriented membrane samples. Typically, proteins embedded
in magnetically- aligned bicelles (Figs. 2G and 12A) reach a much higher quality of
alignment than is possible for example in stacks of glass plates [15,16] or anodic aluminum
disks (see Section 2 and Fig. 2C and D). Solid-state NMR of macroscopically aligned, static
samples is a well-established and very productive branch of solid-state NMR spectroscopy
[238]. It offers a wide array of well-tested custom-tailored pulse sequences, such as the
separated local field experiments that were described in Section 7.1. Magneticallyaligned
bicelles have given fresh impetus to this field, especially in the study of incorporated
membrane proteins.

The largest integral membrane protein studied in this fashion to date is CXCR1, a human
chemokine receptor that consists of seven transmembrane α-helices. CXCR1 was
successfully incorporated in aligned bicelles [239]. Local and global dynamics of CXCR1
were studied by a combination of solid- and solution-state NMR experiments [240]. The
interaction of CXCR1 with its ligand interleukin- 8 was characterized in aligned as well as
isotropic bicelles [241]. For OmpX, outer membrane porin X which forms an 8-stranded β-
barrel, the absolute orientation with respect to the surrounding bicelle bilayer was
determined [242]. Functional (α4)2(β2)3 pentamers of transmembrane α-helices from the
α4β2 neuronal nicotinic acetylcholine receptor were prepared in aligned bicelles and the
effect of anesthetics was investigated by observing a selectively 15N-Leu labeled α4 peptide
[243]. Results on the viral proteins p7 and Vpu in aligned bicelles have recently been
reviewed [244]. Although both proteins belong to the same family of viroporins, p7 of HCV
passes the membrane in two α-helical stretches, while Vpu of HIV-1 consists of only one
transmembrane α-helix plus two α-helices that are attached peripherally to the membrane.
The structure of MerFt was determined, a truncated version of a bacterial mercury
transporter which has two transmembrane α-helices [245]. Several fragments of TatA, twin-
arginine translocase consisting of a transmembrane α-helix and two membrane-associated
α-helices, were investigated in aligned bicelles [246,247]. Bacteriophage Pf1 coat protein
has a single transmembrane α-helix and was studied in bicelles with biphenyl lipid side-
chains that align with their bilayer normal parallel to the external magnetic field [248]
(Section 3.4). The feasibility of de novo sequential assignments in oriented bicelles has been
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demonstrated on sarcolipin, where 26 out of 31 amide 15N-resonances could be
unambiguously assigned [249].

The Ramamoorthy laboratory has studied the integral membrane protein cytochrome b5 in
aligned bicelles [250]. Cytochrome b5 consists of a transmembrane α-helix that serves as a
membrane anchor, and a water soluble, globular domain. It was found to give high quality of
orientation in aligned bicelles, which resulted in solid-state NMR spectra of very high
resolution [251]. This result suggests that bicelles with their high degree of hydration are
especially useful in the common case where membrane proteins have large globular domains
in addition to their transmembrane portions. It was possible to reconstitute a complex of
cytochrome b5 with its binding partner, the 56 kDa enzyme cytochrome P450 [250].
Innovative pulse sequences were developed on cytochrome b5 in bicelles that used proton-
evolved local-field experiments to distinguish transmembrane and soluble domains [252],
and used insensitive nuclei enhancement by polarization transfer (INEPT)-type
magnetization transfer to study side-chain dynamics [253]. When cytochrome b5 in aligned
bicelles was studied under magic-angle spinning conditions, where macroscopic orientation
vanishes, spectra of very high quality could be observed, confirming the favorable
conditions that bicelles offer for membrane proteins [212].

The more traditional field of solution-state NMR has also made rapid progress in the study
of integral membrane proteins, and bicelles have made a significant contribution. Solution-
state NMR offers a wide range of sophisticated tools to study proteins that tumble quickly
on the NMR time scale [254–258]. Integral membrane proteins that are natively embedded
in membranes typically do not meet the criterion of fast reorientation. For this reason, they
are regularly solubilized in detergent micelles that do show fast tumbling. The detergent
used for solubilization has been humorously described as “French swimwear” for the protein
[259]. Naturally, smaller protein–detergent aggregates will result in faster reorientation and
better solution-state NMR spectra. However, it has been found that not all proteins retain
their functional form in protein–detergent micelles. Isotropic bicelles are especially
attractive as an alternative in this context, as they possess a bilayered portion that offers a
native-like environment for the embedded protein (Fig. 12B). For example, the functional
form of Smr, staphylococcal small multidrug-resistance pump, is stabilized in bicelles [260].
A review on solubilizing agents presents Smr as prototypical case and stresses the
importance of an assay to verify that a protein is present in its active form [261]. This
publication states with respect to protein–detergent aggregates that “small is beautiful, but
sometimes bigger is better”. A complete backbone assignment for the functional form of
Smr in isotropic bicelles has been reported [262]. Several other contributions have reviewed
the importance of detergent systems in the study of membrane proteins [263–266]. Two
review contributions present comprehensive galleries of integral membrane proteins solved
by solution-state NMR spectroscopy [267,268].

The structure determination of sensory rhodopsin II, a seven transmembrane helix receptor,
in detergent micelles (pdb-id 2KSY) [269] has shown that these proteins are now within
reach of solution-state NMR. The same study used spectra recorded in isotropic bicelles to
show that environment-specific effects are minimal when using mild detergents. A complex
of rhodopsin and transducin was prepared in isotropic bicelles and displayed dramatically
increased stability [270], and it was possible to generate and purify a rhodopsin/transducin
complex with constitutively active, recombinant rhodopsin [271]. A bicelle-associated
structure was determined for full-length myristoylated ARF1, ADP ribosylation factor 1,
which consists of an N-terminal bicelle-associated and a C-terminal catalytic domain
connected by a flexible linker (pdb-id 2KSQ) [272]. EmrE, a small multidrug-resistance
transporter, forms homodimers where each monomeric unit consists of four transmembrane
α-helices. EmrE is highly sensitive to its environment but could successfully be
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incorporated into isotropic bicelles [273]. It was then shown that asymmetric antiparallel
EmrE exchanges between inward- and outward-facing states that are identical except that
they have opposite orientation in the membrane [274]. Homo- and hetero-dimers of single-
pass transmembrane α-helices are of special interest since they play central roles in a large
class of transmembrane signaling receptors [275]. A structure determination has been
reported for the heterodimer of the αIIb and β3 transmembrane helices of integrin (pdb-id
2K9 J) [276]. Similarly, the spatial structure of the transmembrane domain heterodimer of
ErbB1 and ErbB2 receptor tyrosine kinases was reported (pdb-id 2KS1) [277].
Phospholamban, a single-pass α-helical transmembrane protein, has found special interest
because of its role in regulating SERCA, sarcoplasmic reticulum Ca2+-ATPase [278]. Magic
angle spinning of phospholamban in isotropic bicelles was used to probe equilibria between
ground and excited states [279]. For OmpX, a bacterial outer membrane porin that forms an
8-stranded β-barrel, it was possible to observe intermolecular NOE contacts to DMPC lipids
in the surrounding isotropic bicelle, but not to DHPC detergent, proving that the protein is
embedded solely in the bilayered portion of the bicelle [155].

When soluble, globular proteins are introduced into dilute samples of strongly aligned
bicelles (Fig. 12C), they experience a weak macroscopic alignment that gives rise to small
anisotropic NMR interactions, so-called residual dipolar couplings or RDCs, on the order of
several Hz. The transferred partial orientation of the soluble protein is caused by interaction
with the aligned medium which forms an obstacle to the free re-orientation that would be
observed in solution. Numerous alignment media are used besides bicelles in the study of
RDCs; tabulated overviews of alignment media are available [280,281]. The alignment that
a molecule will experience in a certain environment can be predicted on the basis of steric
interaction alone [282], or additionally taking into account electrostatic interaction [283]; the
software PALES is available for this task [284].

RDC measurements were first reported on ubiquitin partially ordered in q = 2.9 DMPC/
DHPC bicelles [285]. Their role in structure determination of biomolecules has been
reviewed repeatedly; we mention a contribution that includes an overview of pulse
sequences for recording RDCs [280]. Other review contributions have focused on RDCs as
probes of biomolecular dynamics [281], and on RDC studies on proteins [286] and RNA
[287]. It has to be noted that the interaction with the alignment medium may change the
properties of the studied protein. For example, the putatively inactive dimeric state of the
chemokine SDF-1/CXCL12 is favored when bicelles are used as alignment medium [288].
Since RDCs report on global orientation, they are especially useful for determining the
overall orientation of protein domains [289]. Three independent sets of RDCs in aligned
bicelles of three different conditions were determined for the three N-terminal domains of
human factor H and analyzed to yield their relative orientation [290]. For ubiquitin, 18
independent ordering media including bicelles gave sufficient RDC data to observe protein
recognition dynamics on a microsecond time scale [291].

An especially intriguing situation occurs when bicelles in RDC studies are not used as
alignment medium but are themselves subjected to partial alignment. Isotropic bicelles
containing the HIV-1 Env peptide were introduced into a stretched hydrogel and RDCs
could be recorded that showed considerable differences when compared to RDCs recorded
on the same peptide in detergent micelles [292]. Similarly, DNA tetrads can be used as
alignment medium to measure RDCs on molecules embedded in isotropic bicelles [293].

The interaction of soluble, globular proteins with lipid bilayers can be studied in the
presence of isotropic bicelles (Fig. 12D). This is different from the separated local field
(SLF) studies described in Section 7, where strong binding to aligned bicelles is a
prerequisite. In the case of globular protein and isotropic bicelle, neither strong nor partial
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alignment of the protein is observed and protein-lipid interactions can be investigated. For
example, details of membrane binding of myristoylated and non-myristoylated ARF1, ADP-
ribosylation factor 1 (pdb-id 2K5U), was compared in isotropic bicelles [294]. Spontaneous
insertion of the apoptotic repressor BclXL into q = 0.5 DMPC/DHPC bicelles was found to
cause a dramatic conformational change that inhibits binding with its BH3 ligand [295].
Isotropic bicelles were used to supply lipid substrate to cobra venom phospholipase A2 for
kinetic assays [296]. It has also been observed that amyloid formation is modulated in
bicellar solutions [297].

11. New and notable
A number of recent publications have presented new bicelle designs and novel bicelle
applications that do not fit easily into the categories of this review article, but that feel
particularly noteworthy. A new bicelle was designed that contains both cholesterol and
unsaturated lipid sidechains and forms separated domains that can potentially be used as
models for physiological lipid rafts [298]. Bicelles were stabilized by encompassing them
into a layer of siloxane ceramics [299]. Newly designed peptide copolymers form flat
discoidal structures similar to bicelles [59]. The use of special detergents extends the
possible range of bicelle concentrations to below 0.5% lipid weight per volume [113]. Even
lower concentrations can be reached by encapsulating bicelles in vesicles; such formulations
have been introduced under the name ‘bicosomes’ [300].

More traditional bicelle formulations have been applied in completely novel ways. The use
of bicelles in the crystallization of membrane proteins [38,44] has been discussed in detail in
Section 2.4. Bicelles as detergents in the cell-free expression of membrane proteins offer
distinct advantages [34,301,302]. The effects of applying bicellar preparations to the skin
have received broad attention [303–308] and were recently reviewed [309]. Of special
interest seems to be the prospect of delivering drug substances to the skin using bicelles, as
demonstrated for diclofenac [310]. The voltage gated potassium channel modulatory
membrane protein KCNE3 was delivered into oocytes in functional form using bicelles
[311].

In the field of nanotechnology, bicelles were used as a temporary scaffold to synthesize rigid
organic nanodisks by polymerization [312] and to generate platinum nanowheels [313,314].
Bicelles were used to build assemblies of multiple highly fluid free lipid bilayers that are
tethered together by cholesterol-anchored double-stranded DNA [315]. Supported and
suspended lipid bilayers have been generated on silicon chips using bicelles [316].

12. Summary and conclusion
Bicelles have quickly emerged as another amazing possibility in the host of lipid
morphologies [317]. The present contribution has focused on the studies that generated
today’s comprehensive understanding of bicelle properties. NMR experiments along with
scattering and diffusion measurements can give quick and unambiguous characterizations of
bicelle morphology and phase diagrams. Bicelles quickly took on an important role in the
context of lipid bilayer samples for NMR and EPR spectroscopy. SLF and MAS
experiments on bicelles are regularly used to study bilayer properties. The interaction of
small molecules with bilayers can also be studied in bicelle samples. The study of membrane
protein structure forms the most prominent practical application of bicelles.

The application of bicelles in the structural studies of membrane proteins has a number of
unique advantages. Bicelles can embed membrane proteins into truly flat, bilayered lipid
patches with lipid compositions that can be chosen from a wide array of options. Bicelles
form only in limited ranges within the phase diagram, but these ranges are continuously
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expanded and typically coincide with ranges of conditions that are desirable for the study of
membrane proteins. By the ratio q of lipid over detergent, the size of bicelles can be freely
chosen. Bicelles with small q values can be used for high-throughput solution-state NMR
studies while those with large q values are ideal for solid-state NMR studies. Even q-
variations ranging from solid-state into solution-state conditions are possible. Since bicelles
contain bulk water, they enable natural folding of even those membrane-associated proteins
that contain large soluble domains and therefore make physiologically relevant structural
studies possible. In summary, bicelles are the most versatile model membrane and as a
consequence they are increasingly and routinely used in studies ranging from
crystallography to NMR spectroscopy.

Today, the field extends so widely that it is virtually impossible to cover the phenomenon
“bicelle” in a single review article. Insights on protein structure gained with the help of
bicellar formulations are emerging at an amazing pace. At the same time, research that is
focused on bicelles in their own right has elucidated most of their basic structural and
dynamic properties. The most exciting activity is found on the fringes of the field, where
new imaginative variations and applications keep emerging at a similar pace.
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Glossary of abbreviations

AAO anodic aluminum oxide

BPC biopartitioning chromatography

bR bacteriorhodopsin

C12E18 octaethylene glycol monododecyl ether

CHAPSO 3-(cholamidopropyl)dimethylammonio-2-hydroxy-1-propanesulfonate

CMC critical micelle concentration

CSA chemical shift anisotropy

CTAB hexadecyltrimethylammonium bromide

DHPC dihexanoylphosphatidylcholine

DLPC dilauroylphosphatidylcholine

DMPC dimyristoylphosphatidylcholine

DMPE dimyristoylphosphatidylethanolamine

DMPG dimyristoylphosphatidylglycerol

DMTAP 1,2-dimyristoyl-3-trimethylammonium-propane

DPC dodecylphosphocholine

DPPC dipalmitoylphosphatidylcholine

DSPE distearoylphosphatidylethanolamine

DTPA diethylenetriaminepentaacetate

EM electron microscopy

EPR electron paramagnetic resonance
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FRAP fluorescence recovery after photobleaching

HDL high-density lipoprotein

HERSELF heteronuclear rotating-frame spin exchange via local field

HIMSELF heteronuclear isotropic mixing spin exchange via local field

INEPT insensitive nuclei enhancement by polarization transfer

MAS magic-angle spinning

MD molecular dynamics

MLV multilamellar vesicle

NMR nuclear magnetic resonance

PEG polyethyleneglycol

PELF proton evolved local field spectroscopy

PFG pulsed field gradient

PISEMA polarization inversion spin exchange at the magic angle

POPC 1-palmitoyl-2-oleoyl-phosphatidylcholine

PRE paramagnetic relaxation enhancement

PSPC 1-palmitoyl-2-stearoyl-phosphatidylcholine

RDC residual dipolar coupling

SAMMY magic-sandwich PISEMA

SANS small-angle neutron scattering

SDS sodium dodecyl sulfate

SLF separated local field

SLUV short-chain long-chain unilamellar vesicle

STE stimulated echo

SUV small unilamellar vesicle

TEM transmission electron microscopy

TM transmembrane

TMS tetramethylsilane

VASS variable-angle sample spinning
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Fig. 1.
Lipid bicelles are supramolecular aggregates that are formed when appropriate amounts of
lipids and detergents are mixed in an aqueous environment. The size and phase of bicellar
aggregates depend on the [lipid]:[detergent] ratio as well as on the temperature. Two
fundamentally different phases of bicellar preparations have proven highly useful in the
study of protein structure using NMR spectroscopy: isotropic bicelles rapidly tumble freely
and are formed at a high detergent concentration (A and B). At low detergent concentrations
extended bilayered lamellae are formed (C and D), that spontaneously align macroscopically
in a magnetic field. Cryo-TEM micrographs (A and C) are reproduced from the literature
[1]. Micrograph (A) contains arrows marked A and B that point to disk-like bicelles viewed
from the side and the top, respectively.
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Fig. 2.
Different types of model membrane samples suitable for studying membrane proteins by
NMR spectroscopy: (A) lipid bilayers (inset) are present in multilamellar vesicles; (B) small
unilamellar vesicles and macroscopically-aligned bilayer samples using either (C) glass
plates or (D) cylindrical nanopores in anodic aluminum oxide. (E) Micelles are formed from
pure detergents. When lipid and detergent mix, isotropic bicelles (F) and magnetically-
aligned bicelles (G) are formed. Light gray color indicates a lipid bilayer, dark gray is
detergent, and hatching represents either a glass plate (C) or aluminum oxide (D) as solid
supporting material.
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Fig. 3.
The overall geometrical shape of detergents tends to be conical (A), while phospholipid
molecules have mostly cylindrical overall geometry (B). The geometry of pegylated
phospholipids again tends to be conical (C).
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Fig. 4.
(A) In the absence of a magnetic field, bicelles assume random orientations. (B) Anisotropy
in magnetic susceptibility causes macroscopic alignment of bicelles when an external
magnetic field is applied.
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Fig. 5.
In the presence of lanthanide ions (light spheres), lipid bicelles adopt an orientation where
the bilayer normal is parallel to the applied magnetic field (A). This is termed as “flipped”
bicelle with respect to the perpendicular orientation adopted by undoped bicelles (B).
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Fig. 6.
The morphology of bicellar preparations is dependent on the ratio q between a long-chain
lipid and a detergent. Fast tumbling bicelles exist when q < 2.5 (left panel), macroscopically
aligned bicelles exist between q ratios of 2.5 and 7.5 (middle), and at high q > 7.5,
multilamellar vesicles are formed (right).
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Fig. 7.
Bicelles exhibit a wide range of morphologies. Beside the simple nanodisk morphology,
multilamellar vesicles (A), chiral nematic ribbons (B), and perforated lamellae (C) are found
under different sample conditions.
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Fig. 8.
In a lipid bilayer system, only two components are needed to describe the diffusion tensor.
The relative orientation of the bilayer normal and hence the principal components of the
diffusion with respect to the external magnetic field is described by the angle θ. It

determines the component  of the diffusion tensor that lines up with the magnetic field
and can be measured.
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Fig. 9.
STE-PFG NMR pulse sequence composed of three 90° radio frequency pulses and two
gradient pulses of identical amplitude and duration. The STE-PFG NMR experiment is
arranged such that the decay of the echo intensity, as a function of δ, g or Δ, is proportional
to the diffusion coefficient of the species of interest.
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Fig. 10.
13C NMR spectroscopy of magnetically-aligned DMPC/DHPC bicelles, q = 3.5. At this ratio
of long- to short-chain component, resonances from the long-chain component dominate the
spectra. (A) Molecular structure of DMPC, including the commonly employed
nomenclature. (B) The natural-abundance 13C NMR chemical shift spectrum on a 400 MHz
NMR spectrometer shows clearly resolved resonances for most carbon sites in DMPC. (C)
A 400 MHz 2D SLF-spectrum correlates 13C chemical shift to 1H–13C dipolar coupling of
carbon nuclei to adjacent hydrogen nuclei and yields information on the local structure and
mobility of lipid molecules in bicelles.
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Fig. 11.
Order parameter profiles determined from 2D 1H–13C-PELF NMR spectra of magnetically-
aligned DMPC/DHPC bicelles [193]. (A) DMPC structure with nomenclature and indication
of distinct molecular regions. Order parameter profiles were determined for different values
of (B) composition q, (C) temperature and (D) hydration level. These results demonstrate
that experimentally measured 13C–1H dipolar couplings can be utilized in measuring the
changes in the order/disorder associated with various regions of the lipid and detergent in
bicelles without the need for isotopic enrichment. Such measurements have been shown to
provide insights into the mechanism of membrane disruption by antimicrobial peptides and
amyloid peptides/proteins.
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Fig. 12.
Graphic representation of the four fundamentally different ways in which bicelles are used
in protein structure and protein–membrane interaction studies. Integral membrane proteins
can be studied in aligned (A) as well as isotropically tumbling bicelles (B). Aligned bicelles
can be used to impose a residual orientation on soluble proteins for RDC measurements (C).
Isotropic as well as aligned bicelles can be used to study membrane interaction of soluble
proteins (D).
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