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We derive the form for an exact exchange energy density for a
density decaying with Gaussian-like behavior at long range. Based
on this, we develop the X3LYP (extended hybrid functional com-
bined with Lee–Yang–Parr correlation functional) extended func-
tional for density functional theory to significantly improve the
accuracy for hydrogen-bonded and van der Waals complexes while
also improving the accuracy in heats of formation, ionization
potentials, electron affinities, and total atomic energies [over the
most popular and accurate method, B3LYP (Becke three-parameter
hybrid functional combined with Lee–Yang–Parr correlation func-
tional)]. X3LYP also leads to a good description of dipole moments,
polarizabilities, and accurate excitation energies from s to d orbit-
als for transition metal atoms and ions. We suggest that X3LYP will
be useful for predicting ligand binding in proteins and DNA.

The development of accurate functionals has made density
functional theory (DFT) the method of choice for first

principles predictions of fundamental processes in materials
ranging from metal alloys to semiconductors, to ceramics, to new
catalysts (1, 2). Despite this progress, there remain serious
limitations in DFT theory. Thus, the B3LYP (Becke three-
parameter hybrid functional combined with Lee–Yang–Parr
correlation functional) method (3) achieves a high accuracy
[mean absolute deviation (MAD) � 0.13 eV (1 eV � 1.602 �
10�19 J)] for thermochemistry [heats of formation of the 148
molecules in the extended G2 reference set (4, 5)], but it predicts
that the noble gas dimers are unstable. The PW1PW hybrid
method (6, 7) leads to less accuracy (0.23 eV for G2) and far too
strong bonding in noble gas dimers [�7 times the correct answer
for He2 (7)], and indeed leads to very strong bonding even when
the functional for electron correlation (which is responsible for
London dispersion forces) is omitted. Similar results are ob-
tained for other functionals of this class [mPW (7) and PBE
(8–10)], suggesting that these exchange functionals include some
correlation effects, making it difficult to combine them with true
correlation functionals.

The particular application motivating us to reexamine the
functionals in DFT is the possibility of genomewide structure-
based drug design. As the genomics revolution leads first to
sequences and then to 3D structures for all proteins of all forms
of life, there will be an opportunity for computation and theory
to help develop new generations of drugs (agonists and antag-
onists) that are both very active and very specific (binding maybe
to just one protein of all proteins for all forms of life, so as to
minimize toxic side effects). However, for theory and compu-
tation to play this role, it is essential that the noncovalent
interactions of ligands to proteins be accurately predicted. Thus, it
is essential to accurately describe London dispersion forces (van der
Waals attraction) along with electrostatic and hydrogen bond
interactions.

The current generations of DFT methods do not provide this
accuracy, but we present here an extended functional, denoted
as X3LYP (extended hybrid functional combined with Lee–
Yang–Parr correlation functional), that significantly improves

the accuracy for van der Waals and hydrogen-bonded complexes
while providing an excellent description of dipole moments and
polarizabilities. It also improves the accuracy in thermochemis-
try, ionization potentials (IPs), electron affinities (EAs), and
total atomic energies over the most popular and accurate
previous method, B3LYP. We expect that X3LYP will prove
useful for predicting ligand binding in proteins and DNA.

Theory
Because the magnitude of the correlation energy is generally
�10% of the exchange energy, it is most important that the
exchange functional be accurate. In GGA (generalized gradient
approximation), the exchange energy density is defined as

�x
GGA � Ax��

1
3�F�s�. [1]

Here, Ax � �3�4 (3��)1/3, F(s) is the GGA enhancement
factor, and s is a dimensionless gradient (6), defined as

s �
����

�24�2�
1
3�

4
3

. [2]

The B88 (11) and PW91 (6) exchange functionals use the forms

FB88�s� �
1 � s�a2�sinh�1�s�a1� � a3�s2

1 � s�a2�sinh�1�s�a1�
[3]

and

FPW91�s� �
1 � s�a2�sinh�1�s�a1� � �a3 � a4�e�100s

2

�s2

1 � s�a2�sinh�1�s�a1� � a5�sd , [4]

where a1 � (48�2)1/3, a2 � 6��a1, a3 � �a2
2�(21/3Ax)��, a4 �

10�81 � a3, a5 � �a1
4�10�6�(21/3Ax), and d � 4. From fitting

the HF exchange energies of the noble gas atoms, Becke
obtained � � 0.0042 (11).

The plot of the FB88(s) and FPW91 (s) functions in Fig. 1 shows
that these two functions differ significantly for large s, the region
believed to affect significantly the performance of DFT in van
der Waals systems (12, 13). For a system with spherically
symmetric decaying density, i.e.,

lim
r 3 	

��r� � 2�Z3

�
� e�2Zr,
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FB88(s) assures the correct asymptotic behavior of the exchange
energy density (11), i.e.,

lim
r 3 	

�x �
�1
2r

(Condition 1); while Levy and Perdew showed that some scaling
properties can be satisfied if the asymptotic form of the func-
tional for large s is s��, where � � 1�2 (Condition 2) (14). The
Lieb–Oxford bound (12, 15), �x � �1.679 � �(r)1/3, suggests an
upper bound on F(s) (9) (Condition 3).

B88 violates Conditions 2 and 3, whereas the a5�sd term
lets PW91 obey these conditions. However, PW91 violates Con-
dition 1.

With modern DFT codes, most calculations on finite mole-
cules use Gaussian basis functions, leading to a Gaussian-like
long range behavior in the electron density as in Eq. 5.

lim
r 3 	

��r� � 2�2Z
�
�

3
2
e�2Zr2 [5]

The asymptotic limit for the exchange energy density of a finite
system is

lim
r 3 	

�x��� �
1
2

��r�Uc�r�, [6]

where Uc is the Coulomb potential of the exchange charge,
defined as

Uc�r� �
	Ex���

	��r�
� 


1
2� ��r
�

�r 
 r
� d�
. [7]

Inserting Eq. 5 into Eq. 7 leads to Uc (r) � � erf(�2Zr)�r. Since

lim
r 3 	

�erf��2Zr�� � 1,

Condition 1 is fulfilled for a Gaussian-like density.
Combining Eqs. 1 and 6 with Eqs. 5 and 7 gives

FGauss�r� �
�2�5�

1
6 erf��2Zr�

3
4
3�e�

2Zr2

3 ��Zr
. [8]

Using Eq. 5, we can rewrite Eq. 2 as

s�r� �

� 2
9�

�
1
6�Zr

e�
2Zr2

3

. [9]

Eqs. 8 and 9 determine the FGauss(s) for a Gaussian-like asymp-
totic density, which Fig. 1 shows to lies between FB88(s) and
FPW91(s) for s � 1.5, but closer to FB88(s).

As s 3 0, FGauss(s) 3 (25 ��34)1/3 � 1.07466, instead of 1.0
as required to obey the limit within the local density approxi-
mation (LDA). Such a deviation may be expected for finite
systems. Indeed, fitting to the unrestricted Hartree–Fock ener-
gies of the first- and the second-row atoms, Handy et al. (16)
recently developed a local exchange functional, OPTX, that has
an s 3 0 LDA limit of 1.05151.

X3LYP Functional
Based on the FGauss(s) behavior for s � 1.5 as shown in Fig. 1,
we propose an extended exchange functional:

FX�s� � 1 � ax1�FB88�s� 
 1� � ax2�FPW91�s� 
 1� . [10]

Here, we choose to obey the LDA limit as s3 0, as usual in the
GGA framework. We could have allowed a more general form
for FX(s) but found that combining the B88 and PW91 func-
tionals provided sufficient flexibility. We considered that using
well known functions already incorporated into computer codes
could help ease the application of the X3LYP functional.

Combining FX(s) with the LYP correlation functional (17),
leads to XLYP, where the mixing parameters {ax1, ax2} � {0.722,
0.347} were determined through a least-square fitting to the total
energies of 10 atoms {H, He, Li, Be, B, C, N, O, F, Ne}; the IPs
for 16 atoms {Li, Be, B, C, N, O, F, Ne, Na, Mg, Al, Si, P, S, Cl,
Ar}; the EAs for 10 atoms {H, B, C, O, F, Al, Si, P, S, Cl}; and
the atomization energies for 38 molecules {H2, He2, Li2, Be2, C2,
N2, O2, F2, Ne2, Na2, Mg2, Si2, P2, S2, Cl2, CN, CO, CS, NO, SO,
ClO, SiO, ClF, PF, AlF, SiF, CCl, SiCl, NaCl, CH, NH, OH, HF,
CO2, O3, SO3, OCS, CS2}, selected to represent the important
chemistry for the first- and the second-row elements (including
open- and closed-shell molecules; molecules with single, double,
and triple bonds; ionic systems, and systems requiring multiple
determinants for proper descriptions). In particular, we include
He2 and Ne2 as representative van der Waals systems.

All calculations used a pruned (75,434) DFT grid from
JAGUAR (Version 4.0, Schrödinger, Portland, OR). To facilitate
comparisons with literature values, we did not use the
pseudospectral capabilities in JAGUAR. In determining the two
XLYP parameters, we used the aug-cc-pVTZ basis sets (18) for
all calculations. To validate the accuracy against the G2 data set,
all calculations used the 6–311�G (3df, 2p) basis set with
previously reported MP2 molecular geometries and scaled Har-
tree–Fock vibrational frequencies to calculate zero-point ener-
gies and finite-temperature corrections (4, 5, 19). This choice of
geometries and basis sets allows a direct comparison of our
results with previously published data obtained with other
functionals (5, 7, 8, 10). For He2, Ne2, and (H2O)2, we used the
aug-cc-pVTZ basis sets with no f functions. These bond energies
were corrected for BSSE (basis set superposition error). For the
transition metals we used the TZV( f ) basis sets (20).

A big step forward for accurate DFT calculations was the
introduction of hybrid methods (3), particularly the B3LYP,
which uses the VWN functional III (21) based on correlation of
the homogeneous electron gas in the random phase approxima-
tion, the Lee–Yang–Parr (17) correlation functional, plus a
hybrid exchange functional of three terms: a portion of exact

Fig. 1. The GGA enhancement factors: FB88(s), FPW91(s) FGauss(s), and FX(s).
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exchange, Slater local exchange, and the nonlocal gradient
correction of Becke88. Thus,

Exc
B3LYP � a0Ex

exact � �1 
 a0�Ex
Slater � ax
Ex

B88 � acEc
VWN

� �1 
 ac�Ec
LYP. [11]

Becke obtained the hybrid parameters {a0, ax, ac} � {0.20, 0.72,
0.19} (3) from a least-squares fit to 56 atomization energies, 42
IPs, and 8 proton affinities (PAs) of the G2-1 set of atoms and
molecules (4). B3LYP leads to excellent thermochemistry (0.13
eV MAD) and structures for covalently systems but does not
account for London dispersion (all noble gas dimers are pre-
dicted unstable).

Following B3LYP, we introduce the extended hybrid func-
tional, denoted as X3LYP:

Exc
X3LYP � a0Ex

exact � �1 
 a0�Ex
Slater � ax
Ex

X � acEc
VWN

� �1 
 ac�Ec
LYP. [12]

We determined the hybrid parameters {a0, ax, ac} � {0.218,
0.709, 0.129} in X3LYP just as for XLYP. Thus, we normalized
the mixing parameters of Eq. 10 and redetermined {ax1, ax2} �
{0.765, 0.235} for X3LYP. The FX(s) function of X3LYP (Fig.
1) agrees with FGauss(s) for larger s.

Results and Discussion
We tested the accuracy of XLYP and X3LYP for a broad range
of systems and properties not used in fitting the parameters.
Table 1 compares the overall performance of 17 different flavors
of DFT methods, showing that X3LYP is the best or nearly best

Table 1. MADs (all energies in eV) for various level of theory for the extended G2 set

Method

G2(MAD)

H-Ne, Etot TM 
E He2, 
E(Re) Ne2, 
E(Re) (H2O)2, De(RO . . . O)
Hf IP EA PA

HF 6.47 1.036 1.158 0.15 4.49 1.09 Unbound Unbound 0.161 (3.048)
G2 or best ab initio 0.07a 0.053b 0.057b 0.05b 1.59c 0.19d 0.0011 (2.993)e 0.0043 (3.125)e 0.218 (2.912)f

LDA (SVWN) 3.94a 0.665 0.749 0.27 6.67 0.54g 0.0109 (2.377) 0.0231 (2.595) 0.391 (2.710)
GGA

BP86 0.88a 0.175 0.212 0.05 0.19 0.46 Unbound Unbound 0.194 (2.889)
BLYP 0.31a 0.187 0.106 0.08 0.19 0.37g Unbound Unbound 0.181 (2.952)
BPW91 0.34a 0.163 0.094 0.05 0.16 0.60 Unbound Unbound 0.156 (2.946)
PW91PW91 0.77 0.164 0.141 0.06 0.35 0.52 0.0100 (2.645) 0.0137 (3.016) 0.235 (2.886)
mPWPWh 0.65 0.161 0.122 0.05 0.16 0.38 0.0052 (2.823) 0.0076 (3.178) 0.194 (2.911)
PBEPBEi 0.74i 0.156 0.101 0.06 1.25 0.34 0.0032 (2.752) 0.0048 (3.097) 0.222 (2.899)
XLYPj 0.33 0.186 0.117 0.09 0.95 0.24 0.0010 (2.805) 0.0030 (3.126) 0.192 (2.953)

Hybrid methods
BH & HLYPk 0.94 0.207 0.247 0.07 0.08 0.72 Unbound Unbound 0.214 (2.905)
B3P86l 0.78a 0.636 0.593 0.03 2.80 0.34 Unbound Unbound 0.206 (2.878)
B3LYPm 0.13a 0.168 0.103 0.06 0.38 0.25g Unbound Unbound 0.198 (2.926)
B3PW91n 0.15a 0.161 0.100 0.03 0.24 0.38 Unbound Unbound 0.175 (2.923)
PW1PWo 0.23 0.160 0.114 0.04 0.30 0.30 0.0066 (2.660) 0.0095 (3.003) 0.227 (2.884)
mPW1PWp 0.17 0.160 0.118 0.04 0.16 0.31 0.0020 (3.052) 0.0023 (3.254) 0.199 (2.898)
PBE1PBEq 0.21i 0.162 0.126 0.04 1.09 0.30 0.0018 (2.818) 0.0026 (3.118) 0.216 (2.896)
O3LYPr 0.18 0.139 0.107 0.05 0.06 0.49 0.0031 (2.860) 0.0047 (3.225) 0.139 (3.095)
X3LYPs 0.12 0.154 0.087 0.07 0.11 0.22 0.0010 (2.726) 0.0028 (2.904) 0.216 (2.908)
Experimental — — — — — — 0.0010 (2.970)t 0.0036 (3.091)t 0.236u (2.948)v


Hf, heat of formation at 298 K; PA, proton affinity; Etot, total energies (H-Ne); TM 
E, s to d excitation energy of nine first-row transition metal atoms and
nine positive ions. Bonding properties [
E or De in eV and (Re) in Å] are given for He2, Ne2, and (H2O)2. The best DFT results are in boldface, as are the most accurate
answers [experiment except for (H2O)2].
aRef. 5.
bRef. 19.
cRef. 4.
dRef. 35.
eRef. 38.
fRef. 34.
gRef. 37.
hRef. 7.
iRef. 10.
j1.0 Ex (Slater) � 0.722 
Ex (B88) � 0.347 
Ex (PW91) � 1.0 Ec (LYP).
k0.5 Ex (HF) � 0.5 Ex (Slater) � 0.5 
Ex (B88) � 1.0 Ec (LYP).
l0.20 Ex (HF) � 0.80 Ex (Slater) � 0.72 
Ex (B88) � 1.0 Ec (VWN) � 0.81 
Ec (P86).
m0.20 Ex (HF) � 0.80 Ex (Slater) � 0.72 
Ex (B88) � 0.19 Ec (VWN) � 0.81 Ec (LYP).
n0.20 Ex (HF) � 0.80 Ex (Slater) � 0.72 
Ex (B88) � 1.0 Ec (PW91, local) � 0.81 
Ec (PW91, nonlocal).
o0.25 Ex (HF) � 0.75 Ex (Slater) � 0.75 
Ex (PW91) � 1.0 Ec (PW91).
p0.25 Ex (HF) � 0.75 Ex (Slater) � 0.75 
Ex (mPW) � 1.0 Ec (PW91).
q0.25 Ex (HF) � 0.75 Ex (Slater) � 0.75 
Ex (PBE) � 1.0 Ec (PW91, local) � 1.0 
Ec (PBE, nonlocal).
r0.1161 Ex (HF) � 0.9262 Ex (Slater) � 0.8133 
Ex (OPTX) � 0.19 Ec (VWN5) � 0.81 Ec (LYP).
s0.218 Ex (HF) � 0.782 Ex (Slater) � 0.542 
Ex (B88) � 0.167 
Ex (PW91) � 0.129 Ec (VWN) � 0.871 Ec (LYP).
tRef. 27.
uRef. 33.
vRef. 32.

Xu and Goddard PNAS � March 2, 2004 � vol. 101 � no. 9 � 2675

CH
EM

IS
TR

Y



for essentially all properties, leading to an acceptable accuracy
for each. A few comments follow.

Heats of Formation (�Hf). To provide a good test of the functionals
for the covalent systems, we calculated the heats of formation for
the 148 molecules of the extended G2 set (4, 5). X3LYP leads to
MAD � 0.12 eV, which is the best DFT result. Other good results
include B3LYP (MAD � 0.13 eV) (5), B3PW91 (MAD � 0.15
eV) (5), mPW1PW (MAD � 0.17) (7), and PBE1PBE (MAD �
0.21 eV) (10). All other methods lead to unacceptable errors.
Table 1 makes it clear that hybrid methods dramatically improve
the thermochemistry over pure GGAs. For example, PBEPBE
(MAD: 0.74) compares to PBE1PBE (MAD: 0.21) (8,10); BLYP
(MAD � 0.31) versus B3LYP (MAD � 0.13) (5) and XLYP
(MAD � 0.33) versus X3LYP (MAD � 0.12). We should point
out that the G2 energies quoted here (MAD � 0.07) include the
empirical ‘‘higher-order correction’’ to the total energy. Without
this correction, the MAD for G2-1 would have been 1.03 eV for
MP2 and 0.50 eV for CCSD[T], partially limited by the use of a
smaller basis set (7, 8).

Ionization Potential (IP). IPs (and EAs) are calculated as the total
energy differences between the neutral and the corresponding
ionic systems. GGAs generally dramatically improve the predic-
tions of IPs of LDA (MAD � 0.67 eV) (19), suggesting that
cations are more inhomogeneous than neutral systems. How-
ever, including exact exchange is not important for IP. Most
GGA methods give a MAD over the 42 cases in G2 (19) lower
than 0.2 eV, with O3LYP (16, 22) lowest at 0.139. X3LYP is the
second best, giving MAD � 0.154.

Electron Affinity (EA). There is some debate in the literature
concerning whether DFT methods are suitable for calculating
EAs (10, 23, 24). Because the ‘‘self-interaction error’’ shifts the
Kohn–Sham orbital energies upwards, the anion often has a
positive (unstable) highest occupied orbital energy (this cannot
ionize because of the finite size of the basis functions). In any
case the numerical results lead to predicted EAs with accuracy
comparable to the IPs (19). Thus, over the total 25 systems in G2
(19) we obtain MADs of 0.10 eV (B3LYP), 0.13 (PBE1PBE),
and 0.09 (X3LYP). Again, inclusion of exact exchange does not
improve the performance over the corresponding pure DFT
methods.

Proton Affinity (PA). Adding a proton to a neutral molecule leads
to a significant change in the density, making it more inhomo-
geneous. Thus, Table 1 shows that the proton affinities (PAs)
over eight systems in G2 (19) are systematically underestimated
by LDA (MAD � 0.27 eV). GGAs reduce the LDA errors
significantly. B3P86 and B3PW91 (MAD � 0.03 eV) show the
best performance, while B3LYP, PBE1PBE, and X3LYP lead to
MAD � 0.06, 0.04 (10), and 0.07 eV, respectively.

Total Energies (Etot). We considered the total energies for the first
10 atoms (H to Ne). Comparing to the experimental values (25,
26), LDA (SVWN) leads to significant error (MAD � 6.67 eV),
which is dramatically reduced by most GGAs. X3LYP gives good
result (MAD � 0.11 eV), which can be compared to B3LYP
(MAD � 0.38) and PBE1PBE (MAD � 1.09). O3LYP is the
best, leading to MAD � 0.06.

Bonding Properties of Rare-Gas Dimers. Rare-gas dimers provide
the least ambiguous tests for the accuracy in describing van der
Waals attraction (London dispersion forces). As summarized in
Table 1, we calculated the equilibrium distance and bond energy
of He2 and Ne2 as probes of the accuracy for van der Waals
systems (27).

LDA leads to significant overbinding (by 12 times for He2,
with a bond too short by 0.6 Å).

Although B88 exchange is very successful in describing cova-
lent bonds, it fails dramatically for London interactions (28, 29).
Thus, every DFT method using the B88 exchange functional
(pure or hybrid, with and without correlation) leads to unbound
rare-gas dimers, far more unbound than HF.

On the other hand, every DFT method using the PW91
exchange functional severely overbinds rare-gas dimers, even
when the correlation functional is omitted. To ameliorate this
problem, Adamo and Barone modified PW91 (7) by fitting the
differential exchange energies of rare-gas dimers to HF values,
removing some of the overbinding tendency of PW91. The PBE
functional gives an overall good description of rare-gas dimers.

The van der Waals (London) attraction between rare-gas
atoms arises entirely from electron correlation (the instanta-
neous interaction between fluctuating dipoles). Thus, HF wave-
functions give a purely repulsive interaction for all interatomic
distances and we expect that exchange-only potentials should
also give this behavior. However, we found that the PW91,
mPW91, and PBE exchange-only potentials lead to erratic
minima, as do the corresponding hybrid models.

We conclude that X3LYP provides the best description of
London forces because coupled with the LYP correlation term
its gives a good description of bonding for He2 and Ne2 while
without correlation, the exchange-only (X or X3) potential is
repulsive and close to the Hartree–Fock curve. Because the
London forces of He and Ne are described well, we expect a good
description of the London forces between electron pairs involv-
ing the first 10 atoms of the periodic table.

Note that in describing the dispersion forces, we are concerned
with distances near the equilibrium configuration for van der
Waals complexes, which tend to be in the range from 2.5 to 4 Å.
It is at much larger distances before the neglect of overlap
between the atomic distances leads to the classic 1�r6 London
potential (30, 31).

Bonding Properties of Water Dimer. Hydrogen bonding plays a
critical role in a wide range of chemical and biological phenom-
ena. Consequently, water dimer, the prototypical hydrogen
bonded system, has been studied thoroughly experimentally and
theoretically (32–34). The floppiness of (H2O)2 has made ex-
perimental determinations of re and De difficult. Microwave
measurements of the rotational moments lead to a vibrationally
averaged O . . . O distance of R0 � 2.976 Å, from which it was
estimated that Re � 2.946 Å (32). The most widely accepted
experimental bond energy of De � 0.23 � 0.03 eV (33) was based
on measurements of the thermal conductivity of water vapor
followed by relatively complex interpretation including an esti-
mate of the zero-point energy calculated at the HF�4–21G
level (33).

Fortunately, highly accurate values for the equilibrium geom-
etry and dissociation energy of (H2O)2 have been determined
computationally (34). These ab initio CCSD(T) (Full) studies
used a 275 basis function interaction optimized basis set extrap-
olated to infinity, leading to re(O . . . O) � 2.912 � 0.005 Å and
De � 0.218 � 0.004 eV (34). We conclude that the ab initio values
(34) provide the most reliable data.

All DFT methods that include GGA give H bond energies
within 0.04 eV of De � 0.218 eV and bond distances within 0.04
Å of re � 2.912 Å (34). This may seem adequate, but for
biological applications, greater accuracy is highly desired. The
best accuracy is given by PBE1PBE and X3LYP, which lead to
binding energy errors of 0.002 eV and bond distance errors of
0.016 Å (PBE1PBE) and 0.004 Å (X3LYP). We should empha-
size here that (H2O)2 was not included in the training set for
these functionals, indicating that physics of hydrogen bonding is
correctly described.
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Electrostatics. Electrostatic interactions are quite important in
the bonding of ligands to proteins and DNA in determining
differential solvation also important in binding. To assess the
accuracy for charge distributions from various DFT methods, we
calculated the dipole moments for 70 molecules for which
accurate values are available. HF generally overestimates the
magnitude of dipole moments (MAD � 0.242 Debye), but all
DFT methods lead to substantial improvement (e.g., MAD
errors are: B3LYP, 0.083; PW1PW, 0.088; PBE1PBE, 0.084; and
X3LYP, 0.088). These results were not used in optimizing the
parameters.

In addition, the polarizabilities of atoms and molecules are
expected to be important in electrostatic and solvation interac-
tions. For the seven molecules for which we could find accurate
experimental polarizabilities, the accuracies (MAD in au) for
various DFT methods are as follows: B3LYP, 0.16; PW1PW,
0.35; PBE1PBE, 0.32; and X3LYP, 0.19. These results were not
used in optimizing the parameters.

Spin States of Transition Metals. Many important biological sys-
tems involve metal atoms in various spin and oxidation states.
For example, the various steps of detoxifying foreign molecules
by cytochrome P450s involves high-spin FeIII, high-spin FeII, and
low-spin FeII. Consequently, it is important that the excitation
energies and IPs be properly described (35, 36). We considered
the nine transition metal atoms Sc–Cu and calculated the dns2 to
dn�1s1 excitation energy of the neutral atom and the dns1 to
dn�1s0 (n � 1–9) excitation energy of the cation for various DFT
functionals. Table 1 shows that X3LYP does quite well with a
MAD of 0.22 eV, as compared to B3LYP (0.25) (37) and
PBE1PBE (0.30). These results were not used in optimizing the
parameters.

Summary
We deduce the form for the exact exchange energy density to
describe a density decaying as a Gaussian at long range. We find

that FGauss(s) lies between FB88(s) and FPW91(s), serving as the
basis for the extended functional, FX, which is described a linear
combination of FPW91 (with a sound physical basis) with FB88

(which in B3LYP does best for thermochemistry but badly for
London forces). Optimizing the four parameters [using the
atomization energies of a small set (37) of diatomic and triatomic
molecules along with atomic energies or IPs and EAs of the first
18 atoms] leads to the X3LYP functional with excellent accuracy
for thermochemistry (heats of formation, IPs, EAs, proton
affinities, and total atomic energies), a good description of
London dispersion, an excellent description of hydrogen bond
interactions, and excellent energetics for the spin states of
transition metals. Thus, we recommend the use of X3LYP for
application to a wide range of chemical, biological, and materials
systems. X3LYP should also form a good starting point for
continuing attempts to develop improved functionals for ex-
change and for correlation.
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ed. von Ragué Schleyer, P. (Wiley, Chichester, U.K.).
38. Burda, J. V., Zahradnik, R., Hobza, P. & Urban, M. (1996) Mol. Phys. 89,

425–432.

Xu and Goddard PNAS � March 2, 2004 � vol. 101 � no. 9 � 2677

CH
EM

IS
TR

Y


