Skip to main content
. Author manuscript; available in PMC: 2013 Aug 13.
Published in final edited form as: Prev Sci. 2011 Sep;12(3):289–299. doi: 10.1007/s11121-011-0213-x

Table 2.

Choosing the Number of Classes: Growth Mixture Modeling Information Criteria

Classes Parameters BIC ABIC Entropy LMR LRT BLRT
1 11 5959.32 5924.46
2 15 5921.11 5873.57 0.838 0.011 0.000
3 19 5885.84 5825.63 0.860 0.042 0.000
4 23 5892.29 5819.41 0.836 0.745 0.040
5* 27 5885.74 5800.18 0.839 0.089 0.000
*

Contains small class (< 5% of the sample): signifies unstable classification

BIC = Bayesian Information Criterion: lower values are better

ABIC = Sample-size Adjusted BIC: lower values are better

Entropy: measure of classification; ranges 0.00–1.00, with values closer to 1.00 being best

LMR LRT = Lo Mendell Rubenstein Likelihood Ratio Test p-value; want p<0.05

BLRT = Bootstrapped Likelihood Ratio Test p-value; want p<0.05