

NIH Public Access

Author Manuscript

Infect Genet Evol. Author manuscript; available in PMC 2013 August 13.

Published in final edited form as:

Infect Genet Evol. 2010 December; 10(8): 1282–1285. doi:10.1016/j.meegid.2010.07.021.

Further evidence of constrained radiation in the evolution of pathogenic *Escherichia coli* O157:H7

Shana R. Leopold, Nurmohammad Shaikh, and Phillip I. Tarr

Washington University School of Medicine, Department of Pediatrics, 660 South Euclid Avenue, Saint Louis, Missouri, 63110, USA

Abstract

*Escherichia coli*O157:H7 is a human pathogen that has emerged from its less pathogenic progenitor, *E. coli*O55:H7, to form the EHEC 1 clade. In its emergence, *E. coli*O157:H7 formed three distinct clusters, each of which exists today. Sequencing and SNP analysis of Cluster 1 of this clade demonstrated constrained radiation from the cluster founder. Here we investigated the diversity of Cluster 2 strains by sequencing signature SNPs in six strains collected throughout Washington State. Our results suggest that successful Cluster 2 strains have radiated on only two branches from their founder; one of these two branches leads to Cluster 3. Constrained radiation appears to be a common theme among this pathogenic clade.

Keywords

Escherichia coli O157:H7; SNPs; Evolution

INTRODUCTION

Extant pathogenic Escherichia coli O157:H7 belong to three sequentially emerged clusters (Shaikh and Tarr, 2003; Shaikh, et al., 2007; Leopold, et al., 2009) and are members of the well-characterized EHEC 1 clade. Recently we analyzed backbones of representative E. coli O157:H7 and other members of the EHEC 1 clade (the probable progenitor, E. coli O55:H7, and sorbitol fermenting E. coli O157:H⁻) to precisely characterize this descent (Leopold, et al., 2009). Our analysis demonstrated that Cluster 1 O157:H7 exhibit constrained and highly non-random radiation from a postulated cluster founder. Cluster 1's age and many available isolates from around the world particularly enabled us to localize wild-type E. coli O157:H7 to one of only two branches emanating from the Founder with reasonable confidence within this cluster. Cluster 3, which is the most recently emerged E. coli O157:H7 cluster, is also well represented in strain set collections. We sampled intra-cluster (radial) synonymous SNPs in six Cluster 3 E. coli O157:H7, and determined that many of these mutations were shared, suggesting that the concept of constrained radiation applies to that cluster, too. Our study did not address the concept of constrained radiation within Cluster 2 because isolates belonging to this cluster are under-represented among strain sets. However, radiation from a founder was demonstrated for one of its members, strain 86-24, and six of strain 86-24's

^{© 2010} Published by Elsevier B.V.

Corresponding Author: Phillip I. Tarr, Washington University School of Medicine, Department of Pediatrics, 660 South Euclid Avenue, Box 8208, Saint Louis, MO 63110, USA, Tarr@wustl.edu, Fax: 314-286-2895.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

radial SNPs were also found in strain 87-23, a non-toxigenic *E. coli* O157:H7 Cluster 2 isolate (Tarr, et al., 1989; Békássy et al., in press). This result was expected because strains 86-24 and 87-23 were each recovered from patients infected during the same outbreak in the same city (Tarr, et al., 1989). Here, we study a larger collection of Cluster 2 *E. coli* O157:H7 to determine if there is evidence for constrained radiation in these organisms, too.

MATERIALS AND METHODS

We studied all Cluster 2 *E. coli* O157:H7 in our collection. Six were from Washington State, collected over a span of nearly two decades (Table 1). To determine if these strains radiated in a constrained pattern from their founder, we used all 14 synonymous and 18 nonsynonymous radial SNPs that are present in the chromosomal backbone of strain 86-24 but not in any other *E. coli* O157:H7 (strain 86-24 was the only Cluster 2 strain sequenced by us in the initial communication) (Table 2).

Each strain was verified as a Cluster 2 strain according to a set of characteristic Shiga toxin bacteriophage insertion sites as well as a FimH polymorphism (Table 3). PCR amplification was performed using primer pairs as described (Shaikh, et al., 2007).

Primer pairs were designed to span each of these 32 SNPs using strain 86-24 as a reference (Table 1). DNA flanking and including each SNP was PCR amplified and Sanger sequenced. Additionally, primer pairs were designed to span all 11 linear SNPs (six synonymous and five nonsynonymous) that were identified lead to Cluster 3 strains, using strain O157 Sakai as a reference (Tables 1 and 2) (Leopold, et al., 2009).

The resulting sequence data at the sites that contained radial or linear SNPs were overlaid on the previously determined Cluster 2 topology.

RESULTS AND DISCUSSION

Strain 86-28, isolated in the same year and state as strains 86-24 and strain 87-23, appears isogenic with these two Cluster 2 strains, in that it possesses the variant nucleotides at all 32 radial sites. Strain 86-17 possess 21 of the 32 radial SNPs. Strain 87-07 possesses 20 of 31 radial SNPs (one nonsynonymous SNP site did not PCR amplify, despite repeated attempts). Both strains had ancestral nucleotides at the remaining five synonymous and five nonsynonymous SNP sites. (Table 2)

Three strains Cluster 2 strains (defined by toxin genotyping, bacteriophage insertion sites, and FimH polymorphisms), EK15, EK28, and U-39, possess the ancestral version (the nucleotide designation shared by all other EHEC 1 strains as determined in a previous study, Leopold, et al., 2009) of the SNPs at all 32 interrogated sites (i.e., they had none of the radial SNPs identified in strain 86-24). To determine if strains EK15, EK28, and U-39 are offshoots of the branch leading from Cluster 2 to the Founder of Cluster 3, we sequenced all 11 "linear" SNPs between the founders of Clusters 2 and 3 (Leopold, et al., 2009). EK29 possesses six of these 11 SNPs, and EK15 and U39 possess 10 of these 11 linear SNPs (Figure 1, Table 2). The SNPs that define the intra-cluster 2 topology are listed in Table 4.

Though this study interrogated all members of this group in our collection, the number of Cluster 2 isolates we analyzed is small. For this reason, we cannot state with complete confidence that we have determined the degree of constraint of radiation from a founder within Cluster 2, and anticipate extended analysis as additional Cluster 2 isolates are identified. Nonetheless, the data from these isolates are consistent with a pattern of constrained radiation that was observed previously in Cluster 1, and was suggested in Cluster 3 (Leopold, et al., 2009). Logically, we would have expected a much greater

Infect Genet Evol. Author manuscript; available in PMC 2013 August 13.

diversity of backbone SNPs among unrelated extant pathogens, but instead we found that all strains could be categorized into two main branches, one containing five of the strains interrogated and another leading to Cluster 3.

Our work has additional implications. The putative isogenicity of strains 86-28, 86-24 and 87-23 is consistent with a deduced statewide outbreak of O157:H7 infections in Washington State in the mid 1980's caused by an organism resembling strain 86-24 (Ostroff, et al., 1990). The overall paucity of Cluster 2 isolates in our collection is also noteworthy. It is possible that the viability of this pathogenic set of *E. coli* O157:H7 is limited, and that this subgroup is becoming extinct. Strain 86-24 has been used in many pathogenesis experiments, and in view of the rarity of members of its subgroup in human collections, it is not clear that this isolate is a good representative of pathogenic *E. coli* O157:H7. It is also interesting to note only two time clusters ("blooms") of Cluster 2 of *E. coli* O157 in the State of Washington since our collecting began in 1984: the first consisted of strains 86-17, 86-24, 86-28, 87-07, and 87-23 (which radiated on one branch from the Cluster 2 Founder and which were recovered in the mid 1980's); the second consisted of strains EK15, EK28, and U39, each of which is on, or an offshoot of, the branch leading to Cluster 3, and which were recovered over a decade later.

In summary, Cluster 2 *E. coli* O157:H7 portray limited radiation from the Cluster founder. The cluster's limited SNP repertoire also strengthens our conclusion, and the conclusion of others (Holt, et al., 2008), that bacterial pathogens have small effective population sizes, and that their survival is highly fortuitous. The rarity of Cluster 2 *E. coli* O157:H7 suggests that they might not be as viable as the more mature and widely disseminated Cluster 1 O157:H7.

Acknowledgments

We are grateful to the late Thomas Whittam for helpful discussions on bacterial evolution that formed the basis for our study. This work was supported by National Institutes of Health Grants AI47499, R56AI063282, and DK52081 (to P.I.T.); 5P30 DK052574 (to Washington University Digestive Diseases Research Core Center Biobank); and 5T32AI007172 (to S.R.L.).

References

- Cornick NA, Jelacic S, Ciol MA, Tarr PI. *Escherichia coli* O157:H7 infections: discordance between filterable fecal Shiga toxin and disease outcome. J Infect Dis. 2002; 186:57–63. [PubMed: 12089662]
- Griffin PM, Ostroff SM, Tauxe RV, Greene KD, Wells JG, Lewis JH, Blake PA. Illnesses associated with *Escherichia coli* O157:H7 infections. A broad clinical spectrum. Ann Intern Med. 1988; 109:705–712. [PubMed: 3056169]
- Hayashi T, Makino K, Ohnishi M, Kurokawa K, Ishii K, Yokoyama K, Han CG, Ohtsubo E, Nakayama K, Murata T, Tanaka M, Tobe T, Iida T, Takami H, Honda T, Sasakawa C, Ogasawara N, Yasunaga T, Kuhara S, Shiba T, Hattori M, Shinagawa H. Complete genome sequence of enterohemorrhagic *Escherichia coli* O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res. 2001; 8:11–22. [PubMed: 11258796]
- Holt KE, Parkhill J, Mazzoni CJ, Roumagnac P, Weill FX, Goodhead I, Rance R, Baker S, Maskell DJ, Wain J, Dolecek C, Achtman M, Dougan G. High-throughput sequencing provides insights into genome variation and evolution in *Salmonella* Typhi. Nat Genet. 2008; 40:987–993. [PubMed: 18660809]
- Klein EJ, Stapp JR, Clausen CR, Boster DR, Wells JG, Qin X, Swerdlow DL, Tarr PI. Shiga toxinproducing *Escherichia coli* in children with diarrhea: a prospective point-of-care study. J Pediatr. 2002; 141:172–177. [PubMed: 12183710]
- Leopold SR, Magrini V, Holt NJ, Shaikh N, Mardis ER, Cagno J, Ogura Y, Iguchi A, Hayashi T, Mellmann A, Karch H, Besser TE, Sawyer SA, Whittam TS, Tarr PI. A precise reconstruction of

Infect Genet Evol. Author manuscript; available in PMC 2013 August 13.

the emergence and constrained radiations of *Escherichia coli* O157 portrayed by backbone concatenomic analysis. Proc Natl Acad Sci U S A. 2009; 106:8713–8718. [PubMed: 19439656]

- Ostroff SM, Griffin PM, Tauxe RV, Shipman LD, Greene KD, Wells JG, Lewis JH, Blake PA, Kobayashi JM. A statewide outbreak of *Escherichia coli* O157:H7 infections in Washington State. Am J Epidemiol. 1990; 132:239–247. [PubMed: 2196790]
- Shaikh N, Holt NJ, Johnson JR, Tarr PI. Fim operon variation in the emergence of Enterohemorrhagic *Escherichia coli:* an evolutionary and functional analysis. FEMS Microbiol Lett. 2007; 273:58–63. [PubMed: 17559392]
- Shaikh N, Tarr PI. Escherichia coli O157:H7 Shiga toxin-encoding bacteriophages: integrations, excisions, truncations, and evolutionary implications. J Bacteriol. 2003; 185:3596–3605. [PubMed: 12775697]
- Tarr PI, Neill MA, Clausen CR, Newland JW, Neill RJ, Moseley SL. Genotypic variation in pathogenic *Escherichia coli* O157:H7 isolated from patients in Washington, 1984–1987. J Infect Dis. 1989; 159:344–347. [PubMed: 2644374]

Figure 1. Cluster 2 model of radiation from cluster founder

Blue circle outlines the boundaries of bacteria belonging to Cluster 2. The red oval depicts the postulated Founder of Cluster 2 and the white oval is a bacterium on the path evolving to Cluster 3. Numeric key refers to each *E. coli* strain analyzed in this study. The green oval represents the position of strains 6 and 7, which are phylogenetically on, or slightly divergent from, the branch leading from Cluster 2 to Cluster 3. Leopold et al. (2009) Figures 1 and S1 describe an expanded version of the EHEC 1 clade lineage.

-
~
- T
.0
$\mathbf{\Sigma}$
~
<u> </u>
5
-
0
\simeq

-
<
5
<u>u</u>
-
=
<u> </u>
0
č
0
 .
-
9
-

Table 1

Leopold et al.

Strains used in this study.

Strain	Cluster	Place	Year	Source	Reference	Role in Study
86-17	2	Isolated Washington	Isolated 1986	Human, Apparent Sporadic Isolate	(Tarr, et al., 1989)	9 of 14 synonymous and 12 of 18 nonsynonymous radial SNPs shared with 86-24
86-24	2	Walla Walla, Washington	1986	Human, Outbreak Isolate	(Griffin, et al., 1988; Tarr, et al., 1989)	Pyrosequenced (GS20)
86-28	2	Washington	1986	Human, Apparent Sporadic Isolate	(Tarr, et al., 1989)	14 of 14 synonymous and 18 of 18 nonsynonymous radial SNPs shared with 86-24
87-07	2	Washington	1987	Human, Apparent Sporadic Isolate	(Tarr, et al., 1989)	9 of 14 synonymous and 11 of 17 nonsynonymous [*] radial SNPs shared with 86-24
87-23	2	Walla Walla, Washington	1986	Human, Outbreak Isolate	(Tarr, et al., 1989)	14 of 14 synonymous and 18 of 18 nonsynonymous radial SNPs shared with 86-24
EK15	2	Seattle, Washington	1999	Human, Emergency Dept. Isolate	(Klein, et al., 2002)	0 of 32 radial SNPs shared with 86-24 10 of 11 linear SNPs shared with O157 Sakai
U39	2	Yakima, Washington	2000	Child, Region- Wide HUS Study	(Cornick, et al., 2002)	0 of 32 radial SNPs shared with 86-24 10 of 11 linear SNPs shared with O157 Sakai
EK28	2	Seattle, Washington	2000	Human, Emergency Dept. Isolate	(Klein, et al., 2002)	0 of 32 radial SNPs shared with 86-24 7 of 11 linear SNPs shared with O157 Sakai
O157 Sakai	3	Sakai, Japan	1996	Human, Outbreak Isolate	(Hayashi, et al., 2001)	Published Genome
* SNP site 2392	826 did nc	ot amplify by PCR in this strain	1. This site was 1	not included.		

Table 2

SNP Characteristics and Primers

SNP locations (based upon O157 Sakai chromosome), amino acid change, and SNP type are listed. The corresponding bases as determined by sequencing are listed for each strain and are color-coded to denote the ancestral (blue) or variant (orange for radial SNPs, green for linear SNPs) designation. An 'X' at strain 87-07's site 2392896 indicates our inability to amplify by PCR at this site. Primers used for PCR amplification of the each SNP are reported.

Location	Amino Acid Change	SNP Type	86-17	86-24	86-28	87-07	87-23	U-39	EK15	EK28	0157 Sakai	Forward Primer	Reverse Primer
3798	Synonymous	Radial	G	Г	Т	G	Г	G	G	G	G	AATGAGCAGGTCAGCTTTGC	GACATCGCTTTCAACATTGG
5058	Synonymous	Radial	Т	Т	Т	Т	Т	Α	Α	Α	Α	TTCTTCGGTACGTTTGAGCA	TCATCAACCTCCATCAGTGC
7958 <u>8</u>	Synonymous	Radial	Т	Т	Т	Т	Т	С	С	С	С	ATGGTCAACATTCCCTGCAC	GGAGTCTGCGTGTGCAAATA
1098322	Synonymous	Radial	Т	Т	Т	Т	Т	С	С	C	С	TTGTCGTGGTTGGTAATCTCACC	TGACGATTACCGCATCAACTGAC
1894260	Synonymous	Radial	А	А	А	А	А	Т	Т	Т	Т	CGCCTGTTCAAGCTGGTATT	GGCGTAAAGATATCCGGTCA
19772¥1	Synonymous	Radial	Т	Т	Т	Т	Т	G	G	G	G	CCATCACTACCAAGGCCATAA	TGAAGAAGTGGTTGATGAATTGC
2388580	Synonymous	Radial	С	Т	Т	С	Т	С	С	C	С	ATGGTGAAGATAAGCGACTGTTGG	TTGCCGCTGGTCTGATAGATG
2436189	Synonymous	Radial	Α	Α	А	А	А	G	G	G	G	GGCGCACAACTGACATTTATC	GGTTAAAGGTCAGCGACAGG
2984954	Synonymous	Radial	С	Α	Α	С	А	С	С	C	С	AAAATGGCTCCTTGTTGTGG	TGGTTGAAGCCTTTCGTAGG
4258144	Synonymous	Radial	Ð	G	Ð	G	G	Α	Α	А	Α	CCCTGAAATTTGACCTGCTG	CCATGGAACAACCGTTACAG
4259 1554	Synonymous	Radial	Ð	Ð	Ð	Ð	Ð	Α	A	Α	Α	GGTTTACCGTTGGTTTTGC	AATCAGCGTAGCCATTACCG
5153058	Synonymous	Radial	С	Т	Т	С	Т	С	С	С	С	ATGACGCCTGAACATACCAGC	TACTATACGGAAGCCACAGTCGG
52341 3 0	Synonymous	Radial	А	Α	А	Α	А	С	С	С	С	TCAATGCTGAACCACACAGC	GTTTGGCCTGAACCCAGAGT
53910 B	Synonymous	Radial	С	А	А	С	А	С	С	С	С	AAAATGGCTCCTTGTTGTGG	TGGTTGAAGCCTTTCGTAGG
3047£	Nonsynonymous	Radial	Т	Т	Т	Т	Т	С	С	С	С	ACGCTAAAACTCGACGATGG	ATGCTGATAGCGCGGGTCTAC
7930 <u>8</u>	Nonsynonymous	Radial	Т	Α	А	Т	А	Т	Т	Т	Т	ATATCGCGGGTACGACAGAG	AAAGGTGAAAGCGATCTGG
5714728	Nonsynonymous	Radial	А	G	Ð	А	G	Α	Α	Α	Α	TGATTCAGGAGCTGCAACAG	CACCGGAATCAGCTGGTAGT
1330848	Nonsynonymous	Radial	А	А	А	Α	А	G	G	G	G	CCGCCAACAATCCACATAAT	CATCCCTCAGGCTAAAGACAA
1480429	Nonsynonymous	Radial	С	С	С	С	С	Т	Т	Т	Т	ATTCGAGGTTCAATGCGTTT	GCGAATTGAAGTCACCATAGC
1492372	Nonsynonymous	Radial	А	Ð	Ð	Α	G	Α	Α	Α	А	ATGCAGATCAACCTGAATTCCAGC	AGCAGTTGGGTTTGTTCGTTG
2392896	Nonsynonymous	Radial	А	Α	А	х	А	Т	Т	Т	Α	GCAATGTGTGGTTGAGATCG	TGCATCGTGCCTATCTTTCA
2422218	Nonsynonymous	Radial	А	А	А	А	А	Т	Т	Т	Α	CGCAGATTAATGCTGAAGAGG	TTAGTGAAGAATCCGGTAATGG
3006720	Nonsynonymous	Radial	А	Α	А	Α	А	С	С	С	Α	ATACACAAGCTTTGCGAGTAAC	AAGAGTTGTGTGGCTTCTTGC
3714794	Nonsynonymous	Radial	Α	Α	А	А	А	G	G	G	А	TTCAACGCGTTAGAGAACAATC	AATGCAGCGCAAAGAATAGA

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Location	Amino Acid Change	SNP Type	86-17	86-24	86-28	87-07	87-23	U-39 F	K15 I	EK28	0157 Sakai	Forward Primer	Reverse Primer
4007883	Nonsynonymous	Radial	г	С	С	г	C	Т	Т	н	Т	TCCTTCTGTCATGATCCGAATCC	ATACCTGGTGCTAGTGCTTCG
4378660	Nonsynonymous	Radial	Т	Т	Т	Т	Т	С	С	С	С	TCGCTGATGCTGTAGAGGTG	TCITTCTGAACTGGGCAACC
4678681	Nonsynonymous	Radial	G	A	А	G	А	G	G	G	G	GATTATACAGGTTGGCGATAAGC	GACATCAAGCGCATACTCGAC
4912166	Nonsynonymous	Radial	А	A	А	А	А	G	G	G	Α	ATCGAAAGTAGGGGGCTCCAG	CAGTGAGAAAAGCACCAGCA
5094375	Nonsynonymous	Radial	G	G	G	G	G	A	A	А	G	ATTCGAGGTTCAATGCGTTT	GCGAATTGAAGTCACCATAGC
5103324	Nonsynonymous	Radial	Α	A	А	Α	А	Ð	G	G	G	GAACCAGGCGTGATGAGTG	AACTITCCGTGTCGTTGAGC
5155041	Nonsynonymous	Radial	Α	A	Α	A	Α	G	G	Ð	IJ	TAGCGATTCAGCGTCGAGTA	AACGCTGTGGTGTATCGTTG
52860055	Nonsynonymous	Radial	G	С	С	G	С	G	G	G	G	TGGTGATGTTGTATGTGAATCC	TGATGACCTGATGGATCACATC
358636 1	Nonsynonymous	Linear						G	G	А	G	ACTCACCTTCATAGCGGAAAG	AGACGGAGTGTAGATTAGTCAAC
2030050	Nonsynonymous	Linear						А	A	G	А	ATTACGACATCATTCTCCGCA	AAGGTTTGTCGTGGACGTG
2373421	Nonsynonymous	Linear						A	A	А	А	ATATGATGATGGGTGGACTGG	ACTGTGGCGGATAGGATAAGC
4660184	Nonsynonymous	Linear						G	G	G	G	TCTCTGACTTTGGATGAACGG	TCACTCACATTCATCACGATGG
4757929	Nonsynonymous	Linear						Т	Т	Т	Т	AACCTGAACGACGACGATTAC	ATCGTGTCGGTTTGTTGACAG
4217	Synonymous	Linear						Т	Т	С	Т	ATAATATCGGTTGCGGAGGTG	ATCCTCTGCATGGTCAGGTC
21000 \$ 21	Synonymous	Linear						А	А	А	А	TGTAGAGACTCAGCATTGCTTAG	TACAGATAACCCTGACCAACG
30089 <u>41</u> 3	Synonymous	Linear						A	А	А	А	TACAGATITCCTGGTCATCGG	TCTACTCTCCCTGTTGTCTGG
4143190	Synonymous	Linear						Т	Т	Т	Т	GATGACCGTGCAGTTTATCG	GTATGCGGCAGGCCTATAAC
49624	Synonymous	Linear						Т	Т	С	Т	TTCTCGAAACCATTACCTGCC	TCTTCACTATCCAGCAGTACG
5303284	Synonymous	Linear						С	С	С	Т	AAGCAATTTAGCGCTCGACAC	TTGGTCATCCAGTGACTGTTG
3 August 13.													

Leopold et al.

Table 3

E. coli O157:H7 Cluster Identification

The status of each of the determinant sites is determined by PCR amplification of key sites. The presence Shiga toxin genes (*stx*), and the occupation of the *yehV* site by the *stx*₁ bacteriophage or *wrbA* by the *stx*₂ bacteriophage are markers in the emergence of these three clusters. A subset of Cluster 1 strains located on a branch that leads to Clusters 2 and 3 have been observed to have sustained an N to K mutation in FimH.

Determinant	Cluster 1	Cluster 1 [*]	Cluster 2	Cluster 3
<i>stx</i> ₁	-	-	-	+
stx ₂	+	+	+	+
yehV	Occupied	Occupied	Occupied	Occupied
wrbA	Unoccupied	Unoccupied	Occupied	Occupied
FimH	Asp	Lys	Lys	Lys

These isolates have characteristics (FimH allele) typical of Cluster 2

Page 10

Table 4 Phylogenetically Informative SNP Sites

Key SNP sites at which the topology is assigned for each set of strains are listed. Bases associated with each site are reported within parentheses. Sets 1 and 2 list radial SNPs only. Sets 3 and 4 list key linear SNPs only.

Sets	Strains	Sites at Which SNPs Assign Topology
1	86-17, 87-07	3798(G), 79307(T), 571478(A), 1492372(A), 1894260(A), 2388580(C), 2984974(C), 4007883(T), 4678681(G), 5153038(C), 5286625(G), 5391618(C)
2	86-24, 86-28, 87-23	3798(T), 79307(A), 571478(G), 1492372(G), 1894260(A), 2388580(T), 2984974(A), 4007883(C), 4678681(A), 5153038(T), 5286625(C), 5391618(A)
3	EK28	358636(A), 421747(C), 2030050(G), 4962486(C), 5303294(C)
4	EK15, U39	5303294(C)