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Abstract
Tagged Magnetic Resonance Imaging (tagged MRI or tMRI) provides a means of directly and
noninvasively displaying the internal motion of the myocardium. Reconstruction of the motion
field is needed to quantify important clinical information, e.g., the myocardial strain, and detect
regional heart functional loss. In this paper, we present a three-step method for this task. First, we
use a Gabor filter bank to detect and locate tag intersections in the image frames, based on local
phase analysis. Next, we use an improved version of the Robust Point Matching (RPM) method to
sparsely track the motion of the myocardium, by establishing a transformation function and a one-
to-one correspondence between grid tag intersections in different image frames. In particular, the
RPM helps to minimize the impact on the motion tracking result of: 1) through-plane motion, and
2) relatively large deformation and/or relatively small tag spacing. In the final step, a meshless
deformable model is initialized using the transformation function computed by RPM. The model
refines the motion tracking and generates a dense displacement map, by deforming under the
influence of image information, and is constrained by the displacement magnitude to retain its
geometric structure. The 2D displacement maps in short and long axis image planes can be
combined to drive a 3D deformable model, using the Moving Least Square method, constrained
by the minimization of the residual error at tag intersections. The method has been tested on a
numerical phantom, as well as on in vivo heart data from normal volunteers and heart disease
patients. The experimental results show that the new method has a good performance on both
synthetic and real data. Furthermore, the method has been used in an initial clinical study to assess
the differences in myocardial strain distributions between heart disease (left ventricular
hypertrophy) patients and the normal control group. The final results show that the proposed
method is capable of separating patients from healthy individuals. In addition, the method detects
and makes possible quantification of local abnormalities in the myocardium strain distribution,
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which is critical for quantitative analysis of patients’ clinical conditions. This motion tracking
approach can improve the throughput and reliability of quantitative strain analysis of heart disease
patients, and has the potential for further clinical applications.

Index Terms
Tagged MRI; Motion Tracking; Gabor Filter; RPM; Deformable Model; Strain

I. Introduction
Magnetic resonance imaging (MRI) has become one of the most effective means for the
delineation of cardiac anatomic structures, as well as the extraction in vivo of physiological
functional information. Clinically important information, such as motion, blood flow, and
perfusion in the tissue, can be encoded as changes in pixel phase or intensity, and can be
augmented using contrast agent enhancement during MRI scans. Recent developments in
cardiac imaging with computed tomography (CT) have succeeded in generating 3D images
of heart with higher spatial resolution and more detailed depiction of anatomic structures.
However, the relatively low temporal resolution of CT and its inability to encode
physiological information have limited the use of this modality mostly to the static
reconstruction of the heart. In particular, CT is inaccurate at reconstructing and/or
quantifying regional myocardial motion, because of the lack of information about the motion
within the myocardium other than the motion at the epi- and endo- myocardial surfaces.
Therefore, this image modality fails to provide some information that could potentially be
useful in assessing patients with local cardiac functional loss or disorder, such as due to
myocardial infarction and ischemia.

MRI is generally considered to be the current gold standard method for evaluating cardiac
function. Among the MRI-based techniques, magnetization-tagged MRI is one of the earliest
and still arguably the most efficient means to directly and non-invasively display the motion
of the myocardium. Tagged regions are visible as darker stripes in tagged MR images. They
deform as the underlying myocardium [1] [2] contracts periodically during the cardiac cycle.
The advantage of tagged MRI over other imaging techniques is the direct and explicit
reflection of the interior myocardial motion through the tags, which enables the qualitative
and quantitative evaluation of the regional heart function, and the detection of regional heart
function abnormalities.

Several image processing and analysis methods have been proposed for use with tagged
MRI, but currently the most popular one is the automatic Harmonic Phase (HARP) method
[3]. HARP is essentially a phase analysis of a single-sideband demodulation of the tags,
carried out in the Fourier domain. Tag locations in the spatial domain are derived based on
the inverse Fourier transform of one or two corresponding harmonic peaks of the image
signal in the Fourier domain. Note that an assumption that HARP uses here is that the tag
spacing and orientation in the current frame are approximately uniform (as illustrated by
using only one harmonic peak to calculate the phase relative to the tag pattern at every pixel
in the original image), which conflicts with the fact that local variations exist in tag spacing
and orientation distributions at different frames during the cardiac cycle, due to the cardiac
motion. This theoretic imperfection can lead to errors in the HARP output, such as
bifurcations in the recovered tag map, which also deteriorates at boundaries, and in regions
with large deformations or rotations.

Gabor filters [4] provide an alternative solution for automated tagged MRI analysis. They
have some formal relationship to, but are distinct from, the HARP method. Gabor filters are
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sinusoidally modulated Gaussians, which can be convolved with an image to extract the
local periodic “stripe” content; this convolution can be conveniently carried out in the
Fourier domain. They are natural matches to different tag patterns in the spatial domain, as
they can track the local variation of tag spacing and orientation by changing their parameters
accordingly. The HARP method can be treated as a special case of Gabor filters, whose
parameters are fixed despite the local variation in tagging. Some typical HARP errors, such
as the false bifurcations, can be avoided or reduced by Gabor-based methods, as introduced
in [5]. In [5] a bank of Gabor filters was used, with different parameters corresponding to
different tag spacing and orientation, and the optimal ones to use for local phase estimation
were chosen pixel-by-pixel. The displacement and the cardiac strain were then calculated,
based on a refined phase map that incorporated the effects of local variation in tag spacing
and orientation.

Both the HARP and Gabor filters are based on frequency domain analysis, and they share
some common shortcomings for cardiac motion tracking. For example, both methods require
an unwrapping step, which by itself is an error prone process, to convert the phase map into
the displacement maps. Some other tag tracking methods, such as the use of deformable
models [14, 18, 19, 24, 25] and spline models [6, 9, 10, 21], work in the image domain and
produce the displacement map directly. These image-based methods use parameterized
deformable models to converge the model to fit to the changing locations of the tag lines,
under the influence of the image gradient. One major disadvantage of these methods is their
nature of being driven by local features, which may lead to a mismatch between models and
tag lines. Two of the most common scenarios of mismatch take place when: 1) the through-
plane motion of the curved heart wall causes sudden disappearance or appearance of tags in
2D images close to the myocardial boundaries; and 2) as the heart contracts, tag spacing
decreases enough to cause the local gradient-driven model to “jump” to the “wrong” tag and
generate a mismatch. In addition, image-based methods are more sensitive to image noise.

By combining these approaches, using the frequency domain analysis and the image domain
analysis together, we can improve the motion tracking performance. We present in this
paper a motion tracking framework that integrates those two kinds of analysis, such that one
helps to improve the performance of the other, and vice versa. The motion tracking starts
with a Gabor filter-based phase analysis. We then use phase maps to find the locations of tag
intersections at different times during the cardiac cycle. We track the motion of tag
intersections between frames using the Robust Point Matching (RPM) method. Finally, we
use an implicit deformable model to reconstruct the dense displacement map between two
image frames as we register the segmented heart regions in those images, using the
displacement magnitude as a constraint.

RPM [7] is a computer vision technique that was developed to find the correspondence
between two sets of points. It has been widely implemented to solve rigid and nonrigid
registration problems [7, 8, 26]. By using a simulated annealing scheme [8] and an extended
correspondence matrix, it finds the correspondence between two point sets before and after
large deformation and/or with different numbers of elements. However, special
modifications and improvements have to be made to the original form of RPM in order to
retain a consistent and robust performance in tracking the motion of tag intersections.

Traditional deformable models have been widely used for 2D and 3D cardiac motion
reconstructions from tagged MRI, such as by Park et al. [4, 5, 6, 11, 17]. However, the
performance of explicitly deformable models driven by Finite Element Methods (FEM) and
splines can be affected by local noise, and they may generate singularities in the
displacement map. For instance, one local noise region may attract two nearby spline models
and cause them to collide, which will be reflected in the displacement map as a singularity
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point. One way to overcome the mismatch problem is to use more spatial and temporal
constraints. However, this means a more complicated model structure and a longer
computational time for the model to converge. Therefore, a better solution is to use the
implicit form of the deformable model, embedded with spatial and temporal constraints, for
better and more efficient convergence between the model and tags. In particular, the cardiac
motion is a complicated combination of motions in 3D space. However, most currently
available 3D deformable models of the heart are only illustrative, rather than ready for use in
quantitative analysis, due to their complicated structures, lack of the capability of capturing
motion fields with large variation, and high computation costs. This leads to the urgent need
for a new 3D deformable model, with superior performance in object convergence and
tracking, and capable of quantitative motion analysis. In our implementation, an implicit
deformable model has been developed. The model reconstructs dense motion fields between
two image frames by solving a registration problem and minimizing the residual motion
errors at tag intersections. We propose in this paper a new deformation constraint, the
overall displacement magnitude, to replace older ones, such as the separate displacement
components. Efforts have been made to extend the model into 3D, and the preliminary
results are very promising.

The rest of this paper is organized as follows: Section two introduces our new tag-based
motion tracking method and its 3D extension. In section three we present experimental
results on a numerical phantom, as well as on 2D and 3D in vivo heart data. We evaluate the
method by comparing its results against the “ground truth” and other tag tracking methods
and by measuring its timing performance. We provide a brief discussion and draw our
conclusions in section four.

II. Method
A. Gabor Filter and Gabor Filter Bank

A Gabor filter can be simply expressed as a Gaussian multiplied by a complex sinusoid in
the image domain, as shown below:

(1)

with (u0, v0) the center frequency, (x′, y′) = (x cosθ + y sinθ,−x sinθ + y cosθ) is (x, y)

rotated by θ with respect to the x axis, and  is a
Gaussian filter with the spatial standard deviations σx, σy. The filter h(x, y) can be split into
its real and imaginary components, hR and hI (even and odd functions, respectively):

(2)

(3)

and the Fourier transforms of the real (2) and imaginary (3) components of a Gabor filter are
given by:

(4)
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(5)

where G(u, v) = F{g(x, y)} and F{} denotes the Fourier transform. The final form of a 2D
Gabor filter in the Fourier domain is

(6)

which is a pair of Gaussians at (u0, v0) and (−u0, −v0) in the Fourier domain. The inverse
Fourier transform of the product of the filter and the Fourier transform (FT) of the image can
be split into a phase map and a magnitude map in the image domain. The phase at a given
material point is constant during the cardiac cycle, regardless of its location in the current
frame: it is effectively a material property, just like the tag pattern from which it is derived.
Phase is wrapped to be within the range [−π,π), so that there is a correspondence between
tags and the phase map; pixels at the centerlines of tags have phase values of −π.

To accommodate local tag spacing and orientation changes, we multiply the FT of the image
in the Fourier domain with a bank of Gabor filters with different parameter values, to
generate multiple image domain phase maps corresponding to different tag spacing and
orientation, and combine these maps to create the final phase map with local responses. In
the Fourier domain, 2D Gabor filters can be defined using three global parameters: central
frequency (u0, v0), orientation θ, and filter size σ, where u0 and v0 are the inverse of the
corresponding horizontal and vertical tag spacing, respectively, θ corresponds directly to the
tag orientation in the image domain, and σ is chosen proportional to the central frequency so
that Gabor filter outputs are unified in magnitude. The Gabor filter bank is composed of
filters with different tag spacing (e.g., with the interval of one pixel) in the image domain,
and orientation angles θ =θini + n · Δθ, where n = 0,±1,±2,…, Δθ is the minimal angular
difference, and θini = 0 for vertical tags, π/2 for horizontal tags. The magnitude of a Gabor
filter’s output at a pixel is different for different parameter values, and is maximized when
the parameter-set matches the local tag spacing and orientation. At each pixel, we choose the
three Gabor filters with the highest output magnitude, and use the linear interpolation of
their parameter values to construct a new Gabor filter. We multiply the filter with the FT of
the image in the frequency domain. The new Gabor filter has parameters that are close to the
local tag spacing and orientation, so that its phase response is a close estimation of the tag-
based-phase at the pixel. We calculate the phase map pixel-by-pixel in this manner, so that
local tag spacing and orientation are approximately optimally estimated.

Gabor filters have a good performance in displacement reconstruction, but several intrinsic
defects of filter-based approaches prevent us from simply using the Gabor results directly.
First, the Gabor filter may include irrelevant information (e.g., phase information outside the
myocardium) when analyzing motion close to the myocardial boundary, which can cause its
performance to deteriorate at myocardial boundaries. Second, the Gabor filter has difficulty
capturing large deformations and abrupt variations in the displacement map, due to its
smoothing nature. Third, the output of Gabor filters requires phase unwrapping, which is an
error-prone process. And fourth, the Gabor filter only outputs an Eulerian displacement map
at the current frame. Therefore, we have developed the following methods to improve the
Lagrangian displacement map quality.

B. Robust Point Matching
To avoid the error-prone unwrapping process in displacement reconstruction algorithms like
the HARP and the Gabor filter approaches, we find tag intersections at the local minima of
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the summation of wrapped phase maps for horizontal and vertical tags, as shown in Figure
2(c). This is a completely automatic process. The computed tag intersections will be used in
the RPM, as described below.

Suppose we are tracking the motion of tags from the ith (denoted as Ii) to the i + 1 th frame
(denoted as Ii+1) in one image sequence. When neglecting the through-plane motion, tag
intersections in these two frames can be viewed as two sets of material points with close
correlation. Ideally, there is a one-to-one correspondence between tag intersections in two
image frames, since they are unique in appearance and usually will not overlap with each
other during the cardiac cycle. The motion-tracking task can then be reduced to the problem
of finding this unknown correspondence between two sets of tag intersections. Let us denote
tag intersections as P = {pj, j = 1,2,…M} and Q = {qk, k = 1,2,…N} for Ii and Ii+1,
respectively. From Ii to Ii+1, the underlying motion field can be expressed as a non-rigid
transformation function f. A point pj ∈ P in Ii is mapped to its new location f(pj) in Ii+1. The
matching problem is equivalent to the minimization of the energy function EZ,f:

(7)

where Z = zjk is a binary correspondence matrix, its elements zjk ∈ {0,1} for j = 1,2,…M +1

and k = 1,2,…N + 1. The correspondence matrix is subject to the constraints  for

k = 1,2,…N and  for j = 1,2,…M. The second term is a smoothness constraint
that enforces the minimization of the second order derivatives of the transformation
function. One problem caused by the through-plane motion of the curved heart wall is that
tag intersections close to the myocardial boundary may move in or out of the image plane at
different frames, which will cause those tag intersections to appear and disappear in
different frames of the image sequence. These tag intersections are treated as unpaired
outliers. In Z, the M + 1 row and the N + 1 column are dedicated to these outliers and the
third term in equation (8) is a constraint that controls the number of outliers in the final
correspondence matrix. ζ is the weight that controls the strength of the constraint: as ζ
decreases, we allow less outliers in the final correspondence matrix. This way, when a tag
intersection disappears (or appears) in the target image frame, it will be assumed to be an
outlier, and will not contribute directly to the reconstruction of the displacement.

Because of the complexity of the heart motion, it can be hard to find the correspondence
between P and Q using only a rigid transformation function and the traditional way of
pairing points in different image frames based solely on their locations. To accommodate the
need for nonrigid point matching, we use a deterministic annealing tracking scheme
introduced in [15]. First, we replace Z in (7) with a fuzzy correspondence matrix Y, and
rewrite the energy function in (7) as:

(8)

where  still satisfies  for k = 1,2,…N and

 for j = 1,2,…M with yjk ∈ [0,1]; T is a “temperature” parameter that can be
adjusted during the tracking process.

The sum of the first two terms on the right hand side of Equation (8) is the “thin plate
spline” (TPS) energy, which can be rewritten in the form:
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(9)

where element qj′ in Q′ is defined by , d is the 3 by 3 affine transformation
matrix, c is the M by 3 wrapping coefficient, and φ is the TPS kernel whose element φij = ||pi
− pj||2 log||pi − pj||. Equation (9) can be solved using the QR decomposition [15], in which
the coordinates of p are decomposed to enable the separation of the affine and non-affine
transformations. Then we can compute the local deformation vector φc and the affine
transformation matrix d, as described in [7].

Note that the energy term  controls the minimization of the energy
function in (8), through equation (9). The temperature parameter T is higher at the start of
the tracking process, so that the energy function initially favors fuzzy correspondence matrix
Y to maintain its convexity, which is reflected by the definition of Q in (9). As T gradually
decreases to zero, the effect of the energy term gets weaker, so as to allow a binary solution
of Y, and the formulation of Q changes correspondingly.

As noted above, the Gabor output alone of the tag intersection locations may not be
accurate, especially when there is large deformation. Therefore, we use the fact that the tag
intersections are local minima of image intensities and add another energy term:

(10)

to the right side of equation (8), where λimg is the weight for image intensity. This energy
term is integrated into the energy minimization by replacing Q in (9) with Q′ = Q − t∇I(Q),
where ∇ is the gradient operator, and t is the step size.

The myocardium around the LV is an approximately symmetric ring structure in short axis
images, and point flipping can take place when using the traditional RPM, with a relatively
high likelihood and frequency. To prevent flipping in the final transformation function, we
set an upper limit for displacement magnitude, s = max(min(pj − qk)), for the local
deformation vector elements. This will also prevent flipping in the affine transformation
since it does not allow dramatic changes in point distributions in one iteration of point
matching.

This new form of RPM generates a smooth transformation function f: R2 → R2 that
approximately captures the displacement at tag intersections and estimates the displacement
in the rest of image by minimizing the combination of the TPS energy and the image
intensity energy. It is different from the original form of the RPM, and has an improved
performance as part of the new motion tracking framework.

C. Deformable Model
RPM uses the locations of tag intersections but neglects the information available along the
rest of the tags. To reconstruct a dense 2D displacement field and make full use of the tag
information, we use deformable models to further refine the result of RPM. Deformable
models of the x and y displacements are initialized using the transformation function
generated via RPM. To reduce structural errors, such as singularities, and to make the model
evolution more stable, we have developed an implicit deformable model.

Assume that the transformation function is defined in the image plane as f(x, y) = (u(x, y),
v(x, y)), where u and v are the x (horizontal) and y (vertical) component of the
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transformation, respectively; we can redefine u and v as 3D surfaces u(x, y) = z and v(x, y)
= z, where x and y are within the 2D image domain, and z ∈ R. The imaged 2D motion can
be reconstructed as these 3D surfaces of u and v evolve under the influences of the image
information and a smoothness constraint. The combined energy on these two deformable
surfaces can be defined as:

(11)

Here,

(12)

where  and  are the x and y displacement at tag intersection k calculated using the TPS
energy minimization.

Φ2 is determined by the image intensity gradient and has the following form:

(13)

where G is an Gaussian operator, I is the target image frame, Ω is the set of pixels along the
tag line and within the myocardium, and (x′, y′) = (x + u, y + v) is the deformed location of
tag point (x, y).

Φ3 is the phase constraint, which takes the form:

(14)

where Px and Py are unwrapped phase maps for the template image derived from the
horizontal and vertical tags, respectively, and Px′ and Py′ are unwrapped phase maps for the
target image derived from the horizontal and vertical tags, respectively.

Φ4 is the smoothness constraint. Displacements in the x and y directions are reflected
separately by the motion of horizontal and vertical tags. In previous work, smoothness of
displacements in different directions (u and v) were generally treated separately [6] because
of this. However, we have found that the magnitude of the overall displacement is a better
smoothness constraint. First, the smoothness of the magnitude of the displacement vector is
physically meaningful. Neighboring material points in the myocardium deform with similar
magnitude. Second, the smoothness of the overall displacement magnitude is easier to
control, as illustrated in Figure 3. The magnitude map is smoother, with smaller range and
less variation, while the x and y displacements can change much more rapidly: usually there
will be at least two peaks and two saddles in the myocardium for each component of the
displacement. And third, by constraining the model smoothness with the overall
displacement magnitude, x and y displacements are more tightly bonded with each other. If
in a certain part of the heart displacement in one direction is sparsely sampled (which may
cause over-smoothing), the other displacement component will serve as a complementary
smoothness constraint for the evolution of both deformable surfaces of the displacement.

Defining the displacement magnitude field as , we can define Φ4 as
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(15)

where m″ and m‴′ are the second and fourth order derivatives of the magnitude field,
respectively. We assume the 3D surface of m sustains the thin membrane energy. Therefore
the reconstruction of the dense displacement field is equivalent to the generation of two
smooth 3D deformable surfaces corresponding to u and v, as shown in Figure 4. For
simplicity, these two surfaces are considered to only deform perpendicular to the image
plane, and the motion at each point on the surface is defined by the Lagrange equation:

(16)

(17)

where fu and fv are external forces corresponding to u and v, respectively. Both forces are
combinations of forces derived from Φ1, Φ2, and Φ3, such that:

(18)

(19)

where f1u and f1v are linear combinations of  and  at the four tag intersections
closest to the current image pixel, respectively. f2u and f2v are derived from the x and y
components of the local image intensity gradient at tag intersections, and f3u and f3v are
derived from the x and y components of the phase difference within the myocardial mask.
The derivation procedure is relatively intuitive.

K in equations (16) and (17) is a stiffness matrix, as defined in [14]. It is derived from Φ4
and only affects the overall displacement magnitude. In (16) and (17), the internal system
constraint derived from K is decomposed into components corresponding to u and v
displacements, in order to calculate the evolution of u and v.

The pseudo code for the evolution of u and v is shown as follows:

Deformable Model Pseudo-Code:

Initialize α1, α2, α3, and α4.

Begin A: Model Evolution.

 Begin B: External Force Update.

 Step 1: Update fu and fv;

 Step 2: Update u and v using u′ = u + fu·Timestep, v′ = v + fv·Timestep

 End B

 Update m as 

 Begin C: Internal Feedback.

 Step 1: Compute internal force fint = −Km′
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 Step 2: Decompose fint into  and 

 Step 3: Update u and v using u = u′+uint, v = v′+vint

 End C

 Evaluate the change of u and v. If small End A

End A

D. 3D Extension
We extended our motion-tracking method into 3D, using a meshless deformable model. The
meshless deformable model is a new form of deformable model with flexible geometric
structure and less computational expense (sees reference [12, 13, 16, 20]). For 3D motion
tracking, a group of (usually more than 5 slices) short axis (SA) and long axis (LA) cardiac
images are acquired, using the tagged MRI technique, as shown in Figure 5. The SA images
sampled the left ventricle (LV) at different levels from base to apex, and the LA images
sampled the heart in three different views with approximately 60 degrees angles in between
them, corresponding to the two-chamber, three-chamber, and four-chamber views of the
heart. Eulerian displacements in the LA images are first computed to find the longitudinal
motion during the cardiac cycle. Longitudinal motions at the intersections of LA and SA
image planes are then interpolated within each of the SA image planes, to generate a map of
through-plane motion in the 2D image plane at the current frame. The longitudinal motion
and the in-plane motion calculated using the deformable model generate motion samplings
in 3D. A geometrical mesh of the heart developed in [23] is used to accommodate the 3D
motion at the sampled points as the driving forces for its deformation in 3D.

Given the 3D motion at sampled points q in the 2D image planes, we can calculate their
initial locations p at the first (undeformed) frame. Thus, the 3D non-rigid deformation can
be expressed as:

(20)

where f(·) is the displacement function, which combines the global and local terms, M is the
global rigid translation matrix, and T is the non-rigid deformation at sampled points. In a
meshless deformation, the displacement at an arbitrary point j in 3D can be calculated by
minimizing the energy:

(21)

where wij are weights of sample points pi at point j during the energy minimization, and fj(·)
is the local displacement function at j. The weights wij are distance-based, so that sample
points far away from j have less weight during the energy evolution, while motions at
nearby sample points have larger impacts on the motion at j. The displacement fj(·) can be
conveniently solved for by applying derivative operators on both sides of equation (21) and
calculating for the global and local deformation separately, by replacing fj(·) with the right
hand side of (20).

The quality of the 3D motion was evaluated by manually tracking the 2D in-plane motion
and measuring the difference between the imaged 2D motion and the intersection of the
reconstructed 3D motion on the same image plane. We show some preliminary 3D
experimental results in section III.
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III. Experiments
We begin with a summary of all the parameters that control the behavior of the motion
tracking framework. During the generation of the phase map, three parameters are defined
for each filter in the Gabor filter bank: central frequency (u0, v0), orientation θ and the filter
size σ; there are 5 different central frequencies and 5 different orientations, which are
combined to form a total of 25 filters in the Gabor filter bank. We empirically found that an
angular difference Δθ of π/18, a central frequency difference one tenth of the original
central frequency, and a filter size proportional to the center frequency best balance the
performance and efficiency for most data sets. Smaller parameter variations may increase
the computational time for phase maps, while larger steps may cause inaccurate estimations
of local phases. In the RPM step, three parameters have the biggest impact on the final point
matching outcome: the annealing temperature, T, the local deformation upper threshold, s,
and the weight for outlier acceptance, ζ. To make the point matching process more adaptive,
all three parameters are defined depending on the data sets to be matched. Denoting the set
of distances between any pair of tag intersections in the source frame to be dp, the initial
value of T is defined as a·mean(||dp||2), where a is a constant empirically assigned with the
value of 0.01. The value of T decreases at a rate such that Ti+1 = Ti*0.93 during the
annealing, and the matching process stops when T < 0.01. Denoting the distance between a
source tag intersection and its closest match in the target point set in the current iteration to
be dpq, we define s = 0.5·mean(||dpq||). We set the upper threshold for the acceptance of
outliers during point matching to be 5% of the size of the target set of tag intersections.
Finally, in the deformable model, the weights for the four terms in the energy function in
equation 11 have the relative ratios α1: α2: α3: α4 = 0.4: 0.1: 0.1: 0.4.

We tested our method on a numerical phantom. An annulus is overlaid with grid tags. It
deforms following an underlying 2D displacement field similar to that seen in vivo, which
we used as the “ground truth” in the validation of our method. We also compared the
displacement maps generated by our method against those generated using the HARP
method or directly from Gabor filters. In Figure 4, displacement magnitude maps for the end
systole (ES) frame generated using our new method, from HARP, and directly from Gabor
filters, are displayed together. The map generated using the new method shows higher
accuracy and is smoother than the other two. In Table 1 we summarize the RMS errors of
these three methods during the cardiac cycle and their ratio to the average displacement. By
the standard of RMS error, our new motion tracking method outperforms both HARP and
direct Gabor filter displacement mapping for the phantom data. We noted that our method
tracks the cardiac motion better, particularly when the magnitude of the motion is large
(comparable to the initial tag spacing). Another advantage our new method has over the
previously developed phase-based displacement computational tools like HARP is that the
error is not accumulated during the cardiac cycle. We notice that in the initial frames, the
RMS error of our method is equal to or slight larger than those of the HARP and Gabor
filters. However, as the heart starts contracting during systole, the errors of the HARP and
Gabor accumulate, since the displacement in one frame is calculated based on previous
frames. Even after the ES, when the myocardium relaxes and the displacement decreases,
the error of these phase based methods keeps increasing, as opposed to our method.

We also tested the performance of our method on in vivo heart data. Human imaging studies
were performed under an Institutional Review Board-approved protocol. In Figure 5 we
present representative point matching results of RPM for SA (upper row) and LA (lower
row) tagged MRI. In both cases, tag intersections have been tracked accurately despite large
and inhomogeneous motion. The automated tracking results have been evaluated by
comparing them with manual tracking results of an expert, and the over 95% correlation
indicates the strength of RPM.

Chen et al. Page 11

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 August 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We then tested the overall motion tracking performance of the new method. First, we tested
the strength of the motion tracking method by reconstructing a deformed image given the
undeformed image, and the Lagrangian motion field obtained using our approach. The
original image, the target image, and the reconstructed image are shown side by side in
Figure 6. The correlation coefficient between the segmented regions in the target image and
the reconstructed image is 0.8065, which shows a high level of similarity between them,
allowing for tag fading in the target image. The motion tracking results of a normal
volunteer and a patient with hypertrophic cardiomyopathy (HCM) are shown in Figure 7
(above and below, respectively). The 2D displacement fields in two SA images are first
displayed using the tag mesh regenerated using the displacement field. Then we show the
reconstructed 2D displacement field, first in its separate x and y components, and then in its
magnitude. Tags reconstructed using the displacement information matched well with the
image information. We quantitatively evaluated the absolute value of the distance between
the reconstructed tags and the manually tracked tags; the results for 6 healthy volunteers and
11 LVH patients are shown in the last column in Table 2. Also notice the difference between
displacement maps of the normal subject and the patient, especially between the
displacement magnitude maps, in which a large regional variation can be observed in the
patient’s heart.

One potential clinical application of the proposed motion tracking method is for quantitative
analysis of the myocardial strain, and in particular, to evaluate the local heart function as
well as global heart function. In Figure 8, we display the in-plane myocardial strain maps at
ES, derived from the motion tracking results for the healthy volunteer and the patient in
Figure 7, respectively. The strain maps indicate heart functional differences, both globally
and locally. Globally, the contraction in the normal heart produces higher strain (absolute
value) than that of the patient’s heart. Locally, we notice that for the patient’s heart, a
relatively small portion (in the 2 to 3 o’clock location) of the myocardium contracts
normally while the rest of the heart contracts with less strain. Such information may be
helpful in the diagnosis and treatment of heart disease. We also calculated the statistics of 17
different variables related to the circumferential strain distribution in the LVH patients and
the normal controls, as shown in Table 3. The results show that these two groups have
significant motion differences and can be readily separated from each other on the basis of
the recovered motion variables. In Figure 9, more detailed SA circumferential strain maps at
ES are shown for a normal volunteer and a LVH patient. Note that Figure 9 is generated
using the magnitude smoothness term Φ4 while Figure 8 is generated without it, therefore
displacement maps in Figure 9 are of higher smoothness and yet retain the critical clinical
information on strain distribution. We can observe a clear pattern of greater circumferential
shortening near the endocardial surface, both for the volunteer and the patient, which is
consistent with previous findings. In Figure 10, we compare the strain in the same numeric
phantom, generated obtained using HARP, the Gabor filters, and our motion tracking
framework, against the actual strain. The histogram of the strain magnitude shows that the
new motion tracking framework produces the closest estimation of the actual strain. In
Figure 11, the RMS errors in the strain maps are displayed in the form of box plot. The
strain generated by the new method has a smaller average error and less variation.

In addition, we tested the 3D motion tracking performance of the proposed motion tracking
method on in vivo cardiac data. Tagged MR images in multiple planes were obtained from a
Siemens Trio 3T MR scanner with 2D grid tagging. The 3D tagged MR image set we used
consisted of a stack of 5 SA image sequences, equally spaced from the base to the apex of
LV, and 3 LA images, which were parallel to the LV long axis and with approximately 60
degree angles between one another. The motion tracking results are shown in Figure 12.
Motion in two hearts, one normal and one of a LVH patient, was tracked for about 80% of
the cardiac cycle (18 frames for the patient, 21 frames for the normal volunteer). First,
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notice that the magnitude of the contraction of the normal volunteer is larger than that of the
LVH patient. Also notice that the normal heart’s contraction and dilation are essentially
complete earlier than those of the LVH patient’s heart, as illustrated by the reconstructed 3D
models at the same stages of the cardiac cycle. The black dots inside the LV mesh are
control points driving the deformation of the underlying 3D meshless model. The geometric
form of the LV model is based on the work in [23]. These 3D motion-tracking experiments
show that the new motion tracking method is capable of detecting both the magnitude
difference and the motion pattern difference between normal volunteers and LVH patients.

Finally, we evaluated the timing performance and efficiency of the new tracking method, for
both 2D and 3D implementations. For 2D experiments, the overall motion tracking process,
which includes the Gabor filtering, the RPM, and evolution of the deformable model, takes
less than two minutes for an image sequence of size 100 by 100 pixels by 10 phases on a
desktop PC with 2.66GHz Dual 2 Core CPU. For 3D experiments, the total processing time
is about 25 minutes for each dataset (a dataset includes about 5 SA image sequences and 3
LA image sequences).

IV. Discussion and Conclusion
In this paper, we have presented a novel motion tracking technique, which integrates Gabor
filters, the RPM, and deformable models. The three methods are tightly integrated in order
to achieve the best tracking performance to support quantitative cardiac analysis. The
method has a robust performance on tagged numerical phantoms and in vivo tagged cardiac
MRI images, and, in particular, it performs well in myocardial regions with large
deformation. It has several advantages: First, the use of phase maps generated by the Gabor
filters allows efficient detection and location of tag intersections as the input for RPM.
Second, the use of RPM simplifies the motion tracking process and is capable of generating
a smooth and relatively accurate transformation function as the initial state for deformable
models. This process reduces the chance of false tag assignment, as compared with the
traditional gradient-based tag tracking method alone. Third, the implicit deformable model
integrates image, phase, and smoothness information to reconstruct the motion with more
robustness and less chance of singularities. Fourth, the use of the displacement magnitude as
the smoothness constraint improves the overall quality of motion tracking. And fifth, the
method is readily extendable for 3D applications. Experimental results show a better
performance compared with another, widely used, motion tracking technique, HARP, and its
timing performance is acceptable for clinical applications.

We have begun extending the motion tracking method into 3D. More experiments and
further validation, especially for in vivo pathological data sets, will be needed to fully
evaluate the performance of the method, and to build toward potential clinical applications.
However, our preliminary results are very encouraging.
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Fig. 1.
(a) A cardiac MRI image with grid tags. (b) The magnitude of the Fourier transform of the
tagged MR image. Peaks inside red circles correspond to vertical tags and green circles to
horizontal tags. (c) A bank of Gabor filters in the Fourier domain with parameters υ, θ and
σ. The red dots represent centers of Gabor filters in the Gabor filter bank. The value on the

horizontal axis is  in the Fourier domain.
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Fig. 2.
(a) A deformed grid tag image, (b) the magnitude output of Gabor filter bank, (c) 2D phase
map generated by Gabor filter bank, and (d) tag lines (red) recovered from phase.
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Fig. 3.
First row from left to right: 3D map of the x component of the displacement, the y
component of the displacement, and the magnitude of the corresponding overall
displacement. The altitude of 3D surfaces corresponds to the magnitude of the variables.
Second row: 2D color plots of the x displacement, y displacement, and the overall
magnitude of the displacement. Notice in both cases, the magnitude of the overall
displacement is more homogeneous and easier to use as a constraint.
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Fig. 4.
(a) The undeformed numerical phantom, (b) the deformed phantom, (c) magnitude of in-
plane displacement within the numerical phantom (ground truth), and the displacement
magnitude maps generated (d) by the new method, (e) by HARP, and (f) by using Gabor
filters output directly.
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Fig. 5.
RPM tracking results for SA (first row) and LA (second row) tagged MRI. In the left
column are original images with the initial locations of tag intersections highlighted using
red dots. In the right column are deformed images. Red circles indicate the initial locations
of tag intersections, and yellow dots indicate the current locations of tag intersections.
Yellow arrows are used to connect correlated tag intersections. Notice that by having the
one-to-one correspondence between tag intersections, the non-rigid transformation between
two image frames is implicitly displayed. Also notice that the deformation between two
images is large enough that it is impossible to reliably match two tag intersections by their
locations alone. Notice in the right column images, there are yellow arrows that start without
red circles (which means these intersections are not in the undeformed image, i.e., these are
outlier intersections that move into the image plane), as well as red circles that do not have
yellow arrows attached (outlier intersections that move out of the image plane in the current
frame).
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Fig. 6.
(a) The original ED image, with the LV myocardium delineated by red lines; (b) the
deformed target image at ES; and (c) the ES image reconstructed using the displacement
field and the ED image.
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Fig. 7.
Top row: tag tracking in the myocardium of a healthy volunteer. Bottom row: tag tracking in
the myocardium of a patient with asymmetric hypertrophic cardiomyopathy (HCM). In each
group: A) are undeformed images overlaid with tag grids (red lines) generated by the
displacement field (which is initially close to, but not necessarily, zero, due to the small
deformation that may take place between the creation of tags and the acquisition of the first
frame), B) are deformed images overlaid with tag grids reconstructed using the displacement
field; C) and D) the x and y components of the Lagrangian displacement (so they are shown
in the corresponding region of myocardium in the first frame) (notice that the normal heart
has an approximately symmetric motion, while the patient’s heart moves more irregularly);
and E) are the displacement magnitude maps. The normal heart has a more evenly and
smoothly distributed displacement magnitude map, while the patient’s heart shows reduced
contraction in most parts except for the upper right region. Same color ranges are used for
images in the same column.
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Fig. 8.
Left: strain distribution in the healthy heart. Right: strain distribution in HCM patient’s
heart. Notice that the strain maps are more uniform than the displacement maps; also notice
that the magnitude of the circumferential strain in patient’s heart is unevenly distributed.
The heart has decreased contraction in most parts, but still contracts normally in the upper
right region.
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Fig. 9.
Left: strain distribution in the healthy heart. Right: strain distribution in LVH patient’s heart.
Notice that the magnitude of the principal strain in patient’s heart is much less than that of
the healthy volunteer. Also notice that magnitude of the circumferential shortening close to
the endocardial surface is less than near the epicardial surface.
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Fig. 10.
Strain magnitude distribution in pixels.
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Fig. 11.
RMS error of computed circumferential strain in the numerical phantom.
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Fig. 12.
Representative 3D cardiac model and motion reconstruction of a normal volunteer and a
LVH patient. The first row shows the heart model reconstructed using the data of a normal
volunteer. In the second row is the heart model of a LVH patient. In the bottom is a plot
showing the corresponding evolution of the average magnitude of circumferential strains
during the cardiac cycle. The models in the above two rows are generated at cardiac cycle
sampling times: A (3%), B (19%), C (34%), D (50%), and E (66%). It is clear that the
normal heart contracts more (as shown by the greater shortening in circumferential
direction); the normal heart also contracts and relaxes faster than the patient’s heart.
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TABLE II

Group CS Peak(%) CS Time (%) Absolute tag error (pixels)

Normal −25.47 ± 7.52 33.29 ± 3.11 0.35 ± 0.07

Patients −14.42 ± 3.57 40.07 ± 4.31 0.29 ± 0.09

Summary of the circumferential strain (CS) and motion tracking performance in 11 LVH patients and 6 normal volunteers. The second column
corresponds to the average and variance of peak values of the circumferential strain (in percentage); the third column corresponds to the average
and variance of the time the circumferential strain reaches its peak (usually the end of systole), as a percentage of one cardiac cycle; and the fourth
column corresponds to the average and variance of the difference of the automatic and manual tag tracking results.
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TABLE III

Measure* LVH Normal P Value

Eccms −0.061 ± 0.03 −0.152 ± 0.03 <0.0001

Eccp −0.117 ± 0.05 −0.251 ± 0.06 <0.0001

Edotpd 0.582 ± 0.22 1.671 ± 0.57 <0.0001

Edotps −0.625 ± 0.17 −1.411 ± 0.28 <0.0001

TedotpdTd 0.246 ± 0.12 0.171 ± 0.05 <0.0001

TedotpsTs 0.448 ± 0.16 0.320 ± 0.11 0.0075

TecchpdTd 0.331 ± 0.11 0.217 ± 0.05 0.0175

Tedotps 155.6 ± 57.9 99.8 ± 32.5 0.0331

Eccms/Eccp 0.501 ± 0.13 0.610 ± 0.09 0.0564

Eccmd/Eccp 0.303 ± 0.16 0.141 ± 0.06 0.0765

TecchpsTs 0.492 ± 0.10 0.431 ± 0.05 0.0834

Tecchpd 535.1 ± 62.5 470.8 ± 43.2 0.1105

Tedotpd 474.9 ± 60.1 437.4 ± 44.9 0.1348

Tecchps 171.2 ± 40.6 136.7 ± 19.8 0.1578

Tcycle 935.1 ± 101.4 1010.6 ± 74.5 0.2735

Ts 344.8 ± 55.1 326.3 ± 41.1 0.4338

Eccmd −0.030 ± 0.01 −0.039 ± 0.01 0.9799

where

Eccms Ecc at mid systole

Eccp Peak (absolute) Ecc

Edotpd Peak (absolute) diastolic Edot*

Edotps Peak (absolute) systolic Edot

TedotpdTd Fraction of diastole of time of Edotpd

TedotpsTs Fraction of systole of time of Edotps

TecchpdTd Fraction of diastole of time of half of Eccp

Tedotps Time of peak (absolute) systolic Edot

Eccms/Eccp Fraction of Eccp at mid systole

Eccmd/Eccp Fraction of Eccp at mid diastole

TecchpsTs Fraction of systole of time of half of Eccp

Tecchpd Time of half of Eccp in diastole

Tedotpd Time of Edotpd

Tecchps Time of half of Eccp in systole

Tcycle Cardiac cycle time

Ts Time of end-systole
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Eccmd Ecc at mid diastole

*
Edot is the first derivative of E

The mean ± standard deviation of 17 different motion measures within each subject group (6 normal and 11 LVH). Each p value is found using
mixed model analysis to compare the groups in terms of the indicated measure. P values are shown in bold font when significant at the 5% level.
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