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Abstract
The Brownian motion of a nanoparticle in an incompressible Newtonian fluid (quiescent or fully
developed Poiseuille flow) has been investigated with an arbitrary Lagrangian-Eulerian based
finite element method. Results for the motion in a compressible fluid medium are estimated.
Thermal fluctuations from the fluid are implemented using a fluctuating hydrodynamics approach.
The instantaneous flow around the particle and the particle motion are fully resolved. Carriers of
two different sizes with three different densities have been investigated (nearly neutrally buoyant).
The numerical results show that (a) the calculated temperature of the nearly neutrally buoyant
Brownian particle in a quiescent fluid satisfies the equipartition theorem; (b) the translational and
rotational decay of the velocity autocorrelation functions result in algebraic tails, over long time;
(c) the translational and rotational mean square displacements of the particle obeys Stokes-
Einstein and Stokes-Einstein-Debye relations, respectively. Larger the particle, longer the time
taken to attain this limit; and (d) the parallel and perpendicular diffusivities of the particle closer to
the wall are consistent with the analytical results, where available.

1 INTRODUCTION
The major motivation for the present study is the simulation of a nanoparticle thermal
motion in a fluid flow that occurs in targeted drug delivery where the drug carrying
nanocarriers are intravascularly introduced into the vasculature. Nanoparticles allow more
precise and successful infiltration of drugs to target cells. In general, nanoparticle drug-
delivery systems have been shown to enhance the solubility of compounds, and to reduce the
impact of drugs on non-target tissue, thereby eliminating unwanted and dangerous side
effects. In order to more broadly integrate this technology into medicine, a precise
understanding of how to guide the nanoparticle to the target site is necessary. To achieve
this goal, as a first step, it is necessary to determine the motion of a nanocarrier (due to
thermal and hydrodynamic effects) in a fluid medium.

A nanoparticle suspended in a fluid undergoes random motion due to the thermal
fluctuations in the fluid. As a consequence, translational and rotational degrees of freedom
become important. In determining the translational and rotational motions of the
nanoparticle in an incompressible Newtonian medium, there exist two methods that couple
the thermal fluctuations with the hydrodynamic interactions. These are the generalized
Langevin method [1] and the fluctuating hydrodynamics method [5]. Either procedure

*Corresponding author ayya@seas.upenn.edu.

NIH Public Access
Author Manuscript
Int J Micronano Scale Transp. Author manuscript; available in PMC 2013 August 13.

Published in final edited form as:
Int J Micronano Scale Transp. 2012 June 1; 3(1-2): 13–20. doi:10.1260/1759-3093.3.1-2.13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



would require numerical simulations for covering extensive parameter space. Over the years,
many numerical simulation schemes, such as the finite volume method, Lattice-Boltzmann
method, and stochastic immersed boundary method have been employed for this purpose. In
the present study, the fluctuating hydrodynamics approach is considered. This essentially
consists of adding stochastic stresses to the stress tensor (random stress) in the momentum
equation and stochastic fluxes to the heat flux where an energy equation is present in the
formulation. The fluctuating hydrodynamic equations for the fluid coupled with the
equations of motion for the nanoparticle result in the description of the Brownian motion of
a nanoparticle in a fluid [5].

In this paper, a direct numerical simulation adopting an arbitrary Lagrangian-Eulerian based
finite element method is employed to simulate the Brownian motion of a nanoparticle in an
incompressible Newtonian fluid contained in a horizontal micron sized circular tube. Both
translational and rotational motions of a nanoparticle in a (i) stationary fluid medium, and
(ii) Poiseuille flow are investigated. The results for the attainment of thermal equilibrium
between the particle and the surrounding medium, diffusivity for the particle in the medium,
effect of the presence of the confining vessel wall on particle displacement and diffusivity
are evaluated and discussed in detail. The result as appropriate to a compressible fluid
medium are also reported.

2 THEORETICAL FORMULATION
The Brownian motion of a nanoparticle in an incompressible Newtonian fluid contained in a
horizontal circular vessel is considered. The fluid and particle equations are formulated in an
inertial frame of reference with the origin coinciding with the center of the vessel. The
diameter, D, and the length, L, of the vessel (tube) are very large compared to the particle
size, d, the diameter of the particle. Two different cases for the fluid medium are considered:
a fluid at rest in a cylindrical vessel, and a fully developed Poiseuille flow in a circular tube.
Initially, a nanoparticle is introduced either at the vessel (tube) centerline or at suitably
chosen locations away from the center line towards the bounding wall. In the numerical
simulation for Poiseuille flow, the particle is initially fixed at the starting location and the
flow is allowed to evolve until the flow is fully developed in the entire domain. Then the
particle is released and allowed to move (see, [5]). This way, the velocity profiles in the flow
cases are fully developed in the domain of interest and calculations are effected in the fully
developed regime. No body force is considered either for the particle or for the fluid domain.
At time t = 0, the nanoparticle is subjected to Brownian motion in each case. The motion of
the nanoparticle is determined by the hydrodynamic forces and torques acting on the particle
and the wall interactions.

The motion of an incompressible Newtonian fluid satisfies the conservation of mass and
momentum given by

(1)

(2)

where U and ρ(f) are the velocity and density of the fluid, respectively, σ is the stress tensor,
p is the pressure, J is the identity tensor, and μ is the dynamic viscosity. The random stress
tensor S is assumed to be a Gaussian with
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(3)

where 〈 〉 is the ensemble average, kB is the Boltzmann constant, T is the absolute
temperature, δij is the Kronecker delta, and the Dirac delta function δ(x − x′) denotes that
the components of the random stress tensor are spatially uncorrelated (Markovian). The right
hand side of equation (3) shows that the mean and variance of the thermal fluctuations are
chosen to be consistent with the fluctuation-dissipation theorem [2, 3] for an incompressible
fluid.

For a rigid particle suspended in an incompressible Newtonian fluid, the translational and
rotational motions of the particle satisfies Newton’s second law and the Euler equation,
respectively,

(4)

where m is the mass of the particle, I is its moment of inertia, and, U and ω are the
translational and angular velocities of the particle, respectively. The hydrodynamic force F
and torque T acting on the particle are given by

(5)

where X is the position of the centroid of the particle, (x − X) is a vector from the center of
the particle to a point on its surface, ∂Σp denotes the particle surface, and n̂ is the unit
normal vector on the surface of the particle pointing into the particle.

The initial and boundary conditions for the problem are

(6)

(7)

(8)

where up is the prescribed velocity (zero or fully developed Poiseuille flow inlet profile), Σ0
is the domain occupied by the fluid and ∂Σi and ∂Σo are the inlet and outlet boundaries,
respectively. The stochastic governing equations (1) – (5) along with the initial and
boundary conditions (6) – (8) are solved numerically. It is assumed that there is no body
torque acting at any point in the fluid and the viscous stress tensor, σ, is symmetric. A
numerical simulation at a mesoscopic scale involving a particle in a fluid could be based on
a discretization of the equations (1) – (8). However, the discrete forms have to satisfy the
fluctuation-dissipation theorem [4]. The details of the finite-element spatial and temporal
discretization, and, mesh movement algorithm are discussed in [5].
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3 RESULTS AND DISCUSSION
A solid spherical particle of radius a = 200nm or 300nm is initially placed at the center of a
cylindrical tube (R = 5μm) containing a Newtonian fluid. Both, quiescent and fully
developed Poiseuille flows are considered. The computational domain moves with the
particle, and from the particle location, the ends of the computational domain are at a
distance of 20a at any instant of time [5]. The physical parameters chosen are: kB =
1.3806503 × 10−23 kgm2/s2K; μ = 10−3 kg/ms; ρ(f) = 103 kg/m3; and three particle densities
in the range, 990kg/m3 ≤ ρ(p) ≤ 1010 kg/m3. The temperature of the fluid is initially set to Tp
= 310K and the particle at zero degrees. The maximum fluid velocity for Poiseuille flow
presented in this study is Umax = 10mm/s, relevant to some biological applications. For this
Umax, the flow Reynolds number, Ref = ρ(f)RUmax/μ = 5 × 10−2 and the particle Reynolds
number, Rep = ρ(f)aUmax/μ = 2.5 × 10−3.

The different time scales involved in this study are: (i) hydrodynamic time scale, τv = a2/v;
Brownian time scales, (ii) τb = m/ζ(t) and (iii) τd = a2ζ(t)/kBT. Here, v is the kinematic
viscosity and ζ(t) = 6πμa is the Stokes dissipative friction force coefficient for a sphere. It is
required that the time step for the numerical simulation Δt be smaller than the smallest of all
the physical time scales. The simulations presented in this study have been carried out for
long enough durations to allow for the temperature of the particle to equilibrate - i.e., if N is
the number of simulated time steps then N · Δt = t ? τv. The number of time steps depends
upon equilibration of particle temperature, or determination of velocity autocorrelation
functions (VACFs) and mean square displacements (MSDs). In order to ensure the
uniqueness of the realizations, different initial seeds are chosen for a Gaussian random
number generator. To account for compressibility effects, the particle mass m is augmented
by an added mass m0/2, M = m + m0/2, where m0 is the mass of the displaced fluid [6].

Figure 1 shows that translational and rotational temperatures of nearly neutrally buoyant
Brownian particles, thermally equilibrated, in a quiescent fluid medium are independent of
the density of the particle in relation to that of fluid. The error bars have been plotted from
standard deviations of the temperatures obtained with 15 different realizations.

Figure 2 shows the numerically simulated components of (U − Ū) (Figure 2(a),(c)) and (ω −
ω̄) (Figure 2(b),(d)) (represented by three different symbols) of the nanoparticle (a = 200nm)
are compared with the analytical Maxwell-Boltzmann distribution (MBD) with a zero mean
and variance of kBT/M and kBT/I, respectively. It is observed that each degree of freedom
individually follows MBD within 5% error (see dotted line in Figure 2). This validates the
numerical procedure employed in this study.

Figures 3 (a) and (c) show the numerically obtained translational and rotational VACFs of a
nearly neutrally buoyant nanoparticle (a = 300nm) in a quiescent fluid medium. It is
observed that the translational and rotational VACFs of the Brownian particle have power-
law decays, Bt−3/2 and Ct−5/2, respectively, over long times, where B = M ρ(f)1/2/12π3/2μ3/2

and C = Iρ(f)3/2/32π3/2μ5/2. The error bars have been plotted from standard deviations of the
decay at particular time instants obtained with 15 different realizations.

Figures 3 (b) and (d) show the numerically obtained translational and rotational MSDs of
nearly neutrally buoyant nanoparticle (a = 300nm) in a quiescent fluid medium, initially
placed at the center of the vessel (R = 5μm), for both short and long times. It is observed
that in the regime where the particle’s motion is dominated by its own inertia (ballistic), the
translational and rotational motions of the particle follow (3kBT/M)t2 and (3kBT/I)t2,
respectively. In the diffusive regime, t ? τb, the translational and rotational MSDs increase

linearly in time to follow  (Stokes-Einstein relation) and  (Stokes-Einstein-Debye
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relation), respectively, where , and  are the
translational and rotational self-diffusion coefficients.

Tables 1 and 2 respectively show the numerically obtained translational and rotational,
ballistic and diffusive regimes for various size of nanoparticle. It is observed that higher the
radius of the particle, longer the time taken by the translational and rotational motion of the
particle to attain the Stokes-Einstein and Stokes-Einstein-Debye limits, respectively, in the
diffusive regime.

Figure 4 shows the numerically obtained parallel (x direction) and perpendicular (y
direction) MSDs of nearly neutrally buoyant particles of different radii initially placed at
various distances, h, from the tube wall, both in a quiescent medium and in a Poiseuille
flow.

It is observed that for a given particle of radius a, the diffusivity of the particle decreases
closer to the wall (i.e., as h → 0, Dw/D∞ decreases). Similarly, for a given location of the
particle from the wall, h, the diffusivity of the particle decreases for the larger particle (i.e.,
as a increases).
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Figure 1.
Translational and rotational temperatures of a nearly neutrally buoyant nanoparticle in a
stationary fluid medium as a function of the particle density normalized with fluid density.
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Figure 2.
Equilibrium probability of the (a) translational and (b) rotational velocities of the
nanoparticle (a = 200nm) in a stationary fluid medium for ρ(p)/ρ(f) = 0.99 and 1.01.
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Figure 3.
Translational and rotational VACFs and MSDs of a nanoparticle particle of radius a =
300nm and ρ(p)/ρ(f) = 0.99 in a stationary fluid medium.
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Figure 4.
The translational diffusion coefficient of nearly neutrally buoyant Brownian particles of
different radii a initially placed at different locations h from the wall of the circular vessel in
a quiescent medium. Solid and dashed lines correspond to the perturbation solutions given in
[7].
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Table 1

Translational ballistic and diffusive regimes for different size of particles.

a Ballistic regime Diffusive regime

200nm 0.107 ≤ t/τv ≤ 0.178 t/τv ≥ 5.98

300nm 0.251 ≤ t/τv ≤ 0.501 t/τv ≥ 19.95
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Table 2

Rotational ballistic and diffusive regimes for different size of particles.

a Ballistic regime Diffusive regime

200nm 0.045 ≤ t/τv ≤ 0.1 t/τv ≥ 0.8

300nm 0.214 ≤ t/τv ≤ 0.428 t/τv ≥ 2.8
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