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Abstract
In cognitive science and neuroscience, there have been two leading models describing how
humans perceive and classify facial expressions of emotion—the continuous and the categorical
model. The continuous model defines each facial expression of emotion as a feature vector in a
face space. This model explains, for example, how expressions of emotion can be seen at different
intensities. In contrast, the categorical model consists of C classifiers, each tuned to a specific
emotion category. This model explains, among other findings, why the images in a morphing
sequence between a happy and a surprise face are perceived as either happy or surprise but not
something in between. While the continuous model has a more difficult time justifying this latter
finding, the categorical model is not as good when it comes to explaining how expressions are
recognized at different intensities or modes. Most importantly, both models have problems
explaining how one can recognize combinations of emotion categories such as happily surprised
versus angrily surprised versus surprise. To resolve these issues, in the past several years, we have
worked on a revised model that justifies the results reported in the cognitive science and
neuroscience literature. This model consists of C distinct continuous spaces. Multiple (compound)
emotion categories can be recognized by linearly combining these C face spaces. The dimensions
of these spaces are shown to be mostly configural. According to this model, the major task for the
classification of facial expressions of emotion is precise, detailed detection of facial landmarks
rather than recognition. We provide an overview of the literature justifying the model, show how
the resulting model can be employed to build algorithms for the recognition of facial expression of
emotion, and propose research directions in machine learning and computer vision researchers to
keep pushing the state of the art in these areas. We also discuss how the model can aid in studies
of human perception, social interactions and disorders.
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1. Introduction
The face is an object of major importance in our daily lives. Faces tell us the identity of the
person we are looking at and provide information on gender, attractiveness and age, among
many others. Of primary interest is the production and recognition of facial expressions of
emotion. Emotions play a fundamental role in human cognition (Damasio, 1995) and are
thus essential in studies of cognitive science, neuroscience and social psychology. Facial
expressions of emotion could also play a pivotal role in human communication (Schmidt and
Cohn, 2001). And, sign languages use facial expressions to encode part of the grammar
(Wilbur, 2011). It has also been speculated that expressions of emotion were relevant in
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human evolution (Darwin, 1872). Models of the perception of facial expressions of emotion
are thus important for the advance of many scientific disciplines.

A first reason machine learning and computer vision researchers are interested in creating
computational models of the perception of facial expressions of emotion is to aid studies in
the above sciences (Martinez, 2003). Furthermore, computational models of facial
expressions of emotion are important for the development of artificial intelligence (Minsky,
1988) and are essential in human-computer interaction (HCI) systems (Pentland, 2000).

Yet, as much as we understand how facial expressions of emotion are produced, very little is
known on how they are interpreted by the human visual system. Without proper models, the
scientific studies summarized above as well as the design of intelligent agents and efficient
HCI platforms will continue to elude us. A HCI system that can easily recognize expressions
of no interest to the human user is of limited interest. A system that fails to recognize
emotions readily identified by us is worse.

In the last several years, we have defined a computational model consistent with the
cognitive science and neuroscience literature. The present paper presents an overview of this
research and a perspective of future areas of interest. We also discuss how machine learning
and computer vision should proceed to successfully emulate this capacity in computers and
how these models can aid in studies of visual perception, social interactions and disorders
such as schizophrenia and autism. In particular, we provide the following discussion.

• A model of human perception of facial expressions of emotion: We provide an
overview of the cognitive science literature and define a computational model
consistent with it.

• Dimensions of the computational space: Recent research has shown that human
used mostly shape for the perception and recognition of facial expressions of
emotion. In particular, we show that configural features are of much use in this
process. A configural feature is defined as a non-rotation invariant modeling of the
distance between facial components; for example, the vertical distance between
eyebrows and mouth.

• We argue that to overcome the current problems of face recognition algorithms
(including identity and expressions), the area should make a shift toward a more
shape-based modeling. Under this model, the major difficulty for the design of
computer vision and machine learning systems is that of precise detection of the
features, rather than classification. We provide a perspective on how to address
these problems.

The rest of the paper is organized as follows. Section 2 reviews relevant research on the
perception of facial expressions of emotion by humans. Section 3 defines a computational
model consistent with the results reported in the previous section. Section 4 illustrates the
importance of configural and shape features for the recognition of emotions in face images.
Section 5 argues that the real problem in machine learning and computer vision is a
detection one and emphasizes the importance of research in this domain before we can move
forward with improved algorithms of face recognition. In Section 6, we summarize some of
the implications of the proposed model. We conclude in Section 7.

2. Facial Expressions: From Production to Perception
The human face is an engineering marvel. Underneath our skin, a large number of muscles
allow us to produce many configurations. The face muscles can be summarized as Action
Unit (AU) (Ekman and Friesen, 1976) defining positions characteristic of facial expressions
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of emotion. These face muscles are connected to the motor neurons in the cerebral cortex
through the corticobulbar track. The top muscles are connected bilaterally, while the bottom
ones are connected unilaterally to the opposite hemisphere. With proper training, one can
learn to move most of the face muscles independently. Otherwise, facial expressions take on
predetermined configurations.

There is debate on whether these predetermined configurations are innate or learned (nature
vs. nurture) and whether the expressions of some emotions is universal (Izard, 2009). By
universal, we mean that people from different cultures produce similar muscle movements
when expressing some emotions. Facial expressions typically classified as universal are joy,
surprise, anger, sadness, disgust and fear (Darwin, 1872; Ekman and Friesen, 1976).
Universality of emotions is controversial, since it assumes facial expressions of emotion are
innate (rather than culturally bound). It also favors a categorical perception of facial
expressions of emotion. That is, there is a finite set of predefined classes such as the six
listed above. This is known as the categorical model.

In the categorical model, we have a set of C classifiers. Each classifier is specifically
designed to recognize a single emotion label, such as surprise. Several psychophysical
experiments suggest the perception of emotions by humans is categorical (Ekman and
Rosenberg, 2005). Studies in neuroscience further suggest that distinct regions (or pathways)
in the brain are used to recognize different expressions of emotion (Calder et al., 2001).

An alternative to the categorical model is the continuous model (Russell, 2003; Rolls, 1990).
Here, each emotion is represented as a feature vector in a multidimensional space given by
some characteristics common to all emotions. One such model is Russell’s 2-dimensional
circumplex model (Russell, 1980), where the first basis measures pleasure-displeasure and
the second arousal. This model can justify the perception of many expressions, whereas the
categorical model needs to define a class (i.e., classifier) for every possible expression. It
also allows for intensity in the perception of the emotion label. Whereas the categorical
model would need to add an additional computation to achieve this goal (Martinez, 2003), in
the continuous model the intensity is intrinsically defined in its representation. Yet, morphs
between expressions of emotions are generally classified to the closest class rather than to an
intermediate category (Beale and Keil, 1995). Perhaps more interestingly, the continuous
model better explains the caricature effect (Rhodes et al., 1987; Calder et al., 1997), where
the shape features of someone’s face are exaggerated (e..g, making a long nose longer). This
is because the farther the feature vector representing that expression is from the mean (or
center of the face space), the easier it is to recognize it (Valentine, 1991).

In neuroscience, the multidimensional (or continuous) view of emotions was best exploited
under the limbic hypothesis (Calder et al., 2001). Under this model, there should be a neural
mechanism responsible for the recognition of all facial expressions of emotion, which was
assumed to take place in the limbic system. Recent results have however uncovered
dissociated networks for the recognition of most emotions. This is not necessarily proof of a
categorical model, but it strongly suggests that there are at least distinct groups of emotions,
each following distinct interpretations.

Furthermore, humans are only very good at recognizing a number of facial expressions of
emotion. The most readily recognized emotions are happiness and surprise. It has been
shown that joy and surprise can be robustly identified extremely accurately at almost any
resolution (Du and Martinez, 2011). Figure 1 shows a happy expression at four different
resolutions. The reader should not have any problem recognizing the emotion in display
even at the lowest of resolutions. However, humans are not as good at recognizing anger and
sadness and are even worse at fear and disgust.
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A major question of interest is the following. Why are some facial configurations more
easily recognizable than others? One possibility is that expressions such as joy and surprise
involve larger face transformations than the others. This has recently proven not to be the
case (Du and Martinez, 2011). While surprise does have the largest deformation, this is
followed by disgust and fear (which are poorly recognized). Learning why some expressions
are so readily classified by our visual system should facilitate the definition of the form and
dimensions of the computational model of facial expressions of emotion.

The search is on to resolve these two problems. First, we need to determine the form of the
computational space (e.g., a continuous model defined by a multidimensional space).
Second, we ought to define the dimensions of this model (e.g., the dimensions of this
multidimensional face space are given by configural features). In the following sections we
overview the research we have conducted in the last several years leading to a solution to the
above questions. We then discuss on the implications of this model. In particular, we
provide a perspective on how machine learning and computer vision researcher should move
forward if they are to define models based on the perception of facial expressions of emotion
by humans.

3. A Model of the Perception of Facial Expressions of Emotion
In cognitive science and neuroscience researchers have been mostly concerned with models
of the perception and classification of the six facial expressions of emotion listed above.
Similarly, computer vision and machine learning algorithms generally employ a face space
to represent these six emotions. Sample feature vectors or regions of this feature space are
used to represent each of these six emotion labels. This approach has a major drawback—it
can only detect one emotion from a single image. In machine learning, this is generally done
by a winner-takes-all approach (Torre and Cohn, 2011). This means that when a new
category wants to be included, one generally needs to provide labeled samples of it to the
learning algorithm.

Yet, everyday experience demonstrates that we can perceive more than one emotional
category in a single image (Martinez, 2011), even if we have no prior experience with it. For
example, Figure 2 shows images of faces expressing different surprises—happily surprised,
angrily surprised, fearfully surprised, disgustedly surprised and the typically studied
surprise.

If we were to use a continuous model, we would need to have a very large number of labels
represented all over the space; including all possible types of surprises. This would require a
very large training set, since each possible combination of labels would have to be learned.
But this is the same problem a categorical model would face. In such a case, dozens if not
hundreds of sample images for each possible category would be needed. Alternatively,
Susskind et al. (2007) have shown that the appearance of a continuous model may be
obtained from a set of classifiers defining a small number of categories.

If we define an independent computational (face) space for a small number of emotion
labels, we will only need sample faces of those few facial expressions of emotion. This is
indeed the approach we have taken. Details of this model are given next.

Key to this model is to note that we can define new categories as linear combinations of a
small set of categories. Figure 3 illustrates this approach. In this figure, we show how we
can obtain the above listed different surprises as a linear combination of known categories.
For instance, happily surprised can be defined as expressing 40% joy plus 60% surprise, that
is, expression = .4 happy + .6 surprise. A large number of such expressions exist that are a
combination of the six emotion categories listed above and, hence, the above list of six
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categories is a potential set of basic emotion classes. Also, there is some evidence form
cognitive science to suggest that these are important categories for humans (Izard, 2009) Of
course, one needs not base the model on this set of six emotions. This is an area that will
undoubtedly attract lots of interest. A question of particular interest is to determine not only
which basic categories to include in the model but how many. To this end both, cognitive
studies with humans and computational extensions of the proposed model will be necessary,
with the results of one area aiding the research of the other.

The approach described in the preceding paragraph would correspond to a categorical
model. However, we now go one step further and define each of these face spaces as
continuous feature spaces, Figure 3. This allows for the perception of each emotion at
different intensities, for example, less happy to exhilarant (Neth and Martinez, 2010). Less
happy would correspond to a feature vector (in the left most face space in the figure) closer
to the mean (or origin of the feature space). Feature vectors farther from the mean would be
perceived as happier. The proposed model also explains the caricature effect, because within
each category the face space is continuous and exaggerating the expression will move the
feature vector representing the expression further from the mean of that category.

Furthermore, the proposed model can define new terms, for example, “hatred” which is
defined as having a small percentage of disgust and a larger percentage of anger; still linear.
In essence, the intensity observed in this continuous representation defines the weight of the
contribution of each basic category toward the final decision (classification). It also allows
for the representation and recognition of a very large number of emotion categories without
the need to have a categorical space for each or having to use many samples of each
expression as in the continuous model.

The proposed model thus bridges the gap between the categorical and continuous ones and
resolves most of the debate facing each of the models individually. To complete the
definition of the model, we need to specify what defines each of the dimensions of the
continuous spaces representing each category. We turn to this problem in the next section.

4. Dimensions of the Model
In the early years of computer vision, researchers derived several feature- and shape-based
algorithms for the recognition of objects and faces (Kanade, 1973; Marr, 1976; Lowe, 1983).
In these methods, geometric, shape features and edges were extracted from an image and
used to build a model of the face. This model was then fitted to the image. Good fits
determined the class and position of the face.

Later, the so-called appearance-based approach, where faces are represented by their pixel-
intensity maps or the response of some filters (e.g., Gabors), was studied (Sirovich and
Kirby, 1987). In this alternative texture-based approach, a metric is defined to detect and
recognize faces in test images (Turk and Pentland, 1991). Advances in pattern recognition
and machine learning have made this the preferred approach in the last two decades
(Brunelli and Poggio, 1993).

Inspired by this success, many algorithms developed in computer vision for the recognition
of expressions of emotion have also used the appearance-based model (Torre and Cohn,
2011). The appearance-based approach has also gained momentum in the analysis of AUs
from images of faces. The main advantage of the appearance-based model is that one does
not need to predefine a feature or shape model as in the earlier approaches. Rather, the face
model is inherently given by the training images.
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The appearance-based approach does provide good results from near-frontal images of a
reasonable quality, but it suffers from several major inherent problems. The main drawback
is its sensitivity to image manipulation. Image size (scale), illumination changes and pose
are all examples of this. Most of these problems are intrinsic to the definition of the
approach since this cannot generalize well to conditions not included in the training set. One
solution would be to enlarge the number of training images (Martinez, 2002). However,
learning from very large data sets (in the order of millions of samples) is, for the most part,
unsolved (Lawrence, 2005). Progress has been made in learning complex, non-linear
decision boundaries, but most algorithms are unable to accommodate large amounts of data
—either in space (memory) or time (computation).

This begs the question as to how the human visual system solves the problem. One could
argue that, throughout evolution, the homo genus (and potentially before it) has been
exposed to trillions of faces. This has facilitated the development of simple, yet robust
algorithms. In computer vision and machine learning, we wish to define algorithms that take
a shorter time to learn a similarly useful image representation. One option is to decipher the
algorithm used by our visual system. Research in face recognition of identity suggests that
the algorithm used by the human brain is not appearance-based (Wilbraham et al., 2008).
Rather, it seems that, over time, the algorithm has identified a set of robust features that
facilitate rapid categorization (Young et al., 1987; Hosie et al., 1988; Barlett and Searcy,
1993).

This is also the case in the recognition of facial expressions of emotion (Neth and Martinez,
2010). Figure 4 shows four examples. These images all bear a neutral expression, that is, an
expression associated to no emotion category. Yet, human subjects perceive them as
expressing sadness, anger, surprise and disgust. The most striking part of this illusion is that
these faces do not and cannot express any emotion, since all relevant AUs are inactive. This
effect is called over-generalization (Zebrowitz et al., 2010), since human perception is
generalizing the learned features defining these face spaces over to images with a different
label.

The images in Figure 4 do have something in common though—they all include a configural
transformation. What the human visual system has learned is that faces do not usually look
like those in the image. Rather the relationship (distances) between brows, nose, mouth and
the contour of the face is quite standard. They follow a Gaussian distribution with small
variance (Neth and Martinez, 2010). The images shown in this figure however bear uncanny
distributions of the face components. In the sad-looking example, the distance between the
brows and mouth is larger than normal (Neth and Martinez, 2009) and the face is thinner
than usual (Neth and Martinez, 2010). This places this sample face, most likely, outside the
99% confidence interval of all Caucasian faces on these two measures. The angry-looking
face has a much-shorter-than-average brow to mouth distance and a wide face. While the
surprise-looking face has a large distance between eyes and brows and a thinner face. The
disgust-looking face has a shorter distance between brows, eyes, nose and mouth. These
effects are also clear in the schematic faces shown in the figure.

Yet, configural cues alone are not sufficient to create an impressive, lasting effect. Other
shape changes are needed. For example, the curvature of the mouth in joy or the opening of
the eyes—showing additional sclera—in surprise. Note how the surprise-looking face in
Figure 4 appears to also express disinterest or sleepiness. Wide-open eyes would remove
these perceptions. But this can only be achieved with a shape change. Hence, our face
spaces should include both, configural and shape features. It is important to note that
configural features can be obtained from an appropriate representation of shape. Expressions
such as fear and disgust seem to be mostly (if not solely) based on shape features, making
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recognition less accurate and more susceptible to image manipulation. We have previously
shown (Neth and Martinez, 2010) that configural cues are amongst the most discriminant
features in a classical (Procrustes) shape representation, which can be made invariant to 3D
rotations of the face (Hamsici and Martinez, 2009a).

Thus, each of the six categories of emotion (happy, sad, surprise, angry, fear and disgust) is
represented in a shape space given by classical statistical shape analysis. First the face and
the shape of the major facial components are automatically detected. This includes
delineating the brows, eyes, nose, mouth and jaw line. The shape is then sample with d
equally spaced landmark points. The mean (center of mass) of all the points is computed.
The 2d-dimensional shape feature vector is given by the x and y coordinates of the d shape
landmarks subtracted by the mean and divided by its norm. This provides invariance to
translation and scale. 3D rotation invariance can be achieved with the inclusion of a kernel
as defined in Hamsici and Martinez (2009a). The dimensions of each emotion category can
now be obtained with the use of an appropriate discriminant analysis method. We use the
algorithm defined by Hamsici and Martinez (2008) because it minimizes the Bayes
classification error.

As an example, the approach detailed in this section identifies the distance between the
brows and mouth and the width of the face as the two most important shape features of
anger and sadness. It is important to note that, if we reduce the computational spaces of
anger and sadness to 2-dimensions, they are almost indistinguishable. Thus, it is possible
that these two categories are in fact connected by a more general one. This goes back to our
question of the number of basic categories used by the human visual system. The face space
of anger and sadness is illustrated in Figure 5, where we have also plotted the feature vectors
of the face set of Ekman and Friesen (1976).

As in the above, we can use the shape space defined above to find the two most discriminant
dimensions separating each of the six categories listed earlier. The resulting face spaces are
shown in Figure 6. In each space, a simple linear classifier in these spaces can successfully
classify each emotion very accurately. To test this, we trained a linear support vector
machine (Vapnik, 1998) and use the leave-one-out test on the data set of images of Ekman
and Friesen (1976). Happiness is correctly classified 99% of the time. Surprise and disgust
95% of the time. Sadness 90% and anger 94%. While fear is successfully classified at 92%.
Of course, adding additional dimensions in the feature space and using nonlinear classifiers
can readily achieve perfect classification (i.e., 100%). The important point from these results
is to note that simple configural features can linearly discriminate most of the samples in
each emotion. These features are very robust to image degradation and are thus ideal for
recognition in challenging environments (e.g., low resolution)—a message to keep in mind
for the development of machine learning and computer vision systems.

5. Precise Detection of Faces and Facial Features
As seen thus far, human perception is extremely tuned to small configural and shape
changes. If we are to develop computer vision and machine learning systems that can
emulate this capacity, the real problem to be addressed by the community is that of precise
detection of faces and facial features (Ding and Martinez, 2010). Classification is less
important, since this is embedded in the detection process; that is, we want to precisely
detect changes that are important to recognize emotions.

Most computer vision algorithms defined to date provide, however, inaccurate detections.
One classical approach to detection is template matching. In this approach, we first define a
template (e.g., the face or the right eye or the left corner of the mouth or any other feature
we wish to detect). This template is learned from a set of sample images; for example,
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estimating the distribution or manifold defining the appearance (pixel map) of the object
(Yang et al., 2002). Detection of the object is based on a window search. That is, the learned
template is compared to all possible windows in the image. If the template and the window
are similar according to some metric, then the bounding box defining this window marks the
location and size (scale) of the face. The major drawback of this approach is that it yields
imprecise detections of the learned object, because a window of an non-centered face is
more similar to the learned template than a window with background (say, a tree). An
example of this result is shown in Figure 7.

A solution to the above problem is to learn to discriminate between non-centered windows
of the objects and well centered ones (Ding and Martinez, 2010). In this alternative, a non-
linear classifier (or some density estimator) is employed to discriminate the region of the
feature space defining well-centered windows of the objects and non-centered ones. We call
these non-centered windows the context of the object, in the sense that these windows
provide the information typically found around the object but do not correspond to the actual
face. This features versus context idea is illustrated in Figure 8. This approach can be used
to precisely detect faces, eyes, mouth, or any other facial feature where there is a textural
discrimination between it and its surroundings. Figure 9 shows some sample results of
accurate detection of faces and facial features with this approach.

The same features versus context idea can be applied to other detection and modeling
algorithms, such as Active Appearance Models (AAM) (Cootes et al., 2001). AAM use a
linear model—usually based on Principal Component Analysis (PCA)—to learn the
relationship between the shape of an object (e.g., a face) and its texture. One obvious
limitation is that the learned model is linear. A solution to this problem is to employ a kernel
map. Kernel PCA is one option. Once we have introduced a kernel we can move one step
further and use it to address additional issues of interest. A first capability we may like to
add to a AAM is the possibility to work with three-dimensions. The second could be to omit
the least-squares iterative nature of the Procrustes alignment required in most statistical
shape analysis methods such as AAM. An approach that successfully addresses these
problem uses a set of kernels called Rotation Invariant Kernels (RIK) (Hamsici and
Martinez, 2009a). RIK add yet another important advantage to shape analysis: they provide
rotation invariance. Thus, once the shape is been mapped to the RIK space, objects (e.g.,
faces) are invariant to translation, scale and rotation. These kernels are thus very attractive
for the design of AAM algorithms (Hamsici and Martinez, 2009b).

By now we know that humans are very sensitive to small changes. But we do not yet know
how sensitive (or accurate). Of course, it is impossible to be pixel accurate when marking
the boundaries of each facial feature, because edges blur over several pixels. This can be
readily observed by zooming in the corner of an eye. To estimate the accuracy of human
subjects, we performed the following experiment. First, we designed a system that allows
users to zoom in at any specified location to facilitate delineation of each of the facial
features manually. Second, we asked three people (herein referred to as judges) to manually
delineate each of the facial components of close to 4, 000 images of faces. Third, we
compared the markings of each of the three judges. The within-judge variability was (on
average) 3.8 pixels, corresponding to a percentage of error of 1.2% in terms of the size of
the face. This gives us an estimate of the accuracy of the manual detections. The average
error of the algorithm of Ding and Martinez (2010) is 7.3 pixels (or 2.3%), very accurate but
still far short of what humans can achieve. Thus, further research is needed to develop
computer vision algorithms that can extract even more accurate detection of faces and its
components.
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Another problem is what happens when the resolution of the image diminishes. Humans are
quite robust to these image manipulations (Du and Martinez, 2011). One solution to this
problem is to use manifold learning. In particular, we wish to define a non-linear mapping f
(.) between the image of a face and its shape. This is illustrated in Figure 10. That is, given
enough sample images and their shape feature vectors described in the preceding section, we
need to find the function which relates the two. This can be done, for example, using kernel
regression methods (Rivera and Martinez, 2012). One of the advantages of this approach is
that this function can be defined to detect shape from very low resolution images or even
under occlusions. Occlusions can be “learned” by adding synthetic occlusions or missing
data in the training samples but leaving the shape feature vector undisturbed (Martinez,
2002). Example detections using this approach are shown in Figure 11.

One can go one step further and recover the three-dimensional information when a video
sequence is available (Gotardo and Martinez, 2011a). Recent advances in non-rigid structure
from motion allow us to recover very accurate reconstructions of both the shape and the
motion even under occlusion. A recent approach resolves the nonlinearity of the problem
using kernel mappings (Gotardo and Martinez, 2011b).

Combining the two approaches to detection defined in this section should yield even more
accurate results in low-resolution images and under occlusions or other image
manipulations. We hope that more research will be devoted to this important topic in face
recognition.

The approaches defined in this section are a good start, but much research is needed to make
these systems comparable to human accuracies. We argue that research in machine learning
should address these problems rather than the typical classification one. A first goal is to
define algorithms that can detect face landmarks very accurately even at low resolutions.
Kernel methods and regression approaches are surely good solutions as illustrated above.
But more targeted approaches are needed to define truly successful computational models of
the perception of facial expressions of emotion.

6. Discussion
In the real world, occlusions and unavoidable imprecise detections of the fiducial points,
among others, are known to affect recognition (Torre and Cohn, 2011; Martinez, 2003).
Additionally, some expressions are, by definition, ambiguous. Most importantly though
seems to be the fact that people are not very good at recognizing facial expressions of
emotion even under favorable condition (Du and Martinez, 2011). Humans are very robust
at detection joy and surprise from images of faces; regardless of the image conditions or
resolution. However, we are not as good at recognizing anger and sadness and are worst at
fear and disgust.

The above results suggest that there could be three groups of expressions of emotion. The
first group is intended for conveying emotions to observers. These expressions have evolved
a facial construct (i.e., facial muscle positions) that is distinctive and readily detected by an
observer at short or large distances. Example expressions in this group are happiness and
surprise. A computer vision system—especially a HCI—should make sure these expressions
are accurately and robustly recognized across image degradation. Therefore, we believe that
work needs to be dedicated to make systems very robust when recognizing these emotions.

The second group of expressions (e.g., anger and sadness) is reasonably recognized at close
proximity only. A computer vision system should recognize these expressions in good
quality images, but can be expected to fail as the image degrades due to resolution or other
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image manipulations. An interesting open question is to determine why this is the case and
what can be learned about human cognition from such a result.

The third and final group of emotions constitutes those at which humans are not very good
recognizers. This includes expressions such as fear and disgust. Early work (especially in
evolutionary psychology) had assumed that recognition of fear was primal because it served
as a necessary survival mechanism (LeDoux, 2000). Recent studies have demonstrated much
the contrary. Fear is generally poorly recognized by healthy human subjects (Smith and
Schyns, 2009; Du and Martinez, 2011). One hypothesis is that expressions in this group
have evolved for other than communication reasons. For example, it has been proposed that
fear opens sensory channels (i.e., breathing in and wide open eye), while disgust closes them
(i.e., breathing out and closed eyes) (Susskind et al., 2008). Under this model, the receiver
has learned to identify those face configurations to some extent, but without the involvement
of the sender—modifying the expression to maximize transmission of information through a
noisy environment—the recognition of these emotions has remained poor. Note that people
can be trained to detect such changes quite reliably (Ekman and Rosenberg, 2005), but this
is not the case for the general population.

Another area that will require additional research is to exploit other types of facial
expressions. Facial expressions are regularly used by people in a variety of setting. More
research is needed to understand these. Moreover, it will be important to test the model in
natural occurring environments. Collection and handling of this data poses several
challenges, but the research described in these pages serves as a good starting point for such
studies. In such cases, it may be necessary to go beyond a linear combination of basic
categories. However, without empirical proof for the need of something more complex than
linear combinations of basic emotion categories, such extensions are unlikely. The cognitive
system has generally evolved the simplest possible algorithms for the analysis or processing
of data. Strong evidence of more complex models would need to be collected to justify such
extensions. One way to do this is by finding examples that cannot be parsed by the current
model, suggesting a more complex structure is needed.

It is important to note that these results will have many applications in studies of agnosias
and disorders. Of particular interest are studies of depression or anxiety disorders.
Depression afflicts a large number of people in the developed countries. Models that can
help us better understand its cognitive processes, behaviors and patterns could be of great
importance for the design of coping mechanisms. Improvements may also be possible if it
were to better understand how facial expressions of emotion affect these people. Other
syndromes such as autism are also of great importance these days. More children than ever
are being diagnosed with the disorder (CDC, 2012; Prior, 2003). We know that autistic
children do not perceive facial expressions of emotion as others do (Jemel et al., 2006) (but
see Castelli, 2005). A modified computational model of the perception of facial expressions
of emotion in autism could help design better teaching tools for this group and may bring us
closer to understanding the syndrome.

There are indeed many great possibilities for machine learning researchers to help move
these studies forward. Extending or modifying the modeled summarized in the present paper
is one way. Developing machine learning algorithms to detect face landmark more
accurately is another. Developing statistical tools that more accurately represent the
underlying manifold or distribution of the data is yet another great way to move the state of
the art forward.
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7. Conclusions
In the present work we have summarized the development of a model of the perception of
facial expressions of emotion by humans. A key idea in this model is to linearly combine a
set of face spaces defining some basic emotion categories. The model is consistent with our
current understanding of human perception and can be successfully exploited to achieve
great recognition results for computer vision and HCI applications. We have shown how, to
be consistent with the literature, the dimensions of these computational spaces need to
encode configural and shape features.

We conclude that to move the state of the art forward, face recognition research has to focus
on a topic that has received little attention in recent years—precise, detailed detection of
faces and facial features. Although we have focused our study on the recognition of facial
expressions of emotion, we believe that the results apply to most face recognition tasks. We
have listed a variety of ways in which the machine learning community can get involved in
this research project and briefly discussed applications in the study of human perception and
the better understanding of disorders.
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Figure 1.
Happy faces at four different resolutions. From left o right: 240 by 160, 120 by 80, 60 by 40,
and 30 by 20 pixels. All images have been resized to a common image size for visualization.
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Figure 2.
Faces expressing different surprise. From left to right: happily surprised, sadly surprised,
angrily surprised, fearfully surprised, disgustedly surprised, and surprise.
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Figure 3.
This figure shows how to construct linear combinations of known categories. At the top of
the figure, we have the known or learned categories (emotions). The coefficients si
determine the contribution of each of these categories to the final perception of the emotion.
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Figure 4.
The four face images and schematics shown above all correspond to neutral expressions
(i.e., the sender does not intend to convey any emotion to the receiver). Yet, most human
subjects interpret these faces as conveying anger, sadness, surprise and disgust. Note that
although these faces look very different from one another, three of them are actually morphs
from the same (original) image.
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Figure 5.
(a) Shown here are the two most discriminant dimensions of the face shape vectors. We also
plot the images of anger and sadness of Ekman and Friesen (1976). In dashed are simple
linear boundaries separating angry and sad faces according to the model. The first dimension
(distance between brows and mouth) successfully classifies 100% of the sample images.
This continuous model is further illustrated in (b). Note that, in the proposed computational
model, the face space defining sadness corresponds to the right-bottom quadrant, while that
of anger is given by the left-top quadrant. The dashed arrows in the figure reflect the fact
that as we move away from the “mean” (or norm) face, recognition of that emotion become
easier.
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Figure 6.
Shown in the above are the six feature spaces defining each of the six basic emotion
categories. A simple linear Support Vector Machine (SVM) can achieve high classifica-tion
accuracies; where we have used a one-versus-all strategy to construct each classifier and
tested it using the leave-one-out strategy. Here, we only used two features (dimensions) for
clarity of presentation. Higher accuracies are obtained if we include additional dimensions
and training samples.
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Figure 7.
Two example of imprecise detections of a face with a state of the art algorithm.
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Figure 8.
The idea behind the features versus context approach is to learn to discriminate between the
feature we wish to detect (e.g., a face, an eye, etc.) and poorly detected versions of it. This
approach eliminates the classical overlapping of multiple detections around the object of
interest at multiple scales. At the same time, it increases the accuracy of the detection
because we are moving away from poor detections and toward precise ones.
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Figure 9.
Precise detections of faces and facial features using the algorithm of (Ding and Martinez,
2010).
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Figure 10.
Manifold learning is ideal for learning mappings between face (object) images and their
shape description vectors.
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Figure 11.
Shape detection examples at different resolutions. Note how the shape estimation is almost
as good regardless of the resolution of the image.
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