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Abstract
Purpose—The purpose of this pilot study is to determine 1) if early changes in both semi-
quantitative and quantitative DCE-MRI parameters, observed after the first cycle of neoadjuvant
chemotherapy in breast cancer patients, show significant difference between responders and non-
responders, and 2) if these parameters can be used as a prognostic indicator of the eventual
response.

Methods—Twenty-eight patients were examined using DCE-MRI pre-, post-one cycle, and just
prior to surgery. The semi-quantitative parameters included longest dimension, tumor volume,
initial area under the curve (iAUC), and signal enhancement ratio (SER) related parameters, while
quantitative parameters included Ktrans, ve, kep, vp, and τi estimated using the standard Tofts-Kety
(TK), extended Tofts-Kety (ETK), and fast exchange regime (FXR) models.

Results—Our preliminary results indicated that the SER washout volume and kep were
significantly different between pathologic complete responders from non-responders (P < 0.05)
after a single cycle of chemotherapy. Receiver operator characteristic (ROC) analysis showed that
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the AUC of the SER washout volume was 0.75, and the AUCs of kep estimated by three models
were 0.78, 0.76, and 0.73, respectively.

Conclusion—In summary, the SER washout volume and kep appear to predict breast cancer
response after one cycle of neoadjuvant chemotherapy. This observation should be confirmed with
additional prospective studies.

INTRODUCTION
Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) involves the serial
acquisition of heavily T1-weighted MR images of a tissue of interest (e.g., a tumor) before
and after an intravenous injection of paramagnetic contrast agent (CA). As the CA enters
into a tissue, it changes the measured MR signal intensity to a degree that depends on its
local distribution and concentration. When the CA is transported out of the tissue the MR
signal intensity returns to its baseline value. By analyzing the associated signal intensity
time course using an appropriate pharmacokinetic model, physiological parameters related
to, for example, blood flow, vessel permeability, and tissue volume fractions can be
extracted for each image voxel or region of interest (ROI) (1).

There have been many efforts employing DCE-MRI as a surrogate biomarker for assessing
and predicting the response of breast tumors to neoadjuvant chemotherapy. Early studies
focused on semi-quantitative analyses employing changes in tumor volume as measured by
contrast enhanced MRI to evaluate treatment response (2-4). For example, Cheung et al (2)
analyzed tumor size differences between pre-treatment and after one cycle of chemotherapy,
and final tumor size response on 33 patients and found all complete responders (defined as
patients without residual cancer) had a tumor size reduction of more than 45% after one
cycle of therapy. Chou et al (3) segmented the tumor volumes of all enhancing voxels before
and after neoadjuvant chemotherapy on 17 breast cancer patients. They reported that the
segmented voxels displaying fast and steady state washout characteristics was highly
correlated with the histopathologic estimation of viable neoplastic tissue volume after
therapy. Martincich et al (4) also noted the tumor volume reduction after two cycles of
chemotherapy was associated with a major histopathological response, based on the analysis
of 30 patients. For other examples of using morphology and anatomical measures to assess
response, the interested reader is referred to references (5-8).

Although the above results are encouraging, morphological characteristics (such as tumor
size and qualitative enhancement patterns) are the temporally downstream effects of
underlying physiological changes, so it is reasonable to hypothesize that changes in metrics
of, for example, tumor perfusion could serve as a surrogate biomarker of early response to
treatment. Therefore, in addition to assessing changes in tumor size, investigators have
begun to examine the quantitative physiological parameters available from DCE-MRI.
Indeed, some efforts have shown that quantitative analysis of DCE-MRI data can accurately
assess (9) or predict treatment response (10,11), as well as predict 5-year survival (12-16).
Padhani et al (10) performed DCE-MRI examinations in 25 patients with primary breast
cancer and found both tumor size and change in the range of the volume transfer constant
(i.e., Ktrans) on the histogram after two cycles of treatment were equally able to predict
eventual response. Ah-See et al (11) acquired DCE-MRI data on 28 patients with primary
breast cancer and, by calculating the changes in seven pharmacokinetic parameters, they
reported that change in the volume transfer constant (Ktrans) was the best predictor of
pathologic non-response. However, not all studies have shown that quantitative DCE-MRI
yields results superior to that obtained by simple volumetrics. For example, Yu et al (17)
reported that changes in early tumor size as estimated from enhancing voxels after one cycle
of neoadjuvant chemotherapy led to a higher area under the receiver operating characteristic
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(ROC) curve than pharmacokinetic parameters estimated in DCE-MRI. We return to this
point in the Discussion section.

Thus, while there have been efforts to employ quantitative analysis of DCE-MRI to predict
therapy response in breast cancer patients receiving neoadjuvant chemotherapy, the field has
not yet determined which techniques and analysis methods—or the time of application of
those methods—are optimal. Considering the significant differences in tumor type,
treatment regimen, number of patients, clinical and pathological endpoints, as well as
imaging data acquisition and modeling techniques, it is not surprising that there is currently
a lack of consensus on this issue. In this study, we contribute to the developing literature on
using DCE-MRI to predict the response of breast cancer to neoadjuvant chemotherapy by
investigating the predictive ability of seven semi-quantitative and 11 quantitative
pharmacokinetic parameters returned from three DCE-MRI pharmacokinetic models. The
purpose of this pilot study is to determine if early changes in both semi-quantitative and
quantitative DCE-MRI parameters, observed after the first cycle of neoadjuvant
chemotherapy, show significant differences between responders and non-responders, and if
these parameters can be used as prognostic indicators of the eventual response. To the best
of our knowledge, this is the first effort to perform such an analysis in this patient
population.

METHODS
Patient Selection

Patients undergoing neoadjuvant chemotherapy as a component of their clinical care were
eligible to participate in the study. No prior systemic therapies for breast cancer were
allowed. All patients had histologically documented invasive carcinoma of the breast with a
sufficient risk of recurrence, based on pre-treatment clinical parameters of size, grade, age
and nodal status, to warrant the use of chemotherapy at the discretion of their treating
medical oncologist. Participating patients provided informed written consent to our
Institutional Review Board approved study.

Treatment Schema
The neoadjuvant chemotherapy regimen was left to the discretion of the treating oncologist
based on patient factors such as menopausal status and age as well as tumor characteristics
such as size, grade, nodal status and receptor status. Receptor testing, including estrogen,
progesterone, and HER2/neu receptor testing, can be used to identify breast tumor molecular
subtype and therefore guide treatment regimens. ER and PR assays were considered positive
if there were at least 1% positive tumor nuclei in the sample on testing in the presence of
expected reactivity of internal (normal epithelial elements) and external controls (18). A
positive HER2 result was IHC staining of 3+ (uniform, intense membrane staining of > 30%
of invasive tumor cells), a fluorescent in situ hybridization (FISH) result of more than six
HER2 gene copies per nucleus or a FISH ratio (HER2 gene signals to chromosome 17
signals) of more than 2.2; a negative result was an IHC staining of 0 or 1+, a FISH result of
less than 4.0 HER2 gene copies per nucleus, or FISH ratio of less than 1.8. Equivocal results
required additional action for final determination (19). Table 1 lists the receptor status for all
patients and the corresponding treatment regimens. DCE-MRI was performed at baseline
(after diagnosis but before the initiation of chemotherapy, t1), after one cycle (t2), and at the
completion of all therapy just prior to surgery (t3).

Study Design
Thirty-six female patients with Stage II/III breast cancer were enrolled in this prospective
study (in which patient recruitment is ongoing). Eight patients were not included in these
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analyses due to the following reasons: withdrawal from the study after the first scan (n = 6),
hardware failure on the scanner (n = 1), and issues with the contrast line (n = 1). Thus, 28
patients were available for assessing the ability of the semi-quantitative and quantitative
DCE-MRI metrics to predict treatment response, while 22 patients were available for
comparing the longest dimensions of the tumor as measured by surgical pathology to the
third MRI exam obtained after completion of neoadjuvant chemotherapy and just prior to
surgery. The median age of the patients was 45 years old (range, 28 – 67 years). The median
time between t1 and t2 was 14 days (range, 5 – 28 days) and the median time between t2 and
t3 was 109 days (range, 57 – 209 days).

Table 1 summarizes the salient features of the study population including the pre-therapy
tumor sizes as measured by physical exam. The post therapy tumor size was determined
from the surgical specimen, and 11 patients were defined as pathologic complete responders
(pCRs; i.e., complete absence of tumor in the surgical specimen), while 17 patients were
defined as non-responders (non-pCRs).

MRI Data Acquisition
DCE-MRI was performed using a Philips 3T Achieva MR scanner (Philips Healthcare, Best,
The Netherlands). A 4-channel receive double-breast coil covering both breasts was used for
20 patients (Invivo Inc., Gainesville, FL), while a 16-channel double-breast coil was used
for eight patients. Data for constructing a T1 map were acquired with an RF-spoiled 3D
gradient echo multi-flip angle approach with TR = 7.9 ms, TE = 1.3 ms, and ten flip angles
from 2 to 20 degrees in two degree increments. The acquisition matrix was 192 × 192 × 20
(full-breast) over a sagittal square field of view (22 cm × 22 cm) with slice thickness of 5
mm, one signal acquisition, and a SENSE factor of 2 for an acquisition time of just under
three minutes. The dynamic scans used identical parameters and a flip angle of 20°. Each
20-slice set was collected in 16 seconds at 25 time points for approximately seven minutes
of scanning. For the DCE study, a catheter placed within an antecubital vein delivered 0.1
mmol/kg (9 – 15 mL, depending on patient weight) of the contrast agent gadopentetate
dimeglumine, Gd-DTPA, (Magnevist, Wayne, NJ) at 2 mL/sec (followed by a saline flush)
via a power injector (Medrad, Warrendale, PA) after the acquisition of three baseline
dynamic scans.

Data Analysis
Determination of the enhancement threshold—In an attempt to limit user
intervention (i.e., to maximally automate the post-processing steps), we sought to determine
a rational enhancement threshold that could be automatically applied to all DCE-MRI data
prior to performing data analysis. We elected to choose the enhancement threshold that
resulted in the highest agreement between the DCE-MRI tumor longest dimension at t3 with
the tumor size measured by surgical pathology. Using such an enhancement threshold would
provide a reasonable estimate of actual tumor voxels to include for the semi-quantitative and
quantitative analyses. Towards this end, for each patient at each time point, the whole tumor
volume was conservatively segmented by manually drawing an ROI to completely surround
the enhancing tumor as seen on each tumor slice. Given this initial set of voxels, subsets of
tumor voxels were constructed on the basis of their percent enhancement which was defined

as , where  is the averaged post-contrast signal intensity

and  is the average of the three pre-contrast time points. A total of 20 subsets were
defined for percent enhancement thresholds ranging from 10% to 200% in 10% increments.
We then computed the concordance correlation coefficient (the CCC measures the absolute
agreement between two variables; (20)) between the longest dimension of the tumor
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measured on the surgical specimen and the longest dimension measured on the DCE-MRI
data at t3. As the largest CCC (0.74) was obtained with an enhancing threshold of 80%, all
subsequent analysis were based on voxels that showed ≥ 80% enhancement.

Semi-quantitative analysis—Seven parameters in the semi-quantitative analysis were
estimated: tumor volume, the longest dimension (LD), the initial area under the curve at 60
seconds (iAUC60), the signal enhancement ratio (SER), SER total tumor volume, SER
partial volume, and SER washout volume (21). SER was calculated according to reference
(21):

(1)

where S1 was the peak signal, S0 was the mean pre-contrast signal (1st to 3rd dynamic scans),
and S2 was the signal at the 25th dynamic scan. The SER total tumor volume was defined as
the number of all enhancing voxels. The SER partial volume was the number of voxels with
SER ≥ 0.9, and the SER washout volume was the number of voxels with SER > 1.3 (21).

Quantitative analysis—Three pharmacokinetic models were used to estimate
physiological parameters from the DCE-MRI data. The standard Tofts-Kety model (TK)
assumes a linear relationship between the time-varying longitudinal relaxation time, T1(t),
and the concentration of CA in the tissue, Ct(t):

(2)

where R10 is the R1 value of the tissue before CA administration, and r1 is the relaxivity of
the contrast agent. The Ct time course together with the concentration of CA in the blood
(the arterial input function, Cp, or AIF; see below) can then be input to the TK model to
estimate the volume transfer constant (Ktrans, min−1) and the extravascular extracellular
volume fraction (ve):

(3)

The extended Tofts-Kety model (ETK) makes similar assumptions as the TK, but
incorporates the plasma volume fraction (vp):

(4)

The third model used in the study is the fast exchange regime model (FXR). Rather than
assuming that all water compartments within tissue are well mixed, as in the TK and ETK
models, the FXR model assumes that tissue is compartmentalized on the scale of an MRI
voxel (22-24). The FXR model incorporates the effects of water exchange between the
extravascular-extracellular space and the extravascular intracellular space, leading to a non-
linear relationship between T1(t) and Ct(t):

(5)

where R1i is the intracellular R1, τi is the average intracellular water lifetime of a water
molecule, and fw is the fraction of water that is accessible to mobile CA (22,25,26), which is
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set to 1.0 in this study. In this realization, the FXR returns estimates of Ktrans, ve, and τi
(22,25-28). All three models also estimate efflux constant, kep (≡ Ktrans/ve, min−1).

The three DCE-MRI pharmacokinetic models were applied to all tumor voxels that
displayed an enhancement percentage ≥ 80% to estimate Ktrans, kep, and ve (all three
models), vp (ETK only), and τi (FXR only). Those parameters were estimated by a standard
gradient-expansion, nonlinear, least-squares, curve-fitting algorithm written in the
Interactive Data Language (Research Systems, Boulder, CO, USA). Voxels for which the
fitting algorithm did not converge, or converged to non-physical values (i.e., Ktrans > 5.0
min−1, ve > 1.0, or any parameter below 0.0) were set equal to zero and not included in
subsequent analysis.

As mentioned above, in order to perform quantitative DCE-MRI, the AIF must be measured.
Individual AIFs were not available for each patient at each time point and, therefore, a
population based AIF is a reasonable approach. We employed a semi-automatic AIF
tracking algorithm to obtain individual AIFs in 50 datasets. These 50 AIFs were then used to
construct a population-averaged AIF which was then used for subsequent DCE-MRI
modeling. Details on this procedure can be found in reference (29).

Statistical Analysis—There are two main steps in the statistical analysis: 1) identifying
which parameters show significant differences after one cycle of therapy between (eventual)
responders and non-responders, and 2) in the parameters that do show a significant
difference between the two patient sets, determine their prognostic ability by performing
receiver operator characteristic (ROC) analysis.

Percent changes in the mean value of the ROI for each parameter from t1 to t2 were
summarized using the median and interquartile range. Due to graphical evidence of non-
normality, we used the non-parametric Wilcoxon rank sums test to compare the distribution
of these data between the two response groups (30). Comparisons were considered
statistically significant (i.e., rejection of the null hypothesis of equality) for P-value < 0.05.
While the P-value is a quantity associated with a single hypothesis test, it is also important
to assess the expected number of false discoveries among many individually statistically
significant (P < 0.05) tests (31). Among the 18 statistical comparisons, we calculated the
false discovery rate (FDR) adjusted P-values (i.e., q-values) for statistically significant
results. We consider FDR adjusted P-values < 0.2 to be true discoveries, accepting that one
in five positive findings will be false discoveries.

ROC curves were estimated for predicting responders for each parameter (32). The optimal
cut-point for each parameter satisfies the Youden index, the point on the ROC curve which
is furthest from chance and minimizes the overall rate of misclassification (33). The Area
under the curve (AUC) was estimated using the trapezoidal rule and 95% confidence
intervals for the AUC’s were estimated using the non-parametric bootstrap method (with
10,000 replicates). Using similar bootstrap methods, the AUC was compared between
imaging metrics (with 10,000 replicates). The number of replicates was chosen to establish
reliable estimates to two significant digits. Data were analyzed using MATLAB R2012a
(The Mathworks, Natick, MA) and the pROC library built under R version 2.15 (34).

RESULTS
Neither the baseline semi-quantitative nor the quantitative parameters differed significantly
between eventual responders and non-responders. Table 2 shows the median percent
changes and interquartile range of the semi-quantitative parameters for both non-responders
and responders. Amongst the semi-quantitativ parameters, only the change in SER washout
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volume showed a significant difference between responder and non-responder patients (P =
0.03).

Figure 1 displays representative data of a patient achieving pathologic complete response
acquired at the three time points (three columns) in the form of the average of the post
contrast MR images (top row), the difference images between the pre- and post-contrast
DCE-MRI data (middle row), and Ktrans values superimposed on the averaged post-contrast
DCE-MRI data (bottom row), respectively; Figure 2 displays similar data for one non-
responder. For both patients, the tumor areas are clearly enhanced at t1 and t2 (left and
middle columns). For the complete responder, and the mean values of Ktrans at t1 and t2
estimated by TK were 0.21 min−1 and 0.19 min−1, respectively, while there was no
enhancing tumor after all cycles of treatment (right column). For the non-responder patient,
the enhancing tumors were evident in all three MRI scans and the mean values of Ktrans at
three time points estimated by TK were 0.20 min−1, 0.24 min−1, and 0.16 min−1,
respectively.

Figure 3 provides an example of the early changes in pharmacokinetic parameters estimated
by the TK, ETK, and FXR models. The median changes of kep estimated by all three models
were significantly different between responders and non-responders. The other parameters
showed no statistically significant differences between groups. These data are summarized
in Table 3 which presents the median percent changes and interquartile range of the
quantitative parameters for the three DCE-MRI models included in the study.

Table 4 summarizes the results of the ROC analysis for the most promising semi-
quantitative and quantitative parameters: the SER washout volume and kep. The table lists
the optimal cutoff, sensitivity, specificity, and the area under the curve (AUC). The TK
model estimate of kep resulted in the largest AUC value of 0.78, compared with 0.76 and
0.73, obtained by the ETK and FXR models, respectively. There was not a statistical
difference between the AUCs of the SER washout volume and kep as estimated by any of the
three models (P > 0.50 in all comparisons.). The 95% confidence interval was also
calculated for the ROC values. Lower limits for the AUCs that exclude 0.5 indicate the
accuracy of the parameters exceeds what would be expected by chance alone. Following a
Bonferroni correction, the bootstrapped lower limits of the AUCs for SER washout and kep
estimated by the TK, ETK, and FXR models were 0.52, 0.57, 0.53, and 0.49, respectively.
Hence, all parameters excepts for kep estimated by the FXR model retained statistical
significance. Figure 4 shows the ROC curves for the SER washout volume and kep estimated
by three models. The AUC values and the optimal cutoff points are also displayed in the
figure.

Among the 18 comparisons, four statistically significant (P < 0.05) discoveries were made.
A false discovery rate of 20% (FDR adjusted P-value < 0.2) implies that we expect one false
discovery among five individually significant comparisons. The false discovery rate adjusted
P-values for SER washout volume and kep estimated by the TK and ETK models were all
0.18 (Tables 2 and 3). The FDR adjusted P-value for kep estimated by FXR was 0.22 (Table
3). Consequently, we can conclude that differences in the distributions of SER washout
volume and kep estimated by the TK and ETK models between complete responders and
non-responders retain statistical significance after adjusting for a FDR of 20%. Despite the
likelihood that kep estimated by FXR may be a false discovery, we still assessed its ROC
characteristics for completeness since kep retained significance in the other two models.

Li et al. Page 7

Magn Reson Med. Author manuscript; available in PMC 2015 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



DISCUSSION
This study presents a comparison of the ability of a range of common semi-quantitative and
quantitative DCE-MRI parameters obtained pre- and post one cycle of neoadjuvant
chemotherapy to predict treatment response. The semi-quantitative parameters were
obtained through calculating the longest dimension and volume of the breast tumors, as well
as dynamic parameters related to the area under the enhancement curve and the signal
enhancement ratio. The quantitative analysis explored each parameter returned by the TK,
ETK, and FXR models. Although previous studies (9-11,17,35) have examined the ability of
dynamic MRI to assess the response of breast cancer patients to neoadjuvant chemotherapy,
to the best of our knowledge ours is the first to investigate the most frequently used semi-
quantitative metrics and quantitative DCE-MRI parameters estimated by different models.

Overall, the results indicate that changes in kep from t1 to t2, as estimated by the TK and
ETK models, were significantly different between eventual responders and non-responders
after a single cycle of chemotherapy. We hypothesize the following biological basis for this
observation. As kep is the efflux rate constant, it attempts to quantify the degree to which a
signal intensity time course exhibits washout characteristics. If kep is large, it means that
there is a combination of relatively high delivery (i.e., high blood flow and/or vessel
permeability) and a relatively small extravascular extracellular space for the contrast agent
to accumulate. The former can be attributed to tumor associated vasculature, while the latter
can be attributed to an increased (tumor) cell density in such a section of tissue.
Consequently, the concentration of contrast agent in the vascular and extravascular space
will equilibrate rapidly. Then, once the concentration of contrast agent in the vascular space
falls below the concentration in the extracascular space, the contrast agent will then
intravasate back into the vascular space and this phenomena manifests itself as a high kep.
Thus, in this setting (i.e., predicting the response of breast cancer to neoadjuvant therapy) a
reduction in kep could be associated with positive response as it is most likely associated
with a reduction in delivery and/or cellularity. Furthermore, the SER washout volume,
which attempts to characterize this phenomenon in a semi-quantitative fashion, is also able
to separate the two patient groups. We also note that both kep and the SER washout attempt
to quantity (to varying degrees) so-called “type III” washout kinetics which has been widely
used in the diagnostic setting (36) to assist in the identification of malignant lesions. In light
of these observations, we feel kep is a promising biomarker for response.

It is important to note that ours are not the first data to indicate that kep may outperform
Ktrans and ve when examining longitudinal changes in breast cancer during neoadjuvant
therapy. In particular, several previous efforts (17,37,38) all showed that kep had the greatest
ability of the DCE-MRI parameters to separate responders from non-responders.
Unfortunately, the underlying physiological reason that kep potentially outperforms other
DCE-MRI parameters has not been fully determined and our present study was not intended
to address this important issue. Future studies should be designed to elucidate the underlying
mechanism of this observation.

Our previous study (27) assessed the three pharmacokinetic models statistically and found
the ETK and FXR models were superior to the TK model at describing the DCE-MRI data.
However, the results in this study showed that the TK and ETK models gave superior results
in their ability to statistically significantly separate patient groups (e.g., see Table 4). A
likely reason for this is that since the ETK and FXR models have a third free parameter (vp
and τi for the ETK and FXR, respectively), the parameters that are returned necessarily have
greater uncertainty. Thus, it is possible that these models require DCE-MRI data with a
higher signal-to-noise (SNR) ratio to achieve the same level of precision in estimated
parameters as the TK model. This decrease in parameter precision would potentially
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manifest itself as a decreased ability to separate patient groups. It is entirely possible that
higher SNR data would increase the predictive value of the ETK and FXR. The possibility
should also not be overlooked, however, that the additional parameters included in the ETK
and FXR models may have only limited biological relevance in this setting.

It is important to interpret the present data in light of the recently published results of the
ACRIN 6657/I-SPY TRIAL (39) in which 216 women with invasive breast cancers ≥ 3 cm
(our study accepts tumors down to 1 cm in size) were scanned by a high spatial resolution
(and, therefore, low temporal resolution) DCE-MRI protocol at four time points: prior to the
start of anthracycline-cyclophosphamide chemotherapy, prior to the second cycle of
anthracycline-cyclophosphamide chemotherapy, between anthracycline-cyclophosphamide
treatment and taxane therapy, and just prior to surgery. The investigators assessed the ability
of four variables to predict treatment response: the signal enhancement ratio (SER; (21,40)),
peak SER, tumor longest dimension, and tumor volume. Among other results, this study
showed the rate of change of the tumor volume and the SER between therapeutic regimens
were the most predictive of pathologic complete response with area under the receiver
operator curves of 0.72 and 0.71, respectively. Thus, a semi-quantitative metric (i.e., the
SER) based on high spatial resolution data performed nearly as well as tumor volume
changes. It is entirely possible, therefore, that a more quantitative analysis of higher
temporal resolution DCE-MRI data could achieve even more significant results. The results
of the present study seem to indicate this is a reasonable hypothesis.

There are a number of limitations in the study. First, a population AIF was used to estimate
physiological parameters from the DCE-MRI data. In practice, it is difficult to obtain a
reliable AIF from each patient at each scanning session, so a population based AIF is an
alternative approach. As a previous study (29) indicated that Ktrans and vp show a good
agreement between the population AIF and individual AIF, the population AIF was
employed in this analysis. A possible future analysis is to compare the results returned when
individual AIFs are employed in the DCE-MRI analysis.

A second limitation to consider is that the temporal resolution of 16 s is, admittedly, not
optimal for AIF characterization; rather it represents a balance between temporal resolution,
spatial resolution, and field of view (FOV) coverage. The central issue is that we needed to
be able to cover the entire breast because our study was also designed to analyze changes at
the voxel level after longitudinal registration (41,42). This requirement necessitated an
increase in slice number to cover the entire affected breast which led to a longer TR and,
therefore, a longer acquisition time. Hence, the current acquisition represents a practical
implementation of the approach and the results are encouraging. Furthermore, since our
study employed a population AIF that had previously been tested (29), the 16 second
temporal resolution is quite reasonable for sampling and subsequently estimating tissue
pharmacokinetic parameters (43). We note that some studies (11,44,45) have employed only
modestly faster temporal resolutions with success; in particular, the study by Ah-See et al
(11) in breast cancer employed a temporal resolution of 12 s which was sufficient to show
that changes in DCE-MRI can predict final clinical and pathologic response.

A third limitation is using pathologic response as an outcome measure. Although survival is
ultimately the endpoint of greatest interest in cancer clinical trials and as a general rule
response must not be equated with survival outcomes, pathologic complete response as an
outcome measure in the setting of neoadjuvant chemotherapy for breast cancer is valuable.
For example, Wolff et al (46) discussed pathologic complete response as a prognostic
marker for overall survival (OS), as established first in the NSABP (National Surgical
Adjuvant Breast and Bowel Project) B-18 trial (47) and later confirmed in the NSABP B-27
trial (48). The authors concluded that while pathologic complete response was not a perfect
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replacement for survival, it was useful from a statistical viewpoint, and as such it has
become the primary endpoint in most if not all trials of neoadjuvant therapy in breast cancer.

The final limitation is that our patient population received a number of different treatment
regimens (see Table 1). However, there is currently disagreement in the (limited) literature
over the effect this has on the ability of MRI to predict response in the neoadjuvant setting.
For example, Loo et al (49) showed in a population of 188 women that MRI is quite
accurate when monitoring response in triple-negative and HER2+ disease, but is not in ER+/
HER2-disease. Conversely, De Los Santos et al (50), in a study of 81 patients, indicated that
molecular subtype and systemic therapy did not significantly affect the ability of MRI to
predict pathologic response. As both of these papers were very recent additions to the
literature, it appears this is an important area for further study.

Our preliminary results indicate that changes in the SER washout volume and kep appear
significantly different between eventual responders and non-responders in breast cancer
patients after the first cycle of neoadjuvant chemotherapy. These two approaches also
yielded reasonable and promising AUC values. Future work includes performing ROC
analysis through combining the most predictive DCE-MRI parameters with DW-MRI data
(also obtained in this ongoing study, (51)) to evaluate the feasibility of using quantitative
MRI data to predict the response of breast cancers to neoadjuvant chemotherapy at this early
stage. Another future aim is to investigate the tumor heterogeneity contained in parametric
maps. Padhani et al (10) examined the changes in Ktrans range (similar to the standard
deviation metric used in this study) and were able to predict the absence of pathologic
response after two cycles of chemotherapy. O’Connor et al (52) also showed that DCE-MRI
biomarkers of tumor heterogeneity may predict colorectal cancer liver metastasis shrinkage.
Hence, we hypothesize that the spatial distribution of pharmacokinetic parameters is
important and that longitudinal registration of such data may improve the ability of DCE-
MRI data to predict treatment response (41,42,53). Longer term, we plan to perform a
follow-up analysis to compare the DCE-MRI results to progression free survival and five
year survival.

In summary, this work, combined with related reports in the literature (2-11,17,35), may
ultimately allow clinicians to use serial functional imaging rather than anatomic
measurements as a more precise way to determine response to therapeutic agents and
thereby tailor therapy on an individual basis for this patient population. Given the multiple
experimental measurements performed in this work, the findings of this pilot study should
be followed up with a prospective study designed to confirm our data regarding the likely
importance of kep in predicting treatment response.
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Figure 1.
The averaged post-contrast MR images (top row), the difference images between pre- and
post-contrast DCE data (middle row), and Ktrans values superimposed on the averaged post-
contrast images (bottom row) at three time points (three columns) for one pathological
complete responder. The mean values of Ktrans at three time points estimated by TK are 0.21
min−1, 0.19 min−1, and 0 min−1, respectively, using a 80% enhancement threshold.
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Figure 2.
The averaged post-contrast MR images (top row), the difference images between pre- and
post-contrast DCE data (middle row), and Ktrans values superimposed on the averaged post-
contrast data (bottom row) at three time points (three columns) for one non-responder. The
mean values of Ktrans at three time points estimated by TK are 0.20 min−1, 0.24 min−1, and
0.16 min−1, respectively, using a 80% enhancement threshold.
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Figure 3.
The median changes in kinetic parameters estimated by the TK, ETK, and FXR models. All
statistically significant differences (P < 0.05) are labeled with an asterisk.
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Figure 4.
The ROC curves for (panel a) the SER washout volume and kep estimated by (b) the TK, (c)
ETK, and (d) FXR models. The triangle represents the optimal cutoff points as determined
by the Youden index.
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Table 1

Clinical features of the study population.

Patient # Age
(yr) Treatment Regimens

Receptor status
(ER, PR,
HER2)

Size Pre-
treatment (cm)

Tumor
grade

Residual
tumor size

(cm)

Pathologic
response

1 50 AC→ taxol +, +, − 10 3 0.52 Non-responder

2 52 taxotere +, −, + 5 3 1.5 Non-responder

3 60 AC→taxol+concurrent traztuzumab +, +, + 5 2 2.9 Non-responder

4 36 Taxol+Cisplatin±§Everolimus −, −, − 7 2 2.9 Non-responder

5 48 Dose-dense AC→Taxol +, +, − 3 1 1.3 Non-responder

6 43 Dose-dense AC→Taxol +, +, − 6 2 2.6 Non-responder

7 59 Dose-dense AC→Taxol +, +, − 7 2 4.2 Non-responder

8 53 Taxol+Cisplatin±Everolimus −, −, − 3.5 2 1.3 Non-responder

9 35 Trastuzumab +Carboplatin+ Ixabepilone +, +, + 4 3 1.4 Non-responder

10 28 Taxol+Cisplatin±Everolimus −, −, − 2 3 0.8 Non-responder

11 33 AC→ taxol +, +, − 5 3 1.2 Non-responder

12 39 AC→ taxol +, +, − 10 1 2.5 Non-responder

13 57 AC→ taxol −, +, + 5.5 3 n/a Non-responder

14 67 Dose-dense AC→Taxol −, +, + 8 3 1.2 Non-responder

15 45 Taxol+Cisplatin±Everolimus −, −, − 3 3 0.5 Non-responder

16 46 Taxotere+carboplatin+herceptin +, +, + 7 3 0.3 Non-responder

17* 47 Taxotere→AC +, +, − 6 1 0 Non-responder

18 53 AC→concurrent Taxol+ trastuzumab −, −, + 4 3 0 Responder

19 46 Taxotere→AC −, +, − 5 3 0 Responder

20 46 AC→concurrent Taxol+ trastuzumab −, −, + 12 2 0 Responder

21 33 AC→weekly taxol −, −, − 10 3 0 Responder

22 39 Trastuzumab and Lapatinib −, −, + 3.5 2 0 Responder

23 46 AC→taxol +, −, − 2 3 0 Responder

24 42 Taxol+Cisplatin±Everolimus −, −, − 3 3 0 Responder

25 34 Taxotere→AC −, −, − 3 3 0 Responder

26 44 Trastuzumab + Lepatinib −, −, + 6 3 0 Responder

27 37 Taxol+Cisplatin±Everolimus −, −, − 4.5 3 0 Responder

28 39 AC→taxol −, −, − 2.5 3 0 Responder

*
No residual tumor was found in the breast for this patient, however the cancer was found in 6 lymph nodes.
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Table 2

Median (interquartile range) percent change in the semi-quantitative parameters from t1 to t2.

Parameter
(% change from t1 to t2) Responders (%) Non-responders (%) P value1

Volume −34.0
(−57.33 to −22.34)

−28.7
(−51.81 to −4.93) 0.37

LD −22.6
(−37.31 to −8.62 )

−8.6
(−27.63 to 10.34) 0.26

iAUC60
−20

(−41 to 17)
−3

(−14 to 27) 0.32

SER −15
(−21.5 to −10.5)

−3.0
(−17 to 4) 0.14

SER total −34
(−57 to −22)

−29
(−52 to 4) 0.40

SER partial −56
(−70.5 to −30)

−43
(−63 to 6) 0.37

SER Washout −80
(−91.5 to −71)

−55
(−79 to −24) 0.03 2

1
Wilcoxon rank sums test.

2
FDR adjusted P-value = 0.18.
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Table 3

Median (interquartile range) percent changes of the quantitative parameters from t1 to t2 for the three DCE-
MRI models.

DCE-MRI
model

Parameter
(% change from t1 to t2) Responders (%) Non-responders (%) P value

TK

Ktrans −31
(−35.5 to −11.5)

−15
(−30 to 25) 0.13

ve,
11

(−4.5 to 19)
−1

(−13 to 12) 0.37

kep (= Ktrans/ve)
−35

(−49.5 to −26)
−3

(−31 to 13) 0.011

ETK

Ktrans −12
(−25 to −2.5)

−11
(−29 to 16) 0.54

vp
−19

(−34.5 to −0.5)
3

(−24 to 77) 0.26

ve
16

(−3.5 to 20)
0

(−12 to 18) 0.26

kep (= Ktrans/ve)
−34

(−40.5 to −27)
−18

(−37 to −16) 0.021

FXR

Ktrans −39
(−57 to −23.5)

−24
(−47 to 33) 0.17

ve
3

(0 to 8)
1

(−7 to 5) 0.26

τ i
−16

(−24 to 1)
5

(−23 to 18) 0.26

kep (= Ktrans/ve)
−43

(−58 to −23.5)
−19

(−36 to −2) 0.0482

1
FDR adjusted p-value = 0.18.

2
FDR adjusted P-value = 0.22.
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Table 4

ROC analysis of percent change in SER washout and kep for predicting treatment response. The 95%
confidence intervals (CI) were also calculated for sensitivity, specificity, and AUC.

Parameter
Optimal
Cutoff

(%)

Sensitivity (%)
(95% CI)

Specificity (%)
(95% CI)

AUC1
(95% CI)

%SER_washout −60 91
(62 - 99)

65
(41 - 83)

0.752

(0.55 - 0.91)

%kep, TK −5 100
(74 - 100)

59
(36 - 78)

0.782

(0.60 - 0.94)

%kep, ETK −19 91
(62 - 99)

65
(41 - 83)

0.762

(0.57 - 0.92)

%kep, FXR −20 82
(52 - 95)

59
(36 - 78)

0.73
(0.55 - 0.91)

1
Lower limits for AUC that exclude 0.5 indicate the accuracy of the parameter exceeds what would be expected by chance alone.

2
These parameters retain statistical significance following a Bonferroni correction that protects the overall type I error inference for AUC at 5%.

Magn Reson Med. Author manuscript; available in PMC 2015 April 01.


