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Abstract
Behavioral experience, in the form of skilled limb use, has been found to impact the structure and
function of the central nervous system, affecting post-stroke behavioral outcome in both adaptive
and maladaptive ways. Learning to rely on the less-affected, or non-paretic, body side is common
following stroke in both humans and rodent models. In rats, it has been observed that skilled
learning with the non-paretic forelimb following ischemic insult leads to impaired or delayed
functional recovery of the paretic limb. Here we used a mouse model of focal motor cortical
ischemic injury to examine the effects of non-paretic limb training following unilateral stroke. In
addition, we exposed some mice to increased bimanual experience in the home cage following
stroke to investigate the impact of coordinated dexterous limb use on the non-paretic limb training
effect. Our results confirmed that skilled learning with the non-paretic limb impaired functional
recovery following stroke in C56BL/6 mice, as it does in rats. Further, this effect was avoided
when the skill learning of the non-paretic limb was coupled with increased dexterous use of both
forelimbs in the home cage. These findings further establish the mouse as an appropriate model in
which to study the neural mechanisms of recovery following stroke and extend previous findings
to suggest that the dexterous coordinated use of the paretic and non-paretic limb can promote
functional outcome following injury. Keywords: experience-dependent plasticity, learned nonuse,
motor cortex, motor rehabilitation, stroke

1. Introduction
Stroke is among the leading causes of death and disability worldwide, with chronic upper
limb impairment (usually unilateral) among the most common deficits reported in stroke
survivors [1, 2]. Often this deficit presents as a loss of functional use of the hand or arm
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contralateral to the lesion locus (paretic body side; i.e, paretic limb). A natural response to
loss of function is to develop alternative strategies to circumvent the problem. As a result, a
common compensatory strategy among stroke survivors is to learn to rely on the less-
affected, or non-paretic, limb for daily tasks involving skilled limb or hand use such as
grasping and manipulating objects [3, 4]. However, the long-term neural and behavioral
consequences of continued compensatory skill learning with the non-paretic limb use are not
well understood.

Reliance on the non-paretic limb contributes to a learned non-use of the paretic limb [5, 6]
and may limit long-term functional outcome following stroke. This is the basis of constraint-
induced movement therapy (CIMT) [4, 7–10], whereby, in addition to intense rehabilitation,
the non-paretic limb is bound for most waking hours, encouraging patients to use the paretic
limb to complete daily tasks. While CIMT has been reported to significantly improve upper
extremity deficits [11, 12], many stroke survivors continue to use their non-paretic limb for
daily tasks when it is unbound [13], possibly affecting the rehabilitative potential of the
paretic limb.

Unilateral motor cortex damage in the caudal forelimb representation area (CFA) of the rat
results in contralateral-to-lesion forelimb impairments [14–24] and a reliance on the non-
paretic body side [6, 17, 25–28], that resemble in many respects both the upper extremity
impairments and learned non-use of the paretic limb observed in humans. Focused
rehabilitative training of the paretic limb can improve motor function and structural and
functional plasticity in remaining regions of cortex after stroke in rats [29– 36]. Following
ischemic insult, contralesional cortex has been found to exhibit increased neuroplasticity
[37, 38] that may facilitate the acquisition of new motor skills with the non-paretic limb [15,
17, 25]. Previously, our laboratory has reported that focused training of the non-paretic limb
in a skilled reaching task impedes recovery of the paretic limb [39, 40] and disrupts
functional reorganization in peri-infarct cortex that would otherwise contribute to
improvements in functional outcome of the impaired limb [15, 40, 41], while promoting
experience-driven plasticity in the contralateral-to-lesion cortex [17, 21, 22, 38, 42]. Rats
that receive focused bilateral rehabilitative training on a skilled reaching task do not show
the maladaptive effects and exhibit functional outcome that is similar to that of animals that
receive focused rehabilitation of the paretic limb [40].

As they are inexpensive to house and offer many transgenic lines that are suitable for in vivo
imaging, mice are an important tool in understanding the impact of behavioral training on
functional and structural recovery following stroke. We have determined that C57BL/6 mice
have long lasting forelimb impairments following focal ischemic insult of the CFA [43] and
exhibit improved functional outcome and structural plasticity following focused
rehabilitative training of the paretic limb [44]. While it is clear that mice are an effective
model of upper limb impairment and functional rehabilitation following stroke, the effects of
non-paretic limb training, and thus their usefulness for investigating neural mechanisms of
learned non-use, has not been established. The present study investigated the impact of
skilled non-paretic limb use in our mouse model of focal ischemic insult. In addition, we
explored the impact of coordinated, dexterous bimanual limb use in the home cage on non-
paretic limb training effects. Our current findings lay the groundwork for further studies that
will explore the neural consequences of non-paretic skill learning in both contra- and
ipsilesional cortices.

2. Materials and Methods
Experimental designs are summarized in Fig. 1.
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2.1. Subjects
A total of 94 well-handled, 3-month-old male C57BL/6 mice were housed in groups of four
with standard housing supplementation (a small piece of PVC pipe, a cardboard roll, and
small wooden objects for chewing) on a 12:12 light/dark cycle. Animals were maintained on
a restricted feeding schedule (2.5–3g/mouse/day) to prevent satiation and promote reaching
performance. Daily food restriction was monitored and adjusted such that no animal lost
more than 10% of their free feeding weight, established prior to experimental procedures. In
Experiment 1, 39 mice received intracortical infusions of the vascoconstricting peptide,
endothelin-1 (ET-1), and 15 mice received a sham surgery consisting of intracortical
infusion of 0.9% sterile saline. Six of the mice receiving ET-1 died during recovery from
perioperative anesthesia and were consequently not included in the study. The surviving
mice were separated into one of three groups on post-op day 5: paretic-trained (Par), non-
paretic trained (NonPar), or Control (for all conditions, lesion: n = 11, sham: n = 5). Groups
were matched on pre-operative performance levels.

In Experiment 2, 33 mice reached appropriate pre-operative reaching levels (defined in 2.3)
and received intracortical infusion of ET-1. Five mice died during recovery from
perioperative anesthesia. One additional mouse was excluded from the study because of
severe motor deficits observed 48 hours after surgery. No sham operates were used in
Experiment 2. Following surgery, mice were separated into one of four groups (matched on
pre-operative performance): bimanual home cage enriched control (BE Control; n = 5), BE
non-paretic limb trained (BE NonPar; n = 9), standard housed control (ST Control; n = 5),
and ST NonPar (n = 8). Enrichment procedures are described below (see 2.4). Animal use
was in accordance with a protocol approved by the University of Texas at Austin Animal
Care and Use Committee.

2.2. Intracortical infusion of ET-1
Following pre-operative motor skill learning, mice received intracortical infusion of ET-1 as
described previously [43]. Briefly, mice were anesthetized with ketamine (100 mg/kg, i.p.)
and xylazine (10 mg/kg, i.p.) and placed into a stereotaxic frame (Stoelting, Wood Dale, IL).
Lidocaine (2 mg/kg, s.c.) was injected into the scalp, and a midline incision was made. A
small burr hole was drilled over the center of the forelimb region of SMC (0.3 mm anterior
to Bregma; 1.5 mm from midline) contralateral to the preferred reaching paw. A total of 3 µl
of ET-1 (American Peptide; 320 pmol, 0.2µg/µl in sterile saline) was injected into layer V of
the motor cortex at a depth of 800µm below the surface of the cortex over the course of 10
minutes (1 µl at a time). The burr hole was then filled with gelfoam and covered with UV
curing dental cement (Wave A2; Southern Dental Industries, Victoria, Australia). The
wound was sutured and covered with antibiotic ointment. All mice were permitted to fully
awaken in a heated chamber before receiving buprenorphine (3 mg/kg at 0.015 mg/mL in
sterile saline, s.c.) and returning to the home cage. Mice in the sham group (Experiment 1)
received an identical surgery with 3 µl of 0.9% sterile saline in the place of ET-1.

2.3. Behavioral methods: Pasta Matrix Reaching Test
Animals were trained on the Pasta Matrix Reaching Test (Figure 1A) as described
previously [43]. Briefly, mice were trained to reach through a small slit found in the center
wall of a Plexiglas chamber to break pieces (3.2 cm in height, 1mm in diameter) of
vertically oriented, uncooked capellini pasta (De Cecco brand, Fratelli De Cecco di Filippo
Fara San Martino S.p.A., Italy). Pasta pieces were located 2 mm apart in a heavy-duty
plastic block outside of the reaching chamber. Half of each pasta piece extended above the
block. This is a skilled reaching task that requires the animal to adjust its reach trajectory to
obtain pasta pieces that are located increasingly further from the reaching aperture.
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Prior to training, all animals underwent shaping procedures in which they were acclimated
to the testing apparatus and limb preference was determined. Animals were placed
individually in reaching chambers once daily for three to five days. During this time, the
matrix stage (containing the pasta pieces) was completely filled, allowing animals to reach
pasta pieces with both limbs. Each daily trial lasted for 10 minutes or until the mouse
reached a minimum of 10 times. A reach was defined as extending the limb through the
reaching aperture such that the entire forepaw was outside the chamber walls. Limb
preference was determined when a minimum of 70% of an animal’s reaches were made with
either the right or left forelimb. Shaping trials continued once daily until each animal’s limb
preference was determined.

Following shaping procedures, mice were trained on the Pasta Matrix Reaching Test to
establish the skill. During training, only half of the matrix stage was filled with pasta
(contralateral to the preferred limb), forcing the mice to use their preferred to limb to reach
for pasta pieces. Each daily trial consisted of 15 minutes or 100 reaches, whichever occurred
first. Mice were trained for a total of 19 days, at which point performance was considered to
be stable for all mice. To establish performance level, the average number of successful
retrievals (i.e., number of pasta pieces broken) was calculated for the final three days of
training. Previous results suggest that each mouse is only physically able to reach a
maximum of 18 pieces of pasta in the matrix [43]. Eighty-seven mice (54 in Experiment 1;
33 in Experiment 2) reached criterion performance, defined as 9 successful retrievals, and
received ET-1 or sham lesions (post-op day 0). On post-op day 4, performance of the
affected limb was assessed on the Pasta Matrix Reaching Test. On post-op day 5, mice were
separated into their respective groups (see 2.1) for post-operative training. For both
experiments, Par and NonPar groups received daily training sessions (15 minutes or 100
reaches in length) of the paretic or non-paretic limb. Control mice were placed into reaching
chambers with no matrix stage and ate a comparable amount of pasta broken into small
nibblets. These training procedures took place for a total of 15 consecutive days.

Following post-operative training, all mice were assessed with their paretic limb on the
Pasta Matrix Reaching Test with procedures identical to those during pre-operative training.
Assessment took place over 7 consecutive days.

2.4. Bimanual home cage enrichment
Animals in the enriched groups (Experiment 2) received daily home cage enrichment that
maximized novel dexterous bimanual forelimb use. Enrichment consisted of 10 pieces of
1.25 in long pasta and 6 sunflower seeds (in-shell) per mouse in addition to two square
chewing blocks (5/8 mm3) per cage per week. The dexterous manner in which rodents
handle and consume long pasta pieces has been documented previously[43, 45–47]. It was
noted in the current study that mice often shelled the sunflower seeds before consuming
them as evidenced by empty shells found in the cages each morning, purportedly involving
the dexterous use of both forelimbs. All other mice received a similar amount of pasta
broken into small nibblets and shelled sunflower seeds. The square blocks were chosen for
the enrichment condition as a novel shaped object that was distinct from those that the mice
previously experienced in the baseline housing condition, which included round or smooth-
edged wooden gnawing objects. Instead of square blocks, mice in the un-enriched condition
received two round chew toys (5/8 mm in diameter) per cage per week, which were similar
to those gnawing objects available during pre-operative baseline housing conditions. While
mice in both conditions were assumed to use both limbs to manipulate the food and gnawing
objects, the conditions of the bimanual enrichment were intended to promote experience
with new bimanual handling patterns. Both enrichment and control cages consumed all of
their allotted pasta and sunflower seeds (either shelled or unshelled) each day, and the
wooden objects were observed to have been gnawed upon during weekly replacement. All
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animals received either enrichment or control procedures concurrent with daily training
sessions as described in 2.3. Following 15 days of post-operative training, paretic limb
assessment commenced as described above. No enrichment (beyond the standard housing
supplementation described in 2.1) was available to any mouse during paretic limb
assessment.

2.5. Tissue processing and lesion analysis
Twenty-four hours after the final testing session (i.e., 27 days after ET-1 administration),
mice were euthanized with an overdose of sodium pentobarbital (euthasol, 175 mg/kg, i.p.)
and perfused intracardially with 0.1M phosphate buffer (PB) and 4% paraformaldehyde.
Following perfusion, brain tissue was removed and stored in 4% paraformaldehyde at 4°C
for a minimum of 72 hours before being sliced into 40 µm thick sections using a vibratome.
Every sixth section was mounted onto gelatin-coated slides and Nissl stained with toluidine
blue.

Neurolucida software was used to estimate lesion volume. Coronal sections were viewed at
a magnification of 17x. The cortical areas of 10 coronal sections from approximately 2 mm
anterior to 1.5 mm posterior to Bregma, each 240 µm apart, were measured by tracing
cortical boundaries of both contralesional and ipsilesional cortex. The SMC fell within the
area of tissue measured and no lesion extended beyond these boundaries. Cortical volume
was estimated with the Cavalieri method, by multiplying the sum of section areas by the
distance between sections[48, 49]. Lesion volume was calculated as the difference between
contralesional and ipsilesional cortex.

2.6. Statistical analyses
SPSS software was used to conduct repeated-measures analyses of variance (ANOVAs) for
Pasta Matrix Reaching Test performance, with Day as a within-subjects variable and Group
as a between subjects variable. Post hoc analyses with a least significant difference (LSD)
correction were conducted as necessary. A one-way ANOVA was conducted to compare the
lesion extents of sham and ET-1 groups. In Experiment 1, there were no statistical
differences between the performances of different sham groups (p > 0.1); all sham mice in
Experiment 1were combined for statistical analyses. Likewise, there were no statistical
differences between the performance levels of the two control groups in Experiment 2 (p >
0.1); mice in these groups were combined for statistical analyses. An α level of 0.05 was
considered significant for all comparisons.

3. Results
3.1. Non-paretic limb training impedes functional outcome following ischemic stroke

Subjects were matched on pre-operative performance on the Pasta Matrix Reaching Test. All
animals exhibited similar initial deficits in reaching performance (around a 40% decrease in
successful reaching) after ischemic lesions (Fig. 2). Following 15 days of reach training
procedures with either the paretic (Par) or non-paretic (NonPar) limb or control procedures,
the reaching performance of the paretic limb was assessed in all animals. During initial post-
training assessment, the performance of Sham and Par groups resembled pre-operative
levels. Control and NonPar groups exhibited performance levels that were similar to that of
the initial post-operative assessment. Over seven consecutive days of testing the paretic
limb, Control mice gradually began to display behavioral outcome that resembled pre-
operative performance levels. The performance of NonPar mice did not improve with seven
days of paretic limb assessment and remained at initial post-operative levels. A repeated
measures ANOVA confirmed a significant Group x Day interaction (F(23,352) = 9.04, p <
0.001). Post hoc analyses with an LSD correction revealed significant differences between
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NonPar animals and all other groups (p < 0.001 for all comparisons). In addition, there was a
significant difference between Control and Sham groups (p < 0.03). No other post hoc
comparisons reached statistical significance (p > 0.1 for all comparisons).

3.2.2. Bimanual home cage enrichment (BE) ameliorates non-paretic limb
training effects following ischemic lesion—Experiment 2 assessed the value of
dexterous coordinated use of both forelimbs in the home cage to functional outcome
following non-paretic limb training. Following ET-1-induced ischemic infarcts, all groups
exhibited similar deficits in reaching performance, with an approximate 50% decrease in
successful reaching. Following 15 days of either standard housing or bimanual home cage
enrichment and non-paretic or control training procedures, paretic limb performance was
assessed for all mice over seven consecutive days (Fig. 3). Paretic limb assessment revealed
that mice receiving bimanual home cage enrichment exhibited performance levels that were
similar to those of Control mice. Both BE NonPar and Control groups improved their
reaching performance over seven days of assessment, ultimately achieving performance
levels that resembled pre-operative performance. ST NonPar mice did not improve their
reaching performance with paretic limb assessment. Performance of ST NonPar mice
remained similar to the initial deficit following stroke. A repeated measures ANOVA
confirmed a significant Group x Day interaction (F(16, 192) = 9.361, p < 0.001). Post hoc
analyses with an LSD correction revealed that the performance of ST NonPar mice was
significantly different from both BE NonPar and Control mice (p < 0.001 for both
comparisons). No other comparisons reached statistical significance (p > 0.1).

3.1.1. Lesion volume and reconstruction—Representative images of Nissl stained
tissue from both experiments are presented in Fig. 4A. Average lesion extent is outlined for
all groups. ET-1 infusion resulted in damage in all mice, while sham procedures did not
affect cortical volume. In Experiment 1, ET-1 infusion produced damage to the forelimb
representation area of motor cortex extending in an approximately 1 mm radius from the
infusion site (Figure 4A). Reconstruction of lesion placement and extent for Experiment 2
indicated that lesion placement was similar to that of Experiment 1, though the total lesion
volume (contralateral-ipsilateral volume difference) tended to be larger (Figure 4A). No
damage was observed in underlying white matter or striatum in either experiment.

As seen in Figure 4B (top), in Experiment 1 lesions (n = 33) resulted in a significant loss of
ipsilesional cortical volume (as estimated by contralateral-ipsilateral volume difference)
compared to sham operates (F(1,46) = 15.383, p < 0.001). There was no significant difference
in interhemispheric volume differences between the two lesion groups (p > 0.1; Figure 4B
bottom). In Experiment 2, there was no statistical difference in lesion volume between
Control (n = 10), ST NonPar (n = 8), and BE NonPar (n = 9) groups (p > 0.1; Figure 4C).

4. Discussion
We have previously established C57BL/6 mice as a reliable model for sensorimotor deficits
following focal ischemic insult [43], with behavioral deficits resembling those produced by
similar lesions in rats [14, 15, 17] and chronic impairments observed in humans (e.g., [50]).
In this study, we have further developed our mouse model by exploring the impact of non-
paretic limb training following focal insult. Our results indicate that the mouse, much like
rats and humans, exhibits impaired functional recovery of the paretic limb following skilled
use of the non-paretic limb after insult. We have further shown that the maladaptive effects
of non-paretic limb training can be ameliorated with increased coordinated bimanual
forelimb use in the home cage, suggesting that peri-lesion plasticity can be maintained and
stimulated by minimal, unskilled, dexterous forelimb use. These results are in concert with
previous findings that skilled bilateral training in rats [39, 40, 51] and humans [52, 53]
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improves functional outcome and extend these findings by suggesting that bilateral limb use
does not have to involve focused training, but simply coordinated, dexterous activity.

Mouse models of stroke are becoming increasingly important with the availability of
transgenic lines, the affordability of housing, and the ease of in vivo imaging with the
species. Because mice share homologies with rat and primate forelimb movements and
motor system organization [32, 54–57], they are a strong candidate for modeling upper limb
impairment following stroke. Previously, we have demonstrated that ET-1 ischemic lesions
of SMC in mice produce behavioral deficits that are similar to those observed in the well-
established rat model[25, 39]. Following ET-1 infusion, mice exhibit impaired skilled
reaching abilities, asymmetrical responsiveness to tactile stimulation [43], and motor map
reorganization [44], similar to that previously observed in rats and primates.

In both the rat model and in human rehabilitation studies, skilled use of the non-paretic limb
(forelimb in the rat) results in impaired functional outcome of the paretic limb. The current
study establishes that this finding is also consistent in our mouse model. In fact, non-paretic
training following ischemic stroke appears to not only impair, but to prevent functional
recovery, as mice show no improvement in performance with seven days of focused paretic
limb assessment (see Fig. 3 and 6). The current findings cannot be explained by lesion size
as both paretic and non-paretic trained animals had similar lesion volumes assessed at the
termination of paretic limb assessment. Therefore, non-paretic limb training interferes with
functional recovery of the paretic limb, possibly by impeding on neural plasticity in peri-
lesion cortex.

We have previously explored the impact of skilled bilateral limb training following similar
insults in rats [40]. Our results indicated that focused training of both limbs prevents the
maladaptive effects of non-paretic limb training after stroke. These results suggested that
functional recovery is possible, even with a reliance on the non-paretic limb, as long as the
paretic limb is also utilized in a focused rehabilitative fashion. However, humans often rely
on their non-paretic limb to perform daily activities. This compensation both precedes and
supersedes focused paretic limb rehabilitation, which is typically limited in frequency and
duration. In the current study, we found that enhancing bimanual dexterous forelimb use for
daily activities, such as eating, in mice was sufficient to avoid the deleterious effects of skill
learning with the non-paretic limb [58, 59] and promote better functional outcome.
Therefore, increasing coordinated bimanual limb use in daily activities may be an effective
therapy to promote functional outcome without the inconvenience and discomfort of binding
the non-paretic limb.

Following injury, the remaining cortex undergoes time-dependent degenerative and
regenerative cascades that impact functional outcome [60]. Rehabilitative training interacts
with this naturally occurring plasticity to impact both the structure and function of the
central nervous system. Skilled unimanual training increases dendritic arborization [17, 25,
61, 62], the number of synapses per neuron [22, 63], and induces LTP-like mechanisms [64,
65] in contralateral-to-training motor cortex. In mice, skilled reaching training on the Pasta
Matrix Reaching Test induces rapid synaptic remodeling observed in vivo [66]. When
combined with the growth permissive and inhibitive post-stroke environment, skilled
rehabilitative training induces motor map plasticity [31, 32, 44], dendritic plasticity [25, 38,
67], and improved motor function [30, 34]. These effects are time-dependent [68, 69] and
often occur in areas of remaining ipsilesional cortex (i.e., peri-infarct cortex), which has
been found to be especially important for behavioral outcome following injury. There is a
correlation between behavioral outcome and movement related activation of the peri-infarct
cortex in humans [70]. In mice, the area of peri-infarct cortex that is closest to the lesion is
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particularly dynamic, with the greatest synaptic turnover found in areas within several µm of
the lesion core [71].

Learned non-use may result, in part, because learning with the paretic limb somehow
impedes or impairs the potential of residual cortex to mediate better function in the paretic
limb. ET-1 induced lesions of the SMC facilitate learning the with non-paretic limb,
possibly as a result of degeneration-triggered processes that facilitate synaptic changes that
underlie learning [17, 22, 25, 72]. With this facilitated learning of the non-paretic limb
comes additional, maladaptive plasticity including decreased neuronal activation that is
associated with the initiation of plasticity in remaining ipsilesional cortex [40].

The neural basis of the present effects are poorly understood. We have previously
demonstrated that the maladaptive effects of non-paretic training (our model for learned
non-use) are mediated through interhemispheric connections of SMC, as contralesional
cortex and transcallosal fibers are required for the appearance of non-paretic training effects.
It has been suggested that learning to compensate with this limb exaggerates
interhemisphere disruption that may occur following stroke [51]. This hypothesis is
supported by human research whereby unilateral injury results in abnormalities in
interhemispheric activity associated with decreased behavioral outcome [73–77]. It is
possible that by increasing coordinated bimanual forelimb use in the home cage, we have
increased interhemispheric communication and perhaps connectivity, preserving the
neuroplastic capabilities of peri-infarct cortex. It is also feasible that increased bimanual
limb use during non-paretic limb training periods preserves the function of peri-infarct
cortex by stimulating neuronal activation associated with the initiation of neural plasticity
and prevents maladaptive plasticity that results from non-paretic limb training from
impeding on the structural rehabilitation of peri-infarct cortex. Coordinated bimanual limb
use does not rescue damaged tissue in peri-infarct cortex as lesion sizes are similar between
enriched and un-enriched animals.

As peri-infarct cortex undergoes remodeling following injury, and contralesional homotopic
cortex is likely responsible for mediating changes in non-paretic limb use, these two
locations offer the most fruitful exploration of neural mechanisms supporting the adaptive
and maladaptive effects of rehabilitative training. Stroke induces both vascular and dendritic
plasticity in a coordinated fashion in peri-infarct cortex [71, 78], and non-paretic limb
training has been found to decrease neural activation associated with initiating neural
plasticity in peri-infarct cortex [40]. Clearly, interhemispheric disruption impedes neural
plasticity in peri-infarct cortex. One potential mechanism of non-paretic training effects is
interference with dendritic and vascular plasticity in peri-infarct cortex as a result of
increased plastic responses in contralesional cortex. Additional research is needed to assess
the neural mechanisms that support both the maladaptive effects of non-paretic limb training
and the amelioration of those effects by bimanual dexterous limb use in the home cage.

It should be noted that in the current study, our ischemic insult produced different sized
lesions between Experiment 1 and Experiment 2, with the lesions in Experiment 2 being
somewhat larger on average that those in Experiment 1. It is important to realize that the size
of lesions produced by ET-1 infusion are often small and the lesion sizes in both
experiments fall within the normal range of what we have previously observed with this
technique[43]. While the lesion-induced decrements in behavior were somewhat different
between experiments, with animals in Experiment 1 exhibiting a 40% decrease in reaching
performance and animals in Experiment 2 exhibiting a 50% decrease, the response of all
animals to non-paretic limb training was similar. That is, in both experiments training the
non-paretic limb reduced functional improvements in the paretic limb assessment. Further,
the amelioration of the non-paretic limb training effect was detected in Experiment 2,
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following slightly larger lesions. As the larger lesion is associated with a larger impact on
performance, it could be argued that effective rehabilitative strategies in Experiment 2
would also be effective in Experiment 1 and therefore do not limit our conclusions in the
present study.

The current study is not without limitations. We assessed paretic limb performance for seven
days following non-paretic training conditions. Additional research is also needed to
determine the persistence of non-paretic training effects. In addition, the behavioral
experience of our mice was limited in complexity, intensity, and variety and therefore does
not accurately mimic the range of human bimanual experience. It is important to further
explore the impact of intensity and variety of both behavioral experience and training on
adaptive and maladaptive effects of post-stroke behavioral training. Finally, it would be
useful to assess the generalizability of our findings to other disorders that present
unilaterally or asymmetrically such as traumatic brain injury and Parkinson’s disease. Our
present results suggest that therapeutic strategies focused on increasing coordinated
bimanual limb use, and minimizing reliance on the non-paretic limb, will result in the most
effective functional outcome following injury. The current findings also raise the possibility
that the effects of paretic limb training might be further improved by its combination with
bimanual enrichment training, although this effect was not explicitly tested as we did not
have a paretic limb trained enrichment group. A better understanding of both the neural
mechanisms that support functional rehabilitation and maladaptive behavioral outcomes, and
the generalizability of our findings, may lead to optimal applications of rehabilitative
strategies, including CIMT, cortical stimulation [79– 81], behavioral experience [82, 83],
and focused behavioral training, to promote more effective behavioral recovery following
injury.
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Highlights

• We studied the effect of non-paretic limb training on paretic limb outcome in
mice.

• Non-paretic limb training was found to impede functional outcome of the
paretic limb.

• Home-cage bimanual limb use attenuated maladaptive effects of non-paretic
training.

• Potential neural mechanisms that support functional outcome are considered.
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Fig. 1.
Experimental Design. In Experiment 1 (A), mice were given ET-1 induced ischemic lesions
of the contralateral SMC following task acquisition. During postoperative training, mice
trained with either the paretic (Par) or non-paretic (NonPar) limb on a reaching task or
received control procedures. Following training, all mice were assessed on the Pasta Matrix
Reaching Test using their paretic limb. Experiment 2 (B) was similar to Experiment 1.
However, during post-operative training all mice were forced to use their non-paretic limb
for reaching or received control procedures. In addition, half of the mice were given home
cage enrichment that encouraged bimanual dexterous forelimb use (BE) versus standard
housing conditioning (ST).

Kerr et al. Page 15

Behav Brain Res. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Experiment 1: Pasta Matrix Reaching Test. Mice receiving rehabilitative training of the
paretic limb (Par) during the training period exhibited functional recovery of the paretic limb
during testing. Control mice received no skilled training during the training period. With
paretic limb assessment, control mice improved their performance to reach pre-operative
levels. Mice that received focused training of the non-paretic limb (NonPar) during the
training period did not exhibit recovery during paretic limb assessment. NonPar mice did not
experience any improvement of the paretic limb during the experiment. Significant
differences (p < 0.05) from all other groups is denoted by *. Significant differences (p <
0.05) from only Par and Sham groups is denoted by Δ.
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Fig. 3.
Experiment 2 Pasta Matrix Reaching Test. Home cage bimanual enrichment (BE NonPar)
ameliorated the effects of non-paretic limb training (ST NonPar). BE NonPar mice
performed similarly to Control mice. As in Experiment 1, ST NonPar mice did not show
evidence of improved paretic limb performance during assessment. Significant differences
(p < 0.05) from all other groups is denoted by *.
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Fig. 4.
Lesion Analysis. Representative images of Nissl stained sections from Experiments 1 and 2
(A). In Experiment 1 (A left) Par, NonPar, and Control mice exhibit similar damage. Mice in
Experiment 2 (A right) exhibited lesion sizes that were slightly larger than those in
Experiment 1, though lesion sizes between ST NonPar, BE NonPar, and Control groups
were similar. Representative lesion sizes in both experiments are indicated in black outline.
(B top) ET-1 infusion, as estimated by contralateral-ipsilateral cortical volume difference,
resulted in lesion sizes of approximately 0.8 mm3 in Experiment 1. Sham procedures did not
cause cortical damage. Within ET-1 lesioned animals (B bottom), there were no differences
between training groups in lesion volume (p > 0.1). In Experiment 2 (C), there were no
statistically significant differences in lesion sizes between groups (p > 0.1).
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