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Abstract

Recent studies of 16S rRNA sequences through next-generation sequencing have revolutionized our understanding of the
microbial community composition and structure. One common approach in using these data to explore the genetic
diversity in a microbial community is to cluster the 16S rRNA sequences into Operational Taxonomic Units (OTUs) based on
sequence similarities. The inferred OTUs can then be used to estimate species, diversity, composition, and richness.
Although a number of methods have been developed and commonly used to cluster the sequences into OTUs, relatively
little guidance is available on their relative performance and the choice of key parameters for each method. In this study, we
conducted a comprehensive evaluation of ten existing OTU inference methods. We found that the appropriate dissimilarity
value for defining distinct OTUs is not only related with a specific method but also related with the sample complexity. For
data sets with low complexity, all the algorithms need a higher dissimilarity threshold to define OTUs. Some methods, such
as, CROP and SLP, are more robust to the specific choice of the threshold than other methods, especially for shorter reads.
For high-complexity data sets, hierarchical cluster methods need a more strict dissimilarity threshold to define OTUs
because the commonly used dissimilarity threshold of 3% often leads to an under-estimation of the number of OTUs. In
general, hierarchical clustering methods perform better at lower dissimilarity thresholds. Our results show that sequence
abundance plays an important role in OTU inference. We conclude that care is needed to choose both a threshold for
dissimilarity and abundance for OTU inference.
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Introduction

Microbes are estimated to have approximately 561030 cells on

earth and more diverse than any other organisms [1]. They play a

vital role in almost all biological processes in ecosystems from

natural environments to human body [2–8]. Traditional culture-

dependent microbial studies have limited our understanding of

microbial communities, because only less than 1% of microbial

organisms can be cultivated, identified, and characterized [9]. In

recent years, with the development of next-generation sequencing

technology, it is now possible to bypass the cultivated-based

technology to sequence millions of sequences directly from

relevant environments, e.g. human gut, soil, and salt lake. 16S

rRNA sequences, the small unit of ribosomal RNA in prokaryotes,

are the most widely used sequences for inferring the phylogenetic

relations among microbial species [10–13]. The 16S rRNA based

phylogenetic inference has revolutionized our view of microbial

diversity and composition of many environments [14–17]. Many

large-scale metagenomics projects have been undertaken to

investigate various aspects of the microbial composition, e.g.

Human Microbiome Project (http://commonfund.nih.gov/hmp),

International Census of Marine Microbes (http://icomm.mbl.

edu), and Earth Microbiome Project (http://www.

earthmicrobiome.org). Thousands of 16S rRNA sequence datasets

have been generated through these community efforts as well as

individual projects. Therefore, there is a critical need to develop

and evaluate efficient and accurate computational algorithms to

analyze these massive data collected from various biological and

ecological environments.

Two approaches are commonly used to characterize microbial

communities in the analysis of 16S rRNA sequences: taxonomy-

dependent methods and OTU-based methods [18–22]. The

taxonomy-dependent methods rely on the annotated sequences

already deposited in the databases for taxonomic assignment of a

query sequence by the best-matching sequence in the reference

database. In the OTU-based methods, all the sequences are

clustered into OTUs based on a distance matrix at a specified

threshold. Although taxonomy-dependent methods can assign

taxonomy to the query sequences based on previously character-

ized microbes, lack of sufficient well-characterized microbes and

reliable taxonomy often make it difficult to characterize novel

sequences, and the robustness and accuracy of such methods are

mainly dependent on the completeness of the annotated reference

database [16,20,22,23]. Another limitation of the taxonomy-

dependent methods is that most existing reference databases are

well-characterized only at the genus level or higher, rather than at
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the species level. In contrast, OTU-based methods are able to

assign all sequences into OTUs without prior information of the

reference taxonomy. Hence all sequences can be processed,

including both microbes that have not been annotated in the

databases as well as novel uncultured ones. The OTU-based

methods are especially useful in analyzing less characterized

microbial communities. Yet some issues that are unique to the

OTU-based methods need to be addressed for their successful

applications, such as the presence of sequencing errors which

would result in an inflation of OTUs, the heterogeneous evolution

rates in 16S rRNA which make it difficult to choose a consistent

threshold to define OTUs, and biologically meaningful interpre-

tations/annotations of the inferred OTUs.

In general, the OTU-based methods can be categorized into

hierarchical clustering, heuristic clustering and model-based

clustering methods. In the hierarchical clustering category, a

distance matrix measuring the difference between each pair of

sequences is calculated first, and standard hierarchical clustering is

then used to define OTUs at a specific level of sequence

dissimilarity. Most of these methods have an O(N2) computational

complexity, where N is the number of sequences, posing a

significant computational bottleneck for processing large-scale

sequencing datasets. The representative hierarchical clustering

algorithm is Mothur [19], which is an improved version of Dotur

[15]. Considering that the average-linkage method is relative

conservative, Huse et al [24] proposed an improved single-linkage

preclustering method (SLP) which can mitigate the effect of

‘‘noise’’ due to sequencing errors and the impact of abundant

sequences so as to reduce the number of inflated OTUs. In order

to reduce the complexity and memory requirement, Sun et al. [21]

developed a new algorithm named ESPRIT, which adopts a k-mer

distance to filter out large amount of unnecessary sequence pairs

and store the reduced-distance with a sparse matrix. In addition to

the filtering process, they introduced an hcluster algorithm to

perform complete-linkage clustering, which reduces the computa-

tional burden so that it can process millions of sequences at one

time. However, this method still has a quadratic complexity.

Recently, these authors proposed an improved version ESPRIT-

Tree [22], a learning-based algorithm, which may achieve similar

accuracy as ESPRIT but a quasi-linear computational complexity.

Overall, the hierarchical clustering approaches may not be

suitable for dealing with large-scale sequencing data because of

their intrinsic computational complexity. As a result, greedy

heuristic algorithms have been proposed to assign sequences into

OTUs, which can substantially reduce the time and space

complexity compared to a quasi-linear algorithm. The most

commonly used heuristic clustering methods are CD-HIT [25]

and Uclust [26]. They share many features while differ on how the

sequences are sorted and mapped to existing cluster representative

sequences. For a pre-defined threshold, these two algorithms first

select an input sequence as a seed for the initial cluster, and then

examine each input sequence sequentially. If the distance between

the query sequence and representative sequences of the existing

clusters is within the pre-defined threshold, the input sequence will

be added to the corresponding cluster, otherwise a new cluster is

created and the query sequence is stored as a new seed. Based on a

grammar distance metric, Russell et al. [27] proposed a sequence

clustering algorithm GramCluster, which has a memory complex-

ity of O(LN), where N is the number of sequences and L is the

average sequence length. Considering the computational efficiency

and scalability, Ghodsi et.al [28] presented a greedy clustering

algorithm named DNAClust which incorporates a novel k-mer

filtering algorithm to avoid most pairwise alignments. Heuristic

clustering algorithms achieve a lower complexity at the cost of

reduced biological accuracy, that is, there is a trade-off between

complexity and accuracy [22,28] between the hierarchical

clustering and heuristic clustering methods. In defining OTUs,

some studies showed that it is difficult to use a consistent threshold

because there is considerable overlap in the maximum intra-taxon

distance between taxonomic levels [20]. Lastly, to avoid using a

hard threshold value in clustering as implemented in hierarchical

and heuristic methods, Hao et al [29] proposed a Gaussian

mixture model-based clustering algorithm termed Clustering 16S

rRNA for OTU Prediction (CROP). It adopts an unsupervised

probabilistic Bayesian clustering algorithm and uses a soft

threshold for defining OTUs. The CROP algorithm bypasses

setting an often subjective hard cut-off threshold thus may

effectively reduce the effects of PCR and sequencing errors in

inferring OTUs.

With the availability of numerous OTU-based algorithms, it is a

challenge for practitioners to choose an appropriate method for

clustering their collected sequences into OTUs. Sun et al [21]

studied the impact of alignment on OTU estimation. They found

that pairwise alignments yielded a smaller distance than those

from multiple alignments so that the use of pairwise alignment

could reduce the inferred OTU number. Later, they illustrated the

behavior of hierarchical and heuristic clustering algorithms in

OTU construction, and concluded that hierarchical clustering

algorithms are more accurate [17]. Huse et al [24] evaluated three

different hierarchical clustering algorithms, and showed that the

choice of clustering strategy could significantly affect the number

of estimated OTUs. Overall, average-linkage clustering is more

robust than complete-linkage clustering while single-linkage is

rarely used because of its chaining effect [30]. Another study also

showed that average-linkage clustering could provide better results

and lower the effects of sequence errors in OTU estimation, yet it

still overestimated the number of OTUs [31]. Schloss [32]

examined some other factors such as distance calculation and

sequence filtering methods which may affect the results in

processing the 16S rRNA data. A more recent work by Schloss

and Westcott [20] assessed the performance of four OTU-based

algorithms on RDP-based benchmark datasets, and concluded

that it is difficult to set a consistent threshold for defining OTU.

Moreover, they introduced a novel heuristic clustering method

(phylotype-OTU) with taxonomic information that can reduce the

computation complexity without sacrificing the robustness of

OTU assignments. This study is limited in the number of methods

compared, and the choice of the RDP-based benchmark datasets

that could not effectively reflect the nature of the data commonly

used for OTU inference. For example, the 454 read lengths are

often shorter than the 450 bps analyzed in the paper and

sequencing errors were not explicitly considered. In order to

investigate whether the secondary structure information would

affect the estimation of OTUs, Wang et al., [33] used simulations

to show that incorporating such information does not improve the

OTU assignments. However, Schloss contested this point by more

strict experiments [34]. Most recently, Sun et al [30] reported a

large-scale benchmark study that evaluated seven OTU algorithms

based on normalized mutual information (NMI) [35]. A bench-

mark dataset was constructed based on RDP [36] and Taxcollec-

tor [37]. Yet, it is not a strict criterion because the sequence

divergence is not distributed evenly along the 16S rRNA gene and

the retained sequences at a fixed 97% identity may only partially

agree with the ground-truth. Meanwhile, some reads were

annotated by multi-species, i.e. one-to-many mapping. However,

the relative performance of different methods may depend on

these processing steps to create the benchmark dataset. In

addition, it is recognized that abundance sequences are more
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likely to be generated from true sequences, yet the rare biosphere

may not be as large as previously assumed [38] because many such

units may be spurious, potentially from the accumulation of small

sequence errors.

Despite many published studies discussed above on the

developments and evaluations of various OTU inference methods,

only several papers haven discussed how to choose an appropriate

method for analyzing 16S rRNA sequences and more needs to be

done to provide a comprehensive assessment of different methods.

This is because many of these studies did not have ground truth,

assumed error-free sequencing data, and did not consider the

impact of sample complexity and abundance information on OTU

inference. In this article, we compare ten OTU-based methods

using both simulated and real data, where ground truth is known.

We introduce errors in our simulated sequence reads to mimic real

data settings. Sample complexity and abundance information is

also explicitly considered in our comparisons. Our results suggest

that when the default parameter settings are used, the commonly

used methods tend to inaccurately estimate the number of OTUs.

Therefore, it is important to choose proper parameters when

applying a clustering algorithm for OTU inference. In addition,

we note that the abundance of reads plays an important role on

OTU clustering and the appropriate abundance thresholds

depend on individual clustering algorithms. Our results may

provide general guidelines on selecting an appropriate method for

16S rRNA data in microbial analysis.

Methods

Data sets
In our study, eleven datasets (both real and simulated) were used

to evaluate ten existing OTU-based methods.

Real data (Clone43)
The real data considered was described by Huse et al [39]. This

study sequenced the V6 region of 16S rRNA from a community of

43 known microbial species. It consists of 202,340 reads with read

length ranging from 57 to 145 bps.

Simulated data
Since it is difficult to evaluate the performance on a complex

community because of the lack of ground-truth (e.g. the number of

microbial species and their relative abundance), we used simulated

datasets so that the species origin of each individual sequence read

and the species abundance are known. To make the simulations

more representative of nature samples, we considered simulations

with different complexities, as reflected by the number of species

(ranging from 10 to 200), the composition of the species (e.g.

whether it is dominated by similar or distant species), and the read

lengths (Table 1). To cover a wide range of scenarios, we

generated ten 16S rRNA simulated datasets (simclone10_1,

simclone10_2, simclone15_1, simclone15_2 and simclone20,

simclone30, simclone50, simclone100, simclone150, simclone200)

using the software 454Sim [40], which simulates 454 data using

configurable statistical models that can accommodate different

number of sequence reads, sequence lengths, errors rates, and

abundance. Table 1 provides the detailed information for the

simulated datasets, including the number and the length of species,

the minimum and maximum distance among these species,

simulated cluster size and other information. For example,

Simclone10_1 and simclone10_2 were generated from 10 known

species sequences but have a different distribution of reads length

and relative abundance. Simclone15_1 and simclone15_2 were

generated from 15 known species, simclone20 was generated from

20 known species sequences.

Clustering reads into OTU
We compared ten OTU-based methods from three broad

classes: hierarchical clustering (Mothur [19], ESPRIT [21],

ESPRIT-Tree [22], SLP [24], Muscle [41]+Mothur), heuristic

clustering (CD-HIT [25], Uclust [26], GramCluster [27],

DNAClust [28]) and model-based clustering methods (CROP

[29]). For hierarchical clustering and heuristic clustering algo-

rithms, we clustered reads into OTUs at or equal to dissimilarity

thresholds ranging from 1% to 10% with an increment of 0.01

regardless of the definition of dissimilarity in different algorithms.

For the model-based clustering method, CROP, reads were

clustered into OTUs with a soft threshold, which ranged from 0.01

to 0.10. For the Muscle+Mothur method, Muscle is multiple-

alignment program rather than a clustering algorithm. Hence we

used Muscle (with the default parameters) to align the reads, and

then the average neighbor algorithm in Mothur was used to

perform the clustering (when we calculated the distance matrix for

alignments from muscle, a gap was only penalized once, and

terminal gaps were penalized). For Mothur, we used the

pairwise.seqs command to obtain the distance matrix which

adapted the Needleman-alignment algorithm to align sequences,

and then the average neighbor algorithm was used to perform

clustering. To make relatively fair comparisons across different

methods, we used the default parameter settings for all the OTU-

based algorithms in our analysis.

Assessment of clustering quality
In order to generate robust statistical results, inspired by the

concept of Q-CV test [42], we repeated the experiment 5 times for

each simulated data set. For each iteration, 90% of the reads were

randomly extracted from the simulated dataset. We evaluated the

method performance with different metrics. We first examined the

number of estimated OTUs, and then assessed the cluster quality

using precision, recall and NID [43], respectively. Precision is

defined by the number of reads that are both in class i and cluster j,

divided by the number of the reads in cluster j, thus it measures the

homogeneity of cluster j. Recall is defined as the proportion of

reads from class i that present in cluster j, thus it measures the

completeness. Precision and recall provide useful insight on local

performance. NID is an information theoretic-based measurement

that can assess the cluster globally with a nominal [0, 1] range.

Now we define these measures more formally. Assume that

there are N reads from m species (S1,S2,:::,Sm)and they are

clustered into n clusters (C1,C2,:::,Cn) at specific dissimilarity

threshold by a given clustering algorithm. Let |Si| denote the true

number of reads from species i, |Cj| denote the number of reads

from cluster j, and aij denote the number of reads from species i

and categorized into cluster j.

Using the above notations, precision and recall are defined as:

pij~
aij

DCj D

rij~
aij

DSi D
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NID is defined as:

I(S,C)~
Xm

i~1

Xn

j~1

aij

N
log

aij

�
N

jSijjCj j
�

N2
,

i~1,2,:::,m; j~1,2,:::,n

H(S)~{
Xm

i~1

Si

N
log

Si

N
, H(C)~{

Xn

j~1

Cj

N
log

Cj

N

NID~1{
I(S,C)

max(H(S),H(C))

Smaller NID values imply better clustering results. It stratifies

both normalization and metric properties and has a tighter bound

than other measures such as NVI, NMIjoint [43] and thus is a

useful measure for cluster validation.

Results and Discussion

Inferred number of OTUs
For the real dataset Clone43 and the simulated dataset

Simclone15_1, Table 2 summarizes the inferred numbers of

OTUs with the dissimilarity threshold set at 2%, 3% and 4%,

respectively, together with the true numbers of OTUs. The results

for Simclone10_1, Simclone10_2, Simclone15_2, Simclone20,

Simclone30, Simclone50, Simclone100, Simclone150 and Sim-

clone200 are shown in Table S1. Although sequence divergence is

not evenly distributed in the 16S rRNA region, 3% dissimilarity is

often chosen in practice as the cutoff value to define bacteria

species [2,21,32,39]. At this dissimilarity level, for the real dataset

Clone43, ESPRIT gave the largest estimated number of OTUs

(4,397), nearly 100 times larger than the expected 43 OTUs, while

CROP yielded the smallest number of estimated OTU (133), still

nearly three times of the true number. For the simulated dataset

Simclone15_1, we found that CROP returned 15 OTUs, equal to

the true number of OTUs, and SLP returned 17 OTUs.

GramCluster yielded 225 clusters, the largest estimated number

of OTUs among all the methods. Similar results were found for

simclone15_2 which was simulated from similar species distribu-

tion but different initial abundance with simclone15_1. For

simulated datasets simclone10_1, simcloen10_2, and simclone30,

these methods also tended to overestimate the number of OTUs at

3% dissimilarity except the SLP algorithm, yet, the extent of

overestimation is smaller when it is compared with simclone15_1

and simclone15_2. This may be due to the fact that the length of

template species generated for these three simulated data sets are

longer and they share a strict inter-species similarity range, a

smaller upper-limit but higher lower-limit similarity, so they can

tolerant more sequence errors in clustering. The results for

Simclone20 were similar to those of simclone30, which have

similar species distribution but with an overall lower inter-species

similarity. These results suggest that the upper-limit rather than

lower limit of inter-species similarity plays an important role on

clustering results. However, the results are different for the other

four complex simulated datasets. When we inferred OTUs at 3%

dissimilarity, most hierarchical algorithms underestimated the

number of OTUs. For example, CROP returned 122 OTUs, SLP

returned 144 OTUs and ESPIT-Tree returned 175 OTUs for the

simclone200. A more interesting finding is CD-HIT, which

inferred the true (or close to the true) number of OTUs, and
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outperformed hierarchical clustering algorithms. This is partly due

to the fact that these four data sets were generated from similar

species populations. This suggests that if we choose the commonly

used 3% dissimilarity to define OTUs at the species level, we may

end up with an incorrectly estimated (overestimated or underes-

timated) number of OTUs, thus a constant threshold (e.g. 3%

dissimilarity) is not ideal. Therefore, the choice of dissimilarity for

defining the taxonomy is both dependent on the cluster algorithms

as well as on the complexity of the dataset. For comparisons

between different algorithms, we found that SLP returned a

smaller number of OTUs for the simulated datasets. This could be

explained by the chaining results of SLP [30], which adapts a

single-linkage pre-clustering (2%), thus, more sequencing errors

can be tolerated with longer reads. Mothur inferred a smaller

number of OTUs than Muscle+Mothur, consistent with the

argument that pairwise distances tend to yield more biologically

meaningful OTUs than those with multiple alignment distances

[21]. Among the hierarchical clustering methods, SLP returned

the smallest numbers of OTUs mainly due to the use of precluster

which could reduce the spurious clusters generated by the

erroneous sequences. Unfortunately, it often led to another

problem. If the data sets are generated from near-clonal

populations, it is sometimes difficult to differentiate similar species

due to sequence errors. In the context of inferring the number of

OTUs, CD-HIT performed much better than GramCluster and

DNAClust regardless of the complexity of the simulated data sets.

In general, at the same cluster scale referred to the cluster

thresholds, the hierarchical clustering algorithms returned smaller

numbers of OTUs than heuristic clustering methods. The

exception is ESPRIT, which adapts a complete-linkage (default)

clustering to group reads into OTUs. It applies a more stringent

threshold so that no sequence can be added to an existing OTU

unless the distances between the new sequence and the sequences

already in the OTU are smaller than the threshold. For CD-HIT

and Uclust, consistent with what was reported by Cai et al. [22],

these two methods ran several orders of magnitude faster than the

hierarchical clustering algorithms at the cost of accuracy. The

Gaussian model-based clustering algorithm CROP achieved the

best result in the inferred number of OTUs for lower complex data

sets (such as data sets simclone10_1 and simclone10_2) but had

worse performance for highly complex data sets (such as

simclone200), where it under-estimated the numbers of OTUs.

Relationship between the dissimilarity threshold and
cluster algorithms

From the above analysis, we found that it is difficult to use a

constant threshold to define OTUs at a specific taxonomic level.

To further compare the performance of different algorithms

beyond the number of inferred OTUs, we calculate NID values for

different dissimilarity cut-offs ranging from 0.01 to 0.1 with a step

size of 0.01. Among these values, we chose the local minimum value

of each algorithm and analyzed the mean and standard deviation of

the NID covering the interval [0.01, DissimilarityminimumNID],

where DissimilarityminimumNID is the dissimilarity level where it

achieved the minimum NID, to compare these algorithms (Figure 1,

Figure S1). As expected, the clustering qualities of different

algorithms were dependent on the clustering dissimilarity, and the

minimum NID scores for different algorithms were achieved at

different dissimilarity values. This may be partly due to the fact that

the dissimilarity definitions used in different methods are different.

Some are alignment-based while others are alignment-free. Even for

the alignment-based methods, they sometimes used different

strategies to treat inserts, deletes and gaps. For example, for

sequences S1 = ACGGTAT and S2 = ACGGGTATAC, the sim-

ilarities achieved by CD-HIT, Uclust and ESPRIT were 100%,

78% and 87.5%, respectively. It suggests that there is no consistent

threshold for all the methods. For the low-complexity and short-

length data set simclone15_1, CROP had the minimum NID (0) at

0.03 dissimilarity, SLP had the minimum NID (0) at 0.01

dissimilarity, Mothur had the minimum NID (0) at 0.04 and CD-

HIT had the minimum NID (0.00034) at 0.07 dissimilarity. Most

methods had low NID scores (, = 0.03) except Uclust (0.04) and

ESPRIT (0.08). Meanwhile, SLP and CROP had a smaller average

NID score with variation in the range from 0.01 to Dissimilar-

ityminimumNID. Besides ESPRIT, Uclust and DNAClust, other

algorithms had an average NID score smaller than 0.05. Similar

results were found for the low-complexity data set simclone15_2.

For the high-complexity data set simclone200, the threshold to

achieve the minimum NID values skewed to the left across different

algorithms and cluster qualities differed significantly for different

dissimilarity thresholds. For examples, SLP, CROP and ESPRIT

had the minimum NID value at 0.01 dissimilarity, whereas

Muscle+Mothur and CD-HIT had the minimum NID at 0.02

dissimilarity. Similar trends were observed for simclone150,

simclone100 and simclone50. These results suggest that a more

stringent dissimilarity cut-off may be needed for high-complexity

data sets. This is consistent with the fact when the samples consist of

similar species, a higher dissimilarity threshold will incorrectly group

the high-similarity species together. From the NID score, we can see

that 1) Most of the current clustering algorithms could achieve a

similar minimum NID value. It indicates that with a proper

dissimilarity threshold for a specific algorithm, most of them have

comparable results. Overall, ESPRIT, Uclust and DNAClust have

poorer clustering results among these algorithms. 2) The optimal

dissimilarity threshold for different methods should take the

complexity of the data sets into account. For low-complexity and

short-length read data, a higher dissimilarity is preferred to define

OTU while for high-complexity and long-length read data, a lower

threshold should be a better choice. As for the complexity of the

datasets, it can be partly estimated by the distribution of the reads

and the average distance among abundance reads. 3) For low-

complexity and short-length read data, CROP and SLP may be

preferred for their robustness to sequence errors, while for high-

complexity reads, CROP should adopt smaller threshold (such as

1% for simclone200,simclone150), otherwise, it may lead to an

under-estimation of number of OTUs for its over learning. 4) An

interesting finding is that the NID curve for CD-HIT is similar to

those of most hierarchical algorithms for high-complexity and long-

length read.

Evaluation of different methods using Precision and
Recall measures

In addition to broader assessment of inferred OTU clusters in

relation to the underlying community structure using the

minimum NID score, we also calculated the precision and recall

scores to obtain more detailed information how the sequences

originating from the same species are clustered together and how

the reads distribute in the clusters with different algorithms. We

considered the simulated data sets where the corresponding

template species for each read cloned from was known (Figure 2,

Figure S2). For the dataset simclone15_1, CROP, CD-HIT,

DNAClust inferred 15 OTUs with high precision and recall values

which were close to 1, which suggest that these methods could

cluster the reads accurately in this setting. All the other algorithms

over-estimated the numbers of OTUs. The precision versus recall

plots for this dataset show that some OTUs with a small cluster

size and the reads are from the same species, in other words, reads

from the same species were clustered into different groups. This

Comparison of OTU-Based Clustering Methods
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explained the observed points appear near (0, 1). There were also a

few OTUs containing reads from different species and large

proportion of reads were from a dominating species while others

were from different species. It can explain the points closed to (0,

0). For example, GramCluster inferred 17 OTUs and there were

19 points having non-zero (precision, recall) values, 2 out of 19

were close (0, 0). Similar results were found in other low- and

moderate complexity datasets (simclone10_1, simclone10_2,

simclone15_2 and simclone20). For the simulated datasets with a

high complexity (such as more species and containing high-

similarity species et al.), the trend became more obvious

(simclone30, simclone50, simclone100, simclone150 and sim-

clone200). 1) With an appropriate choice of threshold, the inferred

number of OTUs could match the true number for all the

algorithms. 2) Many OTUs generated from Uclust and GramClus-

ter contained more than one species. ESPRIT estimated a large

number of OTUs, with most clusters having a small cluster size

consisting of reads from the same species. 3) Mothur, CROP, SLP,

Muscle+Mothur, ESPRIT-Tree and CD-HIT achieved better

performance and clustered relatively small number of OTUs, but

they sometimes led to inaccurate clusters by grouping reads from

different species into one cluster.

Figure 1. NID scores of ten algorithms based on the data set simclone15_1 and simclone_200.
doi:10.1371/journal.pone.0070837.g001

Figure 2. A Precision versus Recall plot generated from data set simclone15_1.
doi:10.1371/journal.pone.0070837.g002
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Time cost for OTU-based methods
We noted that time cost is a critical factor when we choose an

appropriate method for analyzing large scale 16S rRNA datasets.

Table 3 lists the running time for each method on the dataset

simclone20. Uclust took the least time to complete the clustering

(0.87 minute) when the dissimilarity threshold ranged from 0.01 to

0.1, followed by ESPRIT-Tree and DNAClust (2.37 minutes and

3.01 minutes). SLP took the longest time to complete clustering

(,587 minutes). Among the heuristic clustering methods,

GramCluster took the longest time to cluster sequences

(36.85 minutes), due to the additional time needed to create

grammar dictionary for defining dissimilarity. The running time of

CROP (,173 minutes) was shorter than that of Mothur and SLP.

In general, the hierarchical clustering and model-based clustering

algorithms took more time to assign sequences into OTUs than

those of heuristic clustering methods.

Impact of abundance on clustering sequences into OTUs
Some research showed that abundant sequences were more

likely to be generated from true species while the rare sphere may

be an artifact due to accumulation of sequencing errors [38]. In

order to test whether abundance has an effect on OTUs

estimation, we used different frequency thresholds to define

abundant data set and then clustered the abundant sequences

into OTUs (Figure 3, Figure S3, and Table S2). For the data set

Clone43, when we used 10 as a threshold, the coverage was 93.4%

and the estimated number of OTUs by ESPRIT, ESPRIT-Tree,

Mothur, Muscle+Mothur, SLP, CROP, CD-HIT, GramCluster,

DNAClust and Uclust was 520, 55, 56, 87, 45, 44, 118, 313, 527,

and 82, respectively. With a frequency threshold 100 covering

84.2% of the total sequences, the above algorithms identified 57,

39, 40, 47, 39, 38, 53, 47, 60 and 56 OTUs, respectively, at the

0.03 dissimilarity threshold. As expected, with a higher frequency

Table 3. Running time for different algorithms when cluster sequences into OTUs for dissimilarity thresholds ranging from 0.01 to
0.10 based on simclone20.

input* Simclone20

Running time (minute) for sequences (wall time)

Mothur UniqueSeq 469.00

Muscle+Mothur UniqueSeq 6.27

ESPRIT All 75.21

ESPRIT-Tree All 2.37

SLP UniqueSeq 586.55

Uclust All 0.87

CD-HIT All 3.85

DNAClust All 3.01

GramCluster All 36.85

CROP All 173.40

*: UniqueSeq represented only the unique, unaligned sequences were takes as input, All represented all sequences including the identical sequences are taken as input.
doi:10.1371/journal.pone.0070837.t003

Figure 3. The results of OTUs estimated with different frequency thresholds at different dissimilarity levels, from the data set
Clone43.
doi:10.1371/journal.pone.0070837.g003
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threshold, fewer OTUs were inferred. In addition, in order to

recover the correct number of OTUs, different frequency

thresholds may be needed according to the specific algorithms

used. To illustrate these results, we analyzed five simulated

datasets at different frequency thresholds and different dissimilar-

ity thresholds to infer the numbers of OTUs (Figure S3 and

Table S2). The results suggest that the abundance threshold plays

an importance role in clustering reads into OTUs. For

Simclone15_1 with an abundance threshold of 10, the ten

algorithms inferred 30, 16, 22, 27, 15, 15, 20, 63, 20, and 21

OTUs, respectively. Similar results were obtained for Sim-

clone15_2, with most algorithms identified the correct number

of OTUs if we used 100 as the abundance threshold. Most true

species were covered when we mapped OTUs to the original

species. With an appropriate threshold, all algorithms can

approximately recover the true number of OTUs (150 for

ESPRIT, 10 for ESPRIT-Tree, SLP and CROP, and 50 for

Mothur et al). Similar patterns were observed for other datasets

(simclone10_1, simclone10_2 and simcloen20). It can be seen that

the results from these simulated datasets were consistent with those

observed with the real dataset Clone43 presented in Figure 2.

These results suggest the importance of imposing an abundance

threshold in OTU inference. As for the removed reads (non-

abundant reads), we may use a single-clustering or heuristic

clustering method to assign the read to specific OTUs that were

produced from subset of abundant reads.

Conclusion

With rapid accumulation of 16S rRNA sequences and whole

genome shotgun sequences, there is a great need to develop

effective methods to analyze these data. In the past decade,

taxonomy-dependent and OTU-based methods have been widely

used to process the rRNA sequences. Because taxonomy-

dependent algorithms depend on the completeness of existing

databases while the majority of microbe species are unknown, the

OTU-based methods will continue to play a vital role in microbial

analysis. In this case, an accurate identification of OTU is critical

for downstream analysis and biological interpretation. Although

much work has been done to evaluate of the effect of the

alignment, distance calculated methods, and the different variable

region of 16S rRNA on OTU estimations [20,32], relatively little

guidance has been provided on the choice of a proper method for

OTU estimation. In this article, we used both real and simulated

datasets to compare the performance of ten existing representative

OTU-based algorithms. From these results, we conclude that: 1)

Most of OTU-based algorithms may either overestimate or

underestimate the number of OTUs if an improper dissimilarity

is chosen. The appropriate dissimilarity cut-off for inferring OTUs

is not only dependent on the specific methods but also related with

the complexity of the datasets. For low-complexity and short-

length read datasets, a higher dissimilarity can be used to define

OTU. In this case, among the ten algorithms considered, SLP and

CROP achieved a better performance on OTU estimation. For

high-complexity and long-length read datasets, hierarchical cluster

methods need a more stringent dissimilarity threshold. Further-

more, CD-HIT has better performance similar as hierarchical

clustering methods. 2) Most existing OTU-based algorithms tend

to partition the samples from the same species into several sub-

clusters and those OTUs sometimes have a small size, suggesting

that we may reduce the overestimated number of OTUs through

integrating small clusters. Unfortunately, even in the case of

optimal cluster results with a minimum NID score, there also exist

some OTUs with a large number of reads and coming from

different species. This suggests that for these OTUs which have a

large and different size from surrounding OTUs, care is needed

before downstream analysis. 3) The sequence abundance plays an

important role in clustering sequences into OTUs. The estimated

numbers of OTUs will be reduced and become more accurate by

setting a proper frequency threshold to filter out sequences with

low abundance.

Existing OTU-based algorithms are sensitive to sequencing

errors, it would be more effective to model sequencing errors and

identify/remove ‘‘problematic’’ reads before clustering. This may

be achieved by error calibration and modeling [44,45]. Our results

suggest the importance of choosing a proper distance threshold for

taxonomic definition because of the heterogeneity of the evolu-

tionary rate of 16S rRNA genes [20]. In addition, the dissimilarity

is correlated with the distance computing methods [32]. There-

fore, it is desirable to establish a taxonomic specific distance

threshold that can incorporate the information on diverse

evolutionary rates for 16S rRNA, and distance computing

methods into consideration.

Our study has focused on the taxonomy independent clustering

methods using the 454 sequence data. It is undoubtedly

informative to relate each OTU to a biological entity. With the

rapid accumulation of databases containing experimentally

verified sequences, incorporating information of annotated

sequences into OTU-based clustering methods will be critical yet

few methods simultaneously analyze both annotated and unan-

notated sequences. Last but not least, we have focused on the

analysis of 454 data and it is worthwhile to evaluate the

performance with sequences generated from other sequencing

platforms, e.g. Illumina, where the whole genome information is

available.
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