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Abstract

Grain-yield prediction using remotely sensed data have been intensively studied in wheat and maize, but such information
is limited in rice, barley, oats and soybeans. The present study proposes a new framework for rice-yield prediction, which
eliminates the influence of the technology development, fertilizer application, and management improvement and can be
used for the development and implementation of provincial rice-yield predictions. The technique requires the collection of
remotely sensed data over an adequate time frame and a corresponding record of the region’s crop yields. Longer
normalized-difference-vegetation-index (NDVI) time series are preferable to shorter ones for the purposes of rice-yield
prediction because the well-contrasted seasons in a longer time series provide the opportunity to build regression models
with a wide application range. A regression analysis of the yield versus the year indicated an annual gain in the rice yield of
50 to 128 kg ha21. Stepwise regression models for the remotely sensed rice-yield predictions have been developed for five
typical rice-growing provinces in China. The prediction models for the remotely sensed rice yield indicated that the
influences of the NDVIs on the rice yield were always positive. The association between the predicted and observed rice
yields was highly significant without obvious outliers from 1982 to 2004. Independent validation found that the overall
relative error is approximately 5.82%, and a majority of the relative errors were less than 5% in 2005 and 2006, depending on
the study area. The proposed models can be used in an operational context to predict rice yields at the provincial level in
China. The methodologies described in the present paper can be applied to any crop for which a sufficient time series of
NDVI data and the corresponding historical yield information are available, as long as the historical yield increases
significantly.
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Introduction

Paddy rice is one of the most important and widely grown crops

in China. The total paddy-rice production in 2009 reached

195.1 million tons, and it accounted for 40.5% of the total grain

production in China (481.563 million tons) [1]. Timely, objective

and quantitative information regarding to paddy-rice yield can

provide important information for government agencies and

producers that can be used for planning harvest, storage and

marketing activities. Therefore, paddy-rice-yield prediction is

important for the food security of China and is considered to be

one of the most challenging tasks in agricultural research [2]. The

traditional approach of crop-yield forecasting, the use of ground-

based data collection is expensive, time-consuming, labor-inten-

sive, and often difficult [3]. Crop-yield prediction using remotely

sensed data has already represented a very active field of research

and application [3–5]. Notable advances in remote-sensing

technology over the last several decades are now providing

scientists with valuable information for yield and production

forecast. Time series of normalized-difference-vegetation-index

(NDVI), derived from the satellite data, have been used for crop-

yield predictions since the 1980’s. Most of the studies that related

NDVI measurements to crop yield have been concentrated on

staple crops such as wheat [4,6–38] and maize

[3,13,18,20,21,24,29,39–49] and rice [2,15,37,44,50–52]. Many

researchers have also found that NDVI variables are very good at

grain yield predictors of millet [53–57], sorghum [24,56,58,59],

barley [19,24,29,60,61], soybean [3,24,62,63], ground nut

[54,59], sugar beet [29], alfalfa [29], rye [29], pea [19,29], and

canola [19] (Literature review was summarized in Table 1).

However, remotely sensed yield prediction appears limited in rice.

Different methods have been developed to predict crop yields

using remotely sensed data, and the most common approach is, by

generating regression model, to develop direct empirical relation-

ships between the NDVI measurements and the crop yield

[15,19,45,57]. These approaches assume that measures of the

photosynthetic capacity from spectral-vegetation indices are

directly related to crop yield. This assumption is used because

PLOS ONE | www.plosone.org 1 August 2013 | Volume 8 | Issue 8 | e70816



many of the conditions that affect crop growth, development and

ultimately yield could be captured through spectra measurements

such as the NDVI [64]. By using long-term historical-yield data as

a dependent variable and remotely sensed data as an independent

variable, a statistical regression function was generated to perform

crop-yield predictions, whereas the actual crop yields depend on

many more factors than the presence of spectral-vegetation indices

[37]. Tilman et al. [65] noted that increased yields in cereal are

mainly the result of greater inputs of fertilizer, water and

pesticides, new crop species, and the improvement of management

over the last decades. For all developing countries, modern

varieties accounted for 21% of the growth in crop yields during the

early Green Revolution period [66]. In Asia, rice production has

more than doubled as a result of the expansion of cultivated area,

the adoption of modern cultivars, increased investments in

irrigation, and an increased use of fertilizer over the past 4

decades [67]. Hafner [68] found that linear growth has been the

most common trend in maize, rice, and wheat yields for 188

nations over the past 40 years. This scenario also occurs in China.

Although the inter-annual variability of NDVI (probably due to

unexpected weather conditions or disasters) can reveal crop yield

fluctuations [19,59]; however, remotely sensed-NDVI cannot

detect those human-induced factors that resulted in increase of

rice yield. Therefore, to monitor and predict crop-yield cannot use

NDVI measurements solely.

For unit-yield estimation, using one simple regression function

(usually known as: Y = a+b * NDVI) would be incompatible as the

advance of years, because simple regression would be likely neglect

those man-induced factors in yield increase. However, few studies

have analyzed the time trends of crop yields, which reflect the

influence of technology development, fertilizer application, and

management improvement. Moreover, the regression model

between statistical data and NDVI cannot be extendable [19,45]

because cropping system and rice yield level is natural condition-

dependent in China.

In consideration of social factors and regional differences for

remotely sensed crop yield estimation in China, the objective of

the present paper was to develop a methodological framework that

may be adopted for the regional-, national- and international-scale

prediction of crop yields. This methodology was based on a time

series analysis of historical-yield information. Paddy rice was

chosen to test the proposed methodology. To accomplish this

objective, we needed to: (1) geographically regionalize rice

cultivation area for remotely sensed monitoring; (2) analyze the

historical trends in the grain yield of rice; (3) decompose the

remotely sensed yield of rice from the long-term historical data; (4)

select the optimal predictors, based on a correlation analysis

between the remotely sensed yield and the AVHRR-derived

NDVIs; (5) construct prediction models for rice yield; and (6)

evaluate the potential for rice-grain-yield prediction in China

using AVHRR NDVI data as predictors.

Materials and Methodology

2.1. The Remote-Sensing dataset
The research presented in this paper relies on a time series of

AVHRR NDVI composite imagery from July 1981 to December

2006, derived from the National Oceanic and Atmospheric

Administration’s (NOAA) series of Advanced Very High Resolu-

tion Radiometer (AVHRR) instruments, with a spatial resolution

of 8 km, by the NASA Global Inventory Monitoring and

Modeling Systems (GIMMS) group at the Laboratory for

Terrestrial Physics. There are two 15-day composites per month:

the first (15a) is a maximum value composite from the first day to

15thof the month; and the 15b composite is from days 16 till the

end of the month. All data are available from the University of

Maryland Global Land Cover Facility (http://glcf.umiacs.umd.

edu/data/gimms/).

Table 1. Relevant literatures that linked with crop yield forecast using remotely sensed data literatures are sorted according to the
crop types.

Crop reference

wheat MacDonald et al., 1980; Rudorff et al., 1991; , Bullock, 1992; Benedetti et al., 1993; Gupta et al., 1993; Benedetti et al., 1993; Cheng, 1994; Dubey
et al., 1994; Sridhar et al., 1994; Doraiswamy et al., 1995, 2003; Smith et al., 1995; Hochheim et al., 1998; Huang et al., 1999; Maselli et al., 2001;
Boken et al., 2002; Labus et al., 2002; Manjunath et al., 2002; Mika et al., 2002; Bastiaanssen, et al., 2003; Kalubarme et al., 2003; Ferencz et al.,
2004; Zhang et al., 2004; Kastensa et al., 2005; Mo et al., 2005; Wang et al., 2005; Patel et al., 2006; Ren et al., 2006; Moriondo et al., 2007; Prasad
et al., 2007; Balaghi et al., 2008; Ren et al., 2008; Wall et al., 2008; Schut et al., 2009; Becker-Reshef et al., 2010; Mkhabela et al., 2011

maize Quarmby et al., 1993; Hayes et al., 1996; Unganai et al., 1998; Lewis et al., 1998; Lee et al., 1999; Reynolds et al., 2000; Seiler et al., 2000; Maselli
et al.,2001; Mika et al., 2002; Wannebo et al., 2003; Ferencz et al., 2004; Kastensa et al., 2005; Mkhabela et al., 2005; Mo et al., 2005; Prasad et al.,
2006; Rojas, 2007; Ren, et al., 2008; Funk et al., 2009

millet Rasmussen, 1992, 1997, 1998; Groten, 1993; Maselli et al.,2000

sorghum Potdar, 1993; Fuller, 1998; Maselli et al., 2000; Kastensa et al., 2005

barley Wendroth et al., 2003; Ferencz et al., 2004; Kastensa et al., 2005; Weissteiner et al., 2005; Mkhabela et al., 2011

soybean Liu et al., 2002; Kastensa et al., 2005; Prasad et al., 2006; Esquerdo et al., 2011

ground nut Rasmussen, 1997; Fuller, 1998

sugar beet Ferencz et al., 2004

alfalfa Ferencz et al., 2004

rye Ferencz et al., 2004

pea Ferencz et al., 2004; Mkhabela et al., 2011

canola Mkhabela et al., 2011

rice Tennakoon et al., 1992; Quarmby et al., 1993; Huang et al., 2002; Wang et al., 2002; Bastiaanssen, et al., 2003; Prasad et al., 2007; Huang et al.,
2010

doi:10.1371/journal.pone.0070816.t001
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Pinzon et al. [69] and Tucker et al. [70] described in detail how

the GIMMS data set was developed. A number of improvements

have been made on the GIMMS NDVI database, with respect to

previous NDVI data sets, including corrections for: (1) sensor

degradation; (2) inter-sensor differences; (3) solar-illumination

angle and sensor-view angle effects due to satellite drift; (4)

volcanic stratospheric aerosol corrections for 1982–1984 and

1991–1994; (5) missing data in the Northern Hemisphere during

winter, using interpolation; and (6) short-term atmospheric aerosol

effects, atmospheric water-vapor effects, and cloud-cover physics

[69,70]. This data set is considered to be the most accurate, long-

term AVHRR data record [71]. By comparing these data to new,

improved coarse-resolution remotely sensed data from SPOT

Vegetation instrument and MODIS instruments, recent study

confirmed its suitability for long-term vegetation studies [72].

2.2. NDVI Variables
A large number of studies found a close relationship between

crop yields and NDVI variables. The theory is: the NDVI value

presents the yield level corresponding to every single pixel.

Therefore, a simple regression function can be explained the yield:

yield = a*NDVI + b; then the total yield can be obtained by

multiplying planting area. By literature review, previous studies

suggest three types of NDVI variables: original NDVI

[13,23,42,63], cumulative NDVI [8,23,38,42,45,63,73,74], and

average NDVI [34,45,63]. The cumulative NDVI and the

corresponding average NDVI for the same period were highly

correlated because of the linear nature of the operations involved.

Only the original NDVIs and the average NDVIs were selected as

input data for the prediction models in the present paper.

NDVI variables around the time of the maximum are strongly

correlated with final yields [31,35,75]. Specifically, the rice yield is

most determined by crop conditions during the heading (i.e. peak

phenological phase of growth); and yield-reflectance relationships

are typically the strongest after mid-season. In contrast, NDVI

value changes that occur outside of the rice-growing period maybe

not positively related to yield [52]. These relationships within

changes of NDVI value suggests that the NDVIs during the mid-

to-late growing period should be a good indicator of rice yield;

meanwhile this phenomenon provides an approach to discriminate

rice planting area from remote sensing image. Therefore, the first

step of this study was to extract the maximum NDVI during the

rice-growth period (NDVImax) for each studied province from the

remote sensing dataset from the year 1982 to 2006. The maximum

NDVI is equal to the peak value of the seasonal NDVI profile.

Then, six other original NDVIs were calculated: the first, second,

Table 2. NVDI variables and their calculation formulas.

NDVIs Description of formulas

1 NDVImaxb1 the first biweekly NDVI before NDVImax

2 NDVImaxb2 the second biweekly NDVI before NDVImax

3 NDVImaxb3 the third biweekly NDVI before NDVImax

4 NDVImaxb4 the fourth biweekly NDVI before NDVImax

5 NDVImax the maximum NDVI during the growth period

6 NDVImaxa1 the first biweekly NDVI after NDVImax

7 NDVImaxa2 the second biweekly NDVI after NDVImax

8 mNDVImaxb4-b3 (NDVImaxb4+ NDVImaxb3)/2

9 mNDVImaxb4-b2 (NDVImaxb4+ NDVImaxb3+ NDVImaxb2)/3

10 MNDVImaxb4-b1 (NDVImaxb4+ NDVImaxb3+ NDVImaxb2+ NDVImaxb1)/4

11 mNDVImaxb4-max (NDVImaxb4+ NDVImaxb3+ NDVImaxb2+ NDVImaxb1+ NDVImax)/5

12 mNDVImaxb4-a1 (NDVImaxb4+ NDVImaxb3+ NDVImaxb2+ NDVImaxb1+ NDVImax+ NDVImaxa1)/6

13 mNDVImaxb4-a2 (NDVImaxb4+ NDVImaxb3+ NDVImaxb2+ NDVImaxb1+ NDVImax+ NDVImaxa1+ NDVImaxa2)/7

14 mNDVImaxb3-b2 (NDVImaxb3+ NDVImaxb2)/2

15 mNDVImaxb3-b1 (NDVImaxb3+ NDVImaxb2+ NDVImaxb1)/3

16 mNDVImaxb3-max (NDVImaxb3+ NDVImaxb2+ NDVImaxb1+ NDVImax)/4

17 mNDVImaxb3-a1 (NDVImaxb3+ NDVImaxb2+ NDVImaxb1+ NDVImax+ NDVImaxa1)/5

18 mNDVImaxb3-a2 (NDVImaxb3+ NDVImaxb2+ NDVImaxb1+ NDVImax+ NDVImaxa1+ NDVImaxa2)/6

19 mNDVImaxb2-b1 (NDVImaxb2+ NDVImaxb1)/2

20 mNDVImaxb2-max (NDVImaxb2+ NDVImaxb1+ NDVImax)/3

21 mNDVImaxb2-a1 (NDVImaxb2+ NDVImaxb1+ NDVImax+ NDVImaxa1)/4

22 mNDVImaxb2-a2 (NDVImaxb2+ NDVImaxb1+ NDVImax+ NDVImaxa1+ NDVImaxa2)/5

23 mNDVImaxb1-max (NDVImaxb1+ NDVImax)/2

24 mNDVImaxb1-a1 (NDVImaxb1+ NDVImax+ NDVImaxa1)/3

25 mNDVImaxb1-a2 (NDVImaxb1+ NDVImax+ NDVImaxa1+ NDVImaxa2)/4

26 mNDVImax-a1 (NDVImax+ NDVImaxa1)/2

27 mNDVImax-a2 (NDVImax+ NDVImaxa1+ NDVImaxa2)/3

28 mNDVImaxa1-a2 (NDVImaxa1+ NDVImaxa2)/2

doi:10.1371/journal.pone.0070816.t002
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third and fourth biweekly NDVIs prior to the NDVImax

(NDVImaxb4) and the first and second biweekly NDVIs after the

NDVImax (NDVImaxa2). These seven biweekly composites span 3

months of raw AVHRR imagery, corresponding to the rice-

growth period. Focusing on the NDVI response during the rice-

growth period helps to identify rice-specific vegetation changes.

Hochheim and Barber [27] also found that NDVI estimators

with longer integration periods minimized variability in yield

prediction. Therefore, based on the seven original NDVIs, twenty-

one average NDVIs, clustered around the time of the peak NDVI,

were calculated using a rigorous arithmetic mean framework

(Table 2). In total, 28 NDVI variables were generated. They

include all of the possible combinations of the original seven

NDVIs.

2.3. Official Statistical Data of Rice Yield
Historical rice-yield data were acquired from the China

Statistical Year Book by the National Bureau of Statistics of

China (NBSC) from the years 1979 to 2009 [1]. The NBSC is the

agency responsible for collecting and publishing agricultural

statistics at the national and provincial levels. The NBSC crop

statistics are based on data obtained from sub-province sample

surveys and released in official documents. Customarily, Chinese

provinces have been geographically grouped into 7 regions to

present a spatial pattern for paddy rice planting area: Northeastern

China (Heilongjiang, Jilin, and Liaoning), Northern China (Inner

Mongolia, Hebei, Shanxi, Beijing, and Tianjin), Northwestern

China (Ningxia, Shaanxi, Gansu, Qinghai, and Xinjiang), Central

China (Henan, Hunan, and Hubei), Eastern China (Shandong,

Jiangsu, Shanghai, Zhejiang, Anhui, and Jiangxi), Southwestern

China (Chongqing, Sichuan, Guizhou, Yunnan, and Xizang),

Southern China (Guangdong, Guangxi, Hainan) (see Figure 1).

Unfortunately, rice planting area and yield information for Hong

Kong- Macao-Taiwan areas was not available. According to

NBSC crop statistical data (see Table 3), Eastern China was the

region with the highest rice acreage and production levels

(9808.60 kha and 64984.00 kt, respectively) in 2009. Central

China ranked second in both rice acreage and production

(6703.60 kha and 46215.00 kt, respectively). The third-largest

rice cultivation and production area was Southwestern China

(4448.10 kha and 31214.00 kt, respectively). Southern China and

Northeastern China ranked fourth and fifth, respectively, in both

rice acreage and production (4402.40 kha and 23499.00 kt;

3777.90 kha and 25855.00 kt, respectively). The total rice

cultivation area in Eastern China, Central China, Southwestern

China, Southern China, and Northeastern China is 29140.60 kha

and accounts for 98.36% of the total rice cultivation area in the

conterminous China. The total rice production in Eastern China,

Central China, Southwestern China, Southern China, and

Northeastern China was 191767.00 kt and accounted for

98.29% of the total rice production in the conterminous China

in 2009. Northern China and Northwestern China constitute less

Figure 1. The locations of the study areas within Mainland China. Heilongjiang is designated by HLJ, Jiangxi by JX, Guangxi by GX, Sichuan
by SC, and Hunan by HN.
doi:10.1371/journal.pone.0070816.g001
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than 2% of the national rice harvested area and production and

were less important on a national scale in 2009.

2.4. Description of Study Area
We divided China into 7 regions together with 5 representative

provinces selected to convey the information of paddy rice

planting area: Heilongjiang (HLJ) in Northeastern China,

Hunan (HN) in Central China, Jiangxi (JX) in Eastern China,

Sichuan (SC) in Southwestern China, and Guangxi (GX) in

Southern China. These provinces were selected as the study

areas for the present research because these locations: (1)

represented the typical cropping system in China, (2) are located

in primary rice-production regions, and (3) are geographically and

climatologically different (see Figure 1 and Table 4). The life

span, cropping system, and planting schedule are all depend on

regional hydro-thermal condition. The general information on

life span, cropping system, total annual rainfall (mm), annual

accumulated temperature (uC), area (kha), and production levels

(kt) for the selected provinces is shown in Table 4. The total

combined rice-cultivation area in Heilongjiang (HLJ), Hunan

(HN), Jiangxi (JX), Sichuan (SC), and Guangxi (GX) is

13942.2 kha, and these regions accounted for 47.06% of the

total rice-cultivation area in China in 2009. The total combined

rice production in Heilongjiang (HLJ), Hunan (HN), Jiangxi

(JX), Sichuan (SC), and Guangxi (GX) was 87251 kt and

accounted for 44.72% of the total rice production in China in

2009. The time series of the NBSC province-level rice yields were

used to train and develop the prediction models for these five

provinces.

2.5. Calibration of Rice-Yield Prediction Models
The gradual trend in yields is due to the influence of

technological development, fertilizer application, and improved

management on the rice cultivation. The results of this analysis

suggest that the most common trend of rice yield is a linear

growth. The province-specific intercepts account for spatial

variations in rice management and soil quality; province-specific

time trends account for yield growth due to technology gains. This

indicates us the yield is composed from the intrinsic and extrinsic

factors. Therefore, we decomposed the historical rice yield Y into

the trend yield Yt and the remotely sensed yield YRS, using the

following equation:

Y~YtzYRS ð1Þ

Yt, represents the component that is regulated by agricultural

technology, including (1) the usual biological-chemical technolo-

gies (new varieties, fertilizers, herbicides, insecticides, etc.) and the

mechanical technologies (machinery, equipment, etc.); (2) the

management practices, which involve changes such as the timing

of field operations and other practices which may or may not be

involved in the purchase of new inputs. YRS is defined as the

component regulated by natural environmental conditions, such as

temperature, precipitation, pests and disease; these environment

factors can be detected by a remote sensor.

To quantify past trends in yields, many different yield de-trend

methods have been reported, including: least-squares regressions

[76,77], moving averages [78,79], exponential algorithms [80],

and polynomial regressions [81]. For rice-yield predictions in the

present investigation, a linear regression model and a moving

average are both generated to fit each separated provincial rice

dataset (also see in Figure 2):

Yt~azbt ð2Þ

where Yt is the trend yield in a given province during a given year

(kg ha21), t represents the year of harvest (the year 1979 was

numeral 1979, 1980 was numeral 1980, etc., until 2009 was

numeral 2009), a and b are the province-specific linear regression

coefficients.

In our study, a moving average is used with historical crop-yield

data to smooth out short-term fluctuations and highlight longer-

term trends. Rice yields were de-trended using their deviations

from the 5-year moving average. The mean changes in provincial

historical rice yield (Y), the trend yield (Yt) and the remotely sensed

yield (YRS) were calculated for each period as an average of the

changes from each single preceding year to the next by using a

moving average method. Generally, the moving average method is

used to calculate arithmetic mean of each five of the entire dataset:

yi-n, yi-n+1, …, yi, …., yi+n. Such method has been usually employed

in meteorological data analysis to remove the stochastic errors

from long-time series of data. Hence, an algorithm for a 5-year

moving average is as follows:

Table 3. Planted area and production changes for rice between 1979 and 2009 for different regions in the conterminous China.

Regions Area (Kha) Production (Kt)

1979 % of China 2009 % of China 1979 % of China 2009 % of China

Northeastern China 841.73 2.49 3777.90 12.75 3860.00 2.69 25855.00 13.25

Northern China 264.07 0.78 204.40 0.69 1165.00 0.81 1343.00 0.69

Northwestern China 315.27 0.93 281.70 0.95 1305.00 0.91 1993.00 1.02

Central China 7639.13 22.55 6703.60 22.63 34260.00 23.83 46215.00 23.69

Eastern China 12926.33 38.16 9808.60 33.11 56230.00 39.12 64984.00 33.31

Southwestern China 4803.73 14.18 4448.10 15.01 21440.00 14.91 31214.00 16.00

Southern China 7082.40 20.91 4402.40 14.86 25490.00 17.73 23499.00 12.04

Total 33872.67 100.00 29626.70 100.00 143750.00 100.00 195103.00 100.00

doi:10.1371/journal.pone.0070816.t003

Remotely Sensed Rice Yield Prediction

PLOS ONE | www.plosone.org 5 August 2013 | Volume 8 | Issue 8 | e70816



Yt,i~
Yt,i{2zYt,i{1zYt,izYt,iz1zYt,iz2

5
3ƒiƒn{2ð Þ

Yt,1~
3Yt,1z2Yt,2zYt,3{Yt,5

5

Yt,2~
4Yt,1z3Yt,2z2Yt,3zYt,4

5

Yt,n{1~
Yt,n{3z2Yt,n{2z3Yt,n{1z4Yt,n

5

Yt,n~
{Yt,n{4zYt,n{2z2Yt,n{1z3Yt,n

5

8>>>>>>>>><
>>>>>>>>>:

ð3Þ

Where Yt, i is the trend yield in a given province during a given

year (kg ha21); n represents the number of data points; i represents

the year of the harvest (e.g. the year 1979 was numeral 1, 1980 was

numeral 2, etc., until 2006 it should be numeral 31); Yt,1 and Yt,2

are the trend yields for the first two harvested years; then Yt, n-1 and

Yt, n are the trend yields for the last two harvested years within the

5 years.

Consequently, the trend yield Yt was obtained. To remove the

technological influences, it is necessary to remove the yield trend

to produce a new time series that is directly related to the NDVIs.

We defined this new time series as the remotely sensed yield.

According to Eq. (1), the remotely sensed yield can be calculated

by the following equation:

YRS~Y{Yt ð4Þ

Next, correlation analysis was performed between the remotely

sensed yield and the NDVI variables. The correlation coefficient is

a measure of the strength and the direction of a linear relationship

between two variables. The symbol r in Eq. (5) represents the

samples’ correlation coefficient; x and y represent the remotely

sensed yield and the NDVI variables respectively; n is the number

of data pairs.

r~
n
P

xy{(
P

x
P

y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
P

x2{(
P

x)2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
P

y2{(
P

y)2
q ð5Þ

Statistical regression models are the most commonly used

method for crop-yield prediction based on remotely sensed data

[8,36]. They do not require numerous inputs and can be

performed directly; also because it requires little computing power

and the selected variables are distinctive and non-overlapping.

Therefore, each of the provincial YRS and NDVI dataset was

analyzed separately by means of stepwise regression techniques.

These models were constructed via the ‘STEPWISE’ regression

process which was available in software Statistical Product and

Service Solutions (SPSS) 17.0 [82]. The probability significance

thresholds for the entry and retention of candidate independent

variables in the model were both set to a= 5%.

2.6. Evaluation of Rice-Yield Prediction Models
The rice-yield prediction models were evaluated using the

following indicators:

Root mean square error (RMSE):

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i~1

(Yi{Y
0
i )2

n

vuuut
ð6Þ

Coefficient of determination (R2):

R2~

Pn
i~1

(Y
0
i {

�YY )2

Pn
i~1

(Yi{ �YY )2
ð7Þ

Table 4. General information on Rice cropping system, Life span, Total annual rainfall (mm), Annual accumulated temperature
($10uC), Area (kha) and Production (kt) for the study areas.

Provinces
Climate
region

Rice cropping
system Life span

Total annual
rainfall (mm)

Annual
accumulated
temperature

($10 6C)
Planting Area
in 2009(kha)

Percent
age of
China (%)

Production
in 2009 (kt)

Percenta
ge of
China (%)

Heilongjiang
(HLJ)

Temperate
continental
monsoon
climate

Single
cropping

May – Oct 450–650 2000–3700 2460.80 8.31 15745.00 8.07

Hunan
(HN)

Subtropical
monsoon
climate

Double
cropping

Mar – Aug,
Jun – Nov

1200–1700 4500–6500 4047.20 13.66 25786.00 13.22

Jiangxi
(JX)

Subtropical
monsoon
climate

Double
cropping

Mar – Aug,
Jun - Nov

1300–2000 4500–6500 3282.10 11.08 19059.00 9.77

Sichuan
(SC)

Subtropical
humid
climate

Single
cropping

Mar - Aug 950–1200
(Sichuan
Basin)

4000–6000
(Sichuan
Basin)

2027.10 6.84 15202.00 7.79

Guangxi
(GX)

Subtropical
monsoon
climate

Double
cropping

Mar – Aug,
Jun - Nov

1300–2000 5800–9300 2125.00 7.17 11459.00 5.87

doi:10.1371/journal.pone.0070816.t004
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F-value (F):

F~

Pn
i~1

(Y
0
i {

�YY )2=k

Pn
i~1

(Yi{Y
0
i )2=(n{k{1)

ð8Þ

and relative error (RE):

RE~
Yi{Y

0
i

Yi

ð9Þ

Together with the above, where n is the number of comparisons;

k is the number of predictors; Yi is the statistical rice yield; �YY is the

average rice yield, and Y
0

i is the predicted yield.

Results and Discussion

3.1. Rice Yield Trend Analysis
Figure 2 presents the evolution of the average rice-grain yield in

Heilongjiang (HLJ), Jiangxi (JX), Guangxi (GX), Sichuan (SC),

and Hunan (HN) from 1979 to 2009; according to their R-square

and RMSE, all rice yields showed a visible and significant growth

trend over time. Understanding the past rice-yield trends can help

us to gauge the importance of the preprocessing procedure for

rice-yield prediction using remotely sensed data. The statistical

Figure 2. Rice yield trends for the provinces’ of Heilongjiang (HLJ), Hunan (HN), Jiangxi (JX), Sichuan (SC) and Guangxi (GX) from
1979 to 2006.
doi:10.1371/journal.pone.0070816.g002
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data of rice yield together with average yield growth trend from

1979 to 2009 in five provinces of China is summarized in Table 5.

As analysis above (see Figure 2), the social input and advance of

technology account for the linear trend of the rice-yield growth,

whereas such human-induced factors could not be detected using

remotely sensed data. To overcome this problem and make rice-

yield prediction methods more robust and easily exportable, one

possible strategy is to integrate remote-sensing data with the rice

yield time series analysis. De-trending is necessary to properly

identify the remote-sensible effects in these panel datasets.

Therefore, before the rice-yield predicting models are established

using remotely sensed variables as predictors, we suggest that the

statistical yield should be decomposed into the trend yield and the

remotely sensed yield, methodology was described in Section 2.5.

3.2. Correlation Coefficients between the Remotely
Sensed Yield and NDVI Variables

The correlation coefficients between YRS and the NDVI

variables for the rice-growth period from the fourth 15-day period

before NDVImax (NDVImaxb4) to the second 15-day period after

NDVImax (NDVImaxa2) for each of the studied provinces are

summarized in Table 6. By comparing the correlation coefficients

(Column 2 and 3 in Table 6), the YRS that was de-trended by linear

regression performed better than the YRS that was de-trended by a

5-year moving average against the NDVI variables.

The correlation coefficients between the YRS that were de-

trended by linear regression and the NDVI variables were

generally high in HN and SC. According to Table 6, for HN,

the correlation coefficients were significant at the 0.01 level

between the YRS that was de-trended by linear regression and

NDVImaxb1, NDVImax, NDVImaxa1, mNDVImaxb4-a2,mNDVImaxb3-a1,

mNDVImaxb3-a2, mNDVImaxb2-b1, mNDVImaxb2-max, mNDVImaxb2-a1,

mNDVImaxb2-a2, mNDVImaxb1-max, mNDVImaxb1-a1, mNDVImaxb1-a2,

mNDVImax-a1, mNDVImax-a2, and mNDVImaxa1-a2; the correlation

coefficients were significant at the 0.05 level between the YRS

that was de-trended by linear regression and NDVImaxa2,

mNDVImaxb4-a1, and mNDVImaxb3-max. For SC, the correlation

coefficients were significant at the 0.01 level between the YRS

that was de-trended by linear regression and NDVImaxb4,

NDVImaxb3, NDVImaxb2,mNDVImaxb4-b3, mNDVImaxb4-b2, mNDVImaxb4-b1,

mNDVImaxb4-max, mNDVImaxb4-a1, mNDVImaxb4-a2, mNDVImaxb3-b2,

mNDVImaxb3-b1, and mNDVImaxb3-max, mNDVImaxb3-a1; the correlation

coefficients were significant at the 0.05 level between the YRS

that was de-trended by linear regression and mNDVImaxb3-a2,

mNDVImaxb2-b1, mNDVImaxb2-max, and mNDVImaxb2-a1. The highest

correlation coefficient between the YRS that was de-trended by

linear regression and the NDVI variables occurred in the second

15-day period after NDVImax (NDVImaxa2) and was significant at

the 0.05 level for HLJ. The correlation coefficients between the

YRS that was de-trended by linear regression and NDVImaxb1,

mNDVImaxb1-max, mNDVImaxb1-a1, and mNDVImaxb1-a2 were significant

at the 0.05 level in JX. The correlation coefficients between the

YRS that was de-trended by linear regression and the NDVI

variables ranged from – 0.14 to 0.38 in GX.

The correlation coefficients between the YRS that were de-

trended by a 5-year moving average and the NDVI variables were

generally low in HLJ, HN, and JX. For SC, the correlation

coefficients were significant at the 0.01 level between the YRS that

was de-trended by a 5-year moving average and NDVImaxb4, and

the correlation coefficients were significant at the 0.05 level

between the YRS that was de-trended by a 5-year moving average

and NDVImaxb3, mNDVImaxb4-b3, mNDVImaxb4-b2, mNDVImaxb4-b1,

mNDVImaxb4-max, and mNDVImaxb3-b2. The correlation coefficients

were significant at the 0.01 level between the YRS that was de-

trended by a 5-year moving average and NDVImaxb4, NDVImaxb3,

and NDVImaxb4-b3.

3.3. Remotely Sensed Yield-Prediction Models
Conclusions drawn in the yield-trend analysis and the correla-

tion analysis between YRS and the NDVI variables encouraged us

to attempt to build a simple remotely sensed yield-prediction

model for rice based on the NDVI variables. According to the

correlation coefficient result summarized in Table 6, the YRS

values that were de-trended by linear regression were used as

dependent variables in HLJ, HN, JX, and SC. The YRS values

that were de-trended by a 5-year moving average were used as

dependent variables in GX. The NDVIs were used as independent

variables. These models were constructed through the ‘STEP-

WISE’ regression process in SPSS software. Each model contains

variables using the data period from 1982 to 2004. The correlation

coefficients of the selected models ranged from 0.42 to 0.92, and

all models were significant at the 0.01 level, except for HLJ which

is significant at the 0.05 level (see Table 7). This means that

increases in NDVI during the rice-growth period are generally

related to the final rice-grain yield. The influence of NDVI always

had a positive impact on yield. These results are consistent with

numerous previous studies [34,36,42,75]. Data from 2005 to 2006

were used for model validation.

3.4. Validation of Rice-Yield Prediction Models
The remotely sensed yield (YRS) of rice was calculated using the

NDVI variables required by each model described in Table 7. The

final rice yield (Y) was the sum of the trend yield (Yt) and the

remotely sensed yield (YRS). Figure 3 shows a scatter plot of the

predicted and observed final rice yields for HLJ, HN, JX, SC, and

GX from 1982 to 2004, expressed in units of kilogram per hectare.

The models performed well, showing a good similarity between

the predicted values and the official statistical values in HLJ, HN,

JX, SC, and GX from 1982 to 2004 and capturing the fluctuations

of rice yields over time. The regression line between the predicted

Table 5. Trends in rice yield for five selected-provinces in China from 1979 to 2009.

Province Yield in 1979 (kgha21) Yield in 2009(kgha21) Annual increase, 1979–2009 (kgha21yr21)

Heilongjiang (HLJ) 3480 6398.3 94.14

Hunan (HN) 4440 6371.3 62.30

Jiangxi (JX) 3645 5807 69.74

Sichuan (SC) 4777.5 7499.4 87.80

Guangxi (GX) 3562.5 5392.5 59.03

doi:10.1371/journal.pone.0070816.t005
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values and the observed values was close to the diagonal

(intercept = 0, slope = 1), and the coefficients of determination

for the five study areas ranged from 0.84 to 0.98, indicating that

the reliability of the forecasts are very high.

The yield data for 2005 and 2006 were not included in the

model construction and instead were used to evaluate the

prediction models independently. These data provide independent

estimates of the predictive power of the selected models (Table 8).

Table 6. Correlation coefficient (R) between the remotely sensed yields and NDVI variables during the rice growth period.

Variables the remotely sensed yields de-trended by linear models
the remotely sensed yields de-trended by 5-year moving
average

HLJ HN JX SC GX HLJ HN JX SC GX

NDVImaxb4 20.02 20.08 0.05 0.68** 0.24 20.12 0.14 0.04 0.51** 0.54**

NDVImaxb3 20.16 20.02 0.14 0.73** 0.36 20.21 0.13 0.10 0.46* 0.52**

NDVImaxb2 20.08 0.38 0.21 0.57** 20.14 20.06 0.34 0.14 0.39 20.30

NDVImaxb1 20.06 0.56** 0.42* 0.32 0.19 20.03 0.22 20.04 0.16 0.09

NDVImax 0.13 0.60** 0.39 20.06 20.04 0.20 0.20 0.10 0.10 20.26

NDVImaxa1 0.42* 0.62** 0.28 0.29 20.01 0.35 0.27 20.05 0.08 20.28

NDVImaxa2 0.20 0.49* 0.32 20.11 0.38 0.28 0.18 0.01 20.22 0.39

mNDVImaxb4-b3 20.08 20.05 0.10 0.73** 0.31 20.16 0.14 0.08 0.50* 0.57**

mNDVImaxb4-b2 20.09 0.12 0.16 0.73** 0.19 20.14 0.25 0.11 0.50* 0.32

mNDVImaxb4-b1 20.08 0.25 0.26 0.66** 0.22 20.13 0.28 0.08 0.43* 0.30

mNDVImaxb4-max 20.07 0.33 0.29 0.64** 0.22 20.11 0.30 0.09 0.44* 0.26

mNDVImaxb4-a1 0.09 0.47* 0.31 0.61** 0.18 0.03 0.33 0.07 0.39 0.12

mNDVImaxb4-a2 0.15 0.56** 0.33 0.54** 0.25 0.12 0.35 0.06 0.31 0.20

mNDVImaxb3-b2 20.14 0.23 0.20 0.70** 0.10 20.15 0.28 0.14 0.46* 0.06

mNDVImaxb3-b1 20.12 0.37 0.32 0.60** 0.15 20.13 0.30 0.09 0.38 0.08

mNDVImaxb3-max 20.10 0.45* 0.35 0.58** 0.14 20.09 0.31 0.10 0.38 0.02

mNDVImaxb3-a1 0.13 0.57** 0.35 0.55** 0.09 0.10 0.34 0.07 0.33 20.10

mNDVImaxb3-a2 0.19 0.64** 0.37 0.46* 0.18 0.19 0.35 0.06 0.24 0.03

mNDVImaxb2-b1 20.08 0.51** 0.35 0.47* 0.00 20.05 0.33 0.07 0.29 20.15

mNDVImaxb2-max 20.03 0.59** 0.38 0.44* 20.01 0.01 0.34 0.08 0.29 20.21

mNDVImaxb2-a1 0.25 0.66** 0.37 0.43* 20.01 0.23 0.34 0.04 0.25 20.25

mNDVImaxb2-a2 0.27 0.69** 0.38 0.33 0.10 0.29 0.33 0.04 0.15 20.09

mNDVImaxb1-max 0.02 0.64** 0.46* 0.25 0.13 0.07 0.24 0.01 0.17 20.05

mNDVImaxb1-a1 0.34 0.69** 0.42* 0.30 0.06 0.31 0.28 20.01 0.15 20.19

mNDVImaxb1-a2 0.30 0.69** 0.41* 0.18 0.19 0.32 0.27 20.01 0.02 0.01

mNDVImax-a1 0.40* 0.66** 0.35 0.23 20.02 0.36 0.27 0.00 0.12 20.31

mNDVImax-a2 0.33 0.66** 0.37 0.07 0.16 0.34 0.26 0.01 20.06 20.02

mNDVImaxa1-a2 0.32 0.62** 0.32 0.09 0.19 0.33 0.25 20.02 20.09 0.04

*significant at 0.05 level; ** significant at 0.01 level, n = 23.
doi:10.1371/journal.pone.0070816.t006

Table 7. Results of the stepwise regression models for remotely sensed rice yield using AVHRR-derived NDVI measures as
independent variables.

Study areas Model R F-test value RMSE

HLJ YRS = 2849.158+0.137NDVImaxa1 0.42* 4.508 361.99

HN YRS = 21240.690+0.229 mNDVImaxb1-a2 0.69** 19.342 114.57

JX YRS = 21553.145+0.261 mNDVImaxb1-max 0.46** 5.689 166.38

SC YRS = 21495.515+0.403 mNDVImaxb4-b3 0.73** 24.238 207.07

GX YRS = 21832.285+1.138 mNDVImaxb4-b3 + 0.214NDVImaxa2 –
1.315 mNDVImaxb4-b2+0.307 mNDVImaxb2-b1

0.92** 25.103 87.70

R: multiple correlation coefficient.
*significant at 0.05 level; ** significant at 0.01 level.
doi:10.1371/journal.pone.0070816.t007
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The differences between the predicted values and the official

statistical values were 5% or less in seven out of ten years. These

results demonstrate the potential of a NDVI rice-yield estimate

that is based on model calibration with historical data at the

provincial level. However, it is noticeable that the predicted

relative errors were greater than 10%, but less than 19% in both

2005 and 2006 for SC and in 2006 in HLJ when compared with

the official statistical data. These error rates are likely due to a

number of contamination sources that can confound the potential

relationship between NDVIs and rice yield. For instance, cloud

and atmospheric-moisture contamination can influence the NDVI

signal. Vegetation signals from before or after the selected NDVIs

can impact the final yield of rice.

Conclusion

This study focused on the obvious and important role that

advance of technology plays in rice yields increase. The results of

this analysis suggest that the most common trend of rice yields in

China during the years 1979–2009 is a linear growth. In the light

of rice-yield trend could not be detected directly by a satellite

remote sensor therefore, yield de-trended analysis was necessary to

properly identify the remote-sensible effects and obtain an

accurate prediction for rice yield. Only with de-trending analysis

could we interpret the NDVI’s evolution as being mainly due to

variations in the photosynthetic activity and growth conditions of

rice and then predict the rice yield using NDVI variables.

The AVHRR-based indices explored in the present research

were useful for the remotely sensed rice yield-prediction in major

Figure 3. Observed versus predicted yields of rice (kg/ha) for the provinces of Heilongjiang (HLJ), Hunan (HN), Jiangxi (JX), Sichuan
(SC) and Guangxi (GX) over the period 1982–2004.
doi:10.1371/journal.pone.0070816.g003
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rice cultivation areas of China. This method allowed us to have a

fine provincial estimate which satellite image could be difficult to

obtain, or else a similar cost and a similar time frame data is easily

available. However, it is cautious to restrict these analysis to those

areas where the common trend of the crop yield is linear growth

for the period considered.

The two steps for de-trending the statistical yield to obtain new

time series, that are the trend yield (Yt) and the remotely sensed

yield (YRS); And by constructing the prediction models of YRS using

NDVI variables enabled the development of a robust, simple,

remotely sensed data-based model that was applicable at the

provincial level in China. We believe the approach introduced

here has a wide applicability to other rice-producing countries as

well as other crops, such as wheat and corn.

More empirical studies should be performed on the use of

AVHRR-derived NDVI time series as predictors for crop yield to

enhance the understanding its forecasting capacity and limitations,

and to validate the methods of remotely sensed yield estimation

further. A future study should also include the application of a

longer AVHRR NDVI time series in combination with other data

sets such as SPOT-VEG, MODIS and SeaWiFS, especially in the

event of one of these dataset’s unexpected absence.
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