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Abstract
Recent epidemiological evidence in children indicates that time spent outdoors is protective
against myopia. Studies in animal models (chick, macaque, tree shrew) have found that light levels
(similar to being in the shade outdoors) that are mildly elevated compared to indoor levels, slow
form-deprivation myopia and (in chick and tree shrew) lens-induced myopia. Normal chicks raised
in low light levels (50 lux) with a circadian light on/off cycle often develop spontaneous myopia.
We propose a model in which the ambient illuminance levels produce a continuum of effects on
normal refractive development and the response to myopiagenic stimuli such that low light levels
favor myopia development and elevated levels are protective. Among possible mechanisms,
elevation of retinal dopamine activity seems the most likely. Inputs from intrinsically-
photosensitive retinal ganglion cells (ipRGCs) at elevated light levels may be involved, providing
additional activation of retinal dopaminergic pathways.
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1. Introduction
Recent studies from numerous groups have reported that outdoor activity is protective
against myopia development in children (Deng et al., 2010; Dirani et al., 2009; French et al.,
2013; Guggenheim et al., 2012; Jones et al., 2007; Mutti et al., 2002; Rose et al., 2008a)
and, in animal models of myopia, that elevated light levels slow the rate of myopia
development (Ashby et al., 2009; Ashby and Schaeffel, 2010; Siegwart et al., 2012; Smith et
al., 2012). These results raise the issue of the how ambient light levels may affect the
emmetropization mechanism, including normal refractive development and the response to
myopiagenic stimuli.

In comparison with illuminance levels outdoors, indoor lighting experienced by humans is
typically less than 1,000 lux and often much less – in the range of 100 to 500 lux. This, of
course, is far less than the light levels experienced outdoors during the daytime (130,000 lux
and above in direct sun on a clear day, about 15,000 lux in the shade). Indeed, these are the
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levels that presumably were experienced by terrestrial vertebrate eyes throughout the
evolution of the primate line. Most terrestrial creatures develop in a visual environment that
ranges from high photopic light levels outdoors during the day to mesopic levels at dawn
and dusk (or inside buildings) and scotopic levels at night unless artificial lighting is
provided. Rather than considering outdoor illuminance levels to be “high” or “bright” or
“elevated,” it is more appropriate to consider them as normal, and to consider “standard”
indoor illuminance as low.

With the development of towns and cities, one may suppose that humans began to spend
more time indoors, in lower-illuminance conditions; time spent indoors also appears to have
increased with the development of indoor lighting and the development of non-agricultural
indoor employment. Good visual acuity, needed for reading and other visual tasks that
involve fine detail, is achieved with illuminances of approximately 100 lux – 500 lux
(Norton et al., 2002). Based at least in part on the increased costs involved in providing light
levels above this point, indoor lighting for humans, and the lighting provided in the vivaria
housing many of the animals used in studies of refractive development, are in this same
illuminance range (Feldkaemper et al., 1999; Li and Howland, 2003; Morgan et al., 2004;
Norton and McBrien, 1992; Schmid and Wildsoet, 1997; Smith, III et al., 2001) and, rarely,
up to 1000 lux (Bitzer et al., 2000). The emerging reports of the protective effects of outdoor
activity on myopia suggest that it is important to systematically explore the effect of
illuminance levels above the low photopic levels experienced indoors.

In this review we suggest, as have Cohen et al. (2011; 2012) that the effects of illuminance
on the emmetropization mechanism may form a continuum from scotopic and low photopic
light levels, which foster the development myopic refractive errors, to the much higher
illuminance levels experienced in the outdoors that affect refractive development, keeping
eyes slightly hyperopic, and reduce the impact of myopiagenic stimuli. Indeed, in a 1999
paper on the effect of light levels on form-deprivation myopia in chicks, Feldkaemper et al.
(1999) concluded, “Experiments show that the eye becomes more sensitive to image
degradation at low light, the human eye may also be more prone to develop myopia if the
light levels are low during extended periods of near work.”

Although the amount of light reaching the retina is presumably the key factor, it is difficult
to measure the μW/cm2 of the many visible wavelengths that enter through the pupil and
reach the retina. For convenience, illuminance (light falling on a surface) is a more easily
measured quantity, indicating the amount of visible light (lumens) reaching an area of a
surface (square meters) and corrected for the spectral sensitivity of humans: the lux.
Illuminance levels from the sun on a clear day are approximately 130,000 lux (Birmingham,
Alabama). Higher levels have also been reported (Dharani et al., 2012). In the shade on a
sunny day, lux measured at the ground is typically 15,000 to 25,000 lux. Outdoors on a
cloudy day it ranges from 10,000 to 40,000 lux. By comparison, indoor illuminance (100–
500 lux) is very low.

Of course, most eyes are not pointed constantly toward the sky, but are aimed roughly
parallel to the ground and mostly receive light reflected from objects. Light reaching the
retina in this manner is lower, sometimes considerably so. Changes in pupil diameter also
can alter the retinal illuminance by over 1 log unit. That said, the illuminance in lux can
serve as an indicator of the upper limit of available light. This review will examine the
relatively few studies that have varied the illuminance levels above and (in animal studies)
slightly below standard indoor levels. Even though these indoor illuminance levels are, in an
evolutionary sense, “low”, they are the levels at which most human and animal observations
have been made and therefore serve as a standard level. By comparison, outdoor illuminance
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levels and the levels used in a few animal studies are “elevated” and we will refer to them as
such.

2. Human Studies
Normal refractive development

The effects of illuminance on human refractive development occur against a background of
changing refractive state in the months and years after birth. At birth, refractive state,
measured with cycloplegia, is broadly distributed, ranging from low myopia (−1 to −4 D) to
high hyperopia (up to 8 D) with a mean refraction of low (2 D) to moderate (3.5 D)
hyperopia (Chen et al., 2011; Cook and Glasscock, 1951). This may reflect genetic factors
that determine the location of the focal plane (corneal and lens curvatures and spacing) and
the axial length before there is guidance from the emmetropization mechanism (Siegwart, Jr.
and Norton, 2011). Very quickly, however, the refractive distribution narrows (Mayer et al.,
2001; Mutti et al., 2005; Sorsby et al., 1957; Stenstrom and trans.Woolf, 1948). Eyes that
are more hyperopic at 3 months of age grow axially more than emmetropic eyes, moving the
retina toward the focal plane (Mutti et al., 2005). At some point in infancy or early
childhood, the majority of eyes become nearly emmetropic, typically achieving a low
hyperopia that is easily cleared with accommodation (Borchert et al., 2011; Gwiazda et al.,
1993a; Howland et al., 1993; Multi-ethnic Pediatric Eye Disease Study, 2010). However, the
degree of low hyperopia achieved has implications for subsequent refractive development.
Having less than 0.5 D at about 6 years of age is a risk factor for subsequently developing
myopia (Hirsch, 1964) as is having less than 0.75 D at about 8 years of age (“third grade”)
(Zadnik et al., 1999) or less than 0.75 D at 5 years of age for children with 2 myopic parents
(Gwiazda et al., 2007). If, as suggested from animal studies (Section 3), exposure to outdoor
light levels bias human refractive development toward remaining slightly more hyperopic,
this hyperopia may provide a protective reserve against subsequent myopia development.
Eyes that start to elongate and progress into myopia would start from a more hyperopic
level, delaying the point at which they become myopic.

Myopia prevention
An important feature of being outdoors is that the illuminance levels are much higher than
indoors. However, the number of hours spent outdoors among children and young adults
seems quite variable depending on age, urban vs. rural location, ethnicity, and region of the
world. Expressed as hours of outdoor activity per day (converted, in many cases, from hours
per week presented in the reports) and based on responses to questionnaires, children living
in Australia who are of European Caucasian ancestry have considerably more outdoor time
(about 6 hours per day) and lower myopia prevalence, compared with children of East Asian
ancestry (~ 4 hours per day) (French et al., 2013). Children in rural suburbs of Beijing have
been reported to have just over 2 hours per day of outdoor activity whereas children in urban
Beijing neighborhoods have about 1 hour per day (Guo et al., 2013). In southwest England,
Guggenheim et al. (2012) considered three or more hours per day outdoors in summertime
as “high.” Daily outdoor activity measures, also from questionnaires, have been reported to
be as low as less than 0.5 hours per day in Taiwan (Wu et al., 2010) and in Singapore (Rose
et al., 2008b).

A growing number of human epidemiological studies in many countries have reported that
time spent in outdoor activities is protective against myopia. Mutti et al. (2002) initially
reported that myopia prevalence was inversely related to time spent participating in sports.
Several subsequent studies also have shown that outdoor activity is inversely related to the
development of myopia (Dirani et al., 2009; Guo et al., 2013; Jones et al., 2007; Jones-
Jordan et al., 2011; Lee et al., 2013; Onal et al., 2007; Rose et al., 2008a; Sherwin et al.,
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2012b; Wu et al., 2010). Some studies have reported that it is the time outdoors, independent
of physical activity, that is the important variable (Guggenheim et al., 2012; Rose et al.,
2008a). Jones et al. (2007) found that children who spend more than 15 hours per week (2.1
hours per day) outdoors have only one-third the risk of becoming myopic as do children who
spend less than 5 hours per week (0.7 hours per day) outdoors. In a review, Sherwin et al.
(2012a) performed a meta-analysis on seven papers published between 2002 and 2010. They
concluded that there was consistent evidence for a small reduction in the risk for being
myopic related to the amount of time spent outside, such that each additional hour spent
outside per week reduced the odds of being myopic by 2%. However, several studies have
been published since then and, in agreement with Jones et al. (2007), suggest that the benefit
of additional hours of daily outdoor exposure may be greater (French et al., 2013;
Guggenheim et al., 2012). A separate issue is whether time spent outdoors also produces a
small hyperopic shift in the refractions of emmetropic children (Rose et al., 2008a).

Myopia progression
In addition to being protective against becoming myopic, there is also evidence that outdoor
activity may slow the progression of myopia in children who are already myopic, although
some studies have not found a relationship (Jones-Jordan et al., 2012; Saw et al., 2000).
Parssinen & Lyyra (1993) found that myopia progression was reduced in boys, but not girls,
as the number of daily hours spent in outdoor activities increased. In a small intervention
study in Hunan province, China (41 in intervention group, 39 in control group) myopia
progression was compared over a 2-year period in myopic children aged 7 – 11 (Yi and Li,
2011). Based on questionnaires, the intervention group spent more time in outdoor activities
(2.0 ± 0.34 hours per day) than the control group (0.9 ± 0.23 hours per day), less time in
“middle vision” activities, and similar amounts of time in near-vision activities. Myopia
progression in the intervention group (0.38 ± 0.15 D) was slowed significantly compared to
progression in the control group (0.52 ± 0.19 D).

A larger study in Taiwan (Wu et al., 2013) compared refractive changes in children (7–11
years at baseline) at two suburban schools. At the intervention school, during recess periods
totaling 1.3 hours per day, the classrooms were emptied and children were encouraged to go
outdoors. Children at the control school had the same recess period durations, but did not
have any special programs during recess. Both groups also had about 0.5 hours per day of
outdoor physical education. Based on answers to a questionnaire, it appeared that children in
both groups had an additional 1.3+ hours per day of outdoor activity. After 1 year, the
number of children who became myopic was lower (8.4%) in the intervention group than in
the control group (17.6%). The progression in already-myopic children who were not
receiving atropine therapy (−0.28 ± 0.57 D) was not significantly slower than the
progression in the control group (−0.37 ± 0.67 D).

Interestingly, Gwiazda et al. (2012) found seasonal differences in myopia progression in
myopic children enrolled in the COMET study. The amount of progression was significantly
greater in winter than in summer. They suggested that this might be due to more near work
in the winter months and/or more outdoor activity in the summer. A similar result was
reported by Fulk et al. (2000).

Taken together, it appears that exposure to outdoor activity is protective against myopia
development and, in some studies, against myopia progression. Are the effects of outdoor
activity on the development of myopia and on myopia progression due to the higher
illuminance? The studies in animals reviewed in the next section suggest that exposure to
elevated illuminance, by itself, is sufficient to affect normal refractive development and the
progression of induced myopia.
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3. Animal Studies
Over the past 35 years there has been extensive characterization of the emmetropization
mechanism in animal models, examining normal refractive development and induced
myopia produced with form deprivation or negative lens-wear. However, the majority of
these studies have used “standard” colony lighting that, from the present perspective, is quite
low, in the range of 100 – 500 lux. Currently, we have only a very limited understanding of
ambient illuminance as a variable that may affect the performance of the emmetropization
mechanism over a wide range of light levels from low photopic (1 lux) to moderately “high”
light levels (15,000 lux) and none at full outdoor illuminance levels.

Refractive development
“Standard” colony lighting—The animal species that are most frequently used in
studies of refractive development and induced myopia are diurnal: chick (Wallman et al.,
1978; Wallman and Adams, 1987), monkey (rhesus macaque and marmoset) (Raviola and
Wiesel, 1990; Smith, III et al., 1999; Troilo and Judge, 1993), tree shrew (Norton et al.,
2010; Sherman et al., 1977), and guinea pig (Howlett and McFadden, 2006; Howlett and
McFadden, 2007; Howlett and McFadden, 2009). Normal refractive development has been
observed in light levels that have ranged upwards from 60 lux (Ehrlich et al., 1990) to 700
lux (Benavente-Perez et al., 2012; Li et al., 2000) but more typically have been in the 250 to
500 lux range (Ashby et al., 2010; Backhouse and Phillips, 2010; Callahan and Petry, 2000;
Crewther and Crewther, 2002; Dong et al., 2011; Feldkaemper et al., 1999; Iuvone et al.,
1978; Leech et al., 1995; McCarthy et al., 2007; Metlapally and McBrien, 2008; Smith et al.,
2012; Vessey et al., 2005). The lights typically are on for 12 or 14 hours per day and off the
remaining time. The illuminance levels during the light-off period, when specified, have
been below 1 lux (McCarthy et al., 2007). Many studies have found that maintenance of
normal circadian light/dark cycles is critically important (for a recent review, see (Stone et
al., 2013)).

Refractive development in these baseline “standard” lighting conditions follows a similar
pattern in all of these species; eyes initially are hyperopic when first exposed to visual
images, which occurs at birth (monkeys, guinea pigs), hatching (chicks), or at eye opening
(about 3 weeks postnatal in tree shrews) (Norton and McBrien, 1992). As in human infants,
the range of refractive states at the onset of the emmetropization process is larger than is the
case later in development (Bradley et al., 1999; Howlett and McFadden, 2007; Norton et al.,
2006; Norton and McBrien, 1992; Pickett-Seltner et al., 1988; Troilo and Judge, 1993;
Wallman et al., 1981). Active emmetropization occurs in weeks (chicks, guinea pigs, tree
shrews) (Howlett and McFadden, 2007; Norton et al., 2010; Norton and McBrien, 1992;
Pickett-Seltner et al., 1988; Wallman et al., 1981), or months (monkeys)(Bradley et al.,
1999; Troilo and Judge, 1993); the eyes approach emmetropia, rapidly at first and then more
slowly, but typically remain slightly hyperopic.

Effect of low light levels—There has been limited work exposing animals to low light
levels (around 1 lux) on a normal lights on/off schedule that would be expected to maintain
circadian rhythms (Meijer et al., 1990). Normal circadian patterns are extremely important;
continuous “standard” illuminance produces corneal flattening in chicks that, despite axial
elongation, causes the eyes to become hyperopic (Lauber, 1987; Li et al., 1995; Li et al.,
2000). Continuous dim (10 lux) illuminance also produces eye enlargement (Lauber et al.,
1961). When chicks are kept on light cycles of 12 h ON and 12 h OFF, Feldkaemper et al.
(1999), using neutral density filters, found that low light levels (calculated at 0.5 lux) were
myopiagenic. Cohen et al. (2011) followed the refractive development of chicks for 90 days
in 3 levels of ambient illuminance: 50, 500, and 10,000 lux. After emmetropizing from
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hyperopia, the refractions of many of the chicks in the 50 lux level continued to decline
until, by 90 days, the eyes were myopic; the animals in the higher illuminance conditions
remained emmetropic. Importantly, these animals did not develop flattened corneas. It thus
appears that low photopic light levels (1 – 50 lux) may affect normal refractive development
such that eyes become less hyperopic than normal (as judged from colony rearing), and
refractions can actually become myopic.

Darkness—In tree shrews that have emmetropized in standard colony lighting (100 – 300
lux at the cage floor) with a 14:10 light ON:OFF schedule, treatment with an 11-day period
of complete darkness produced axial elongation and myopia (Norton et al., 2006). Corneal
power was unaffected. It appears that darkness, after exposure to circadian light/dark cycles,
produces increased axial elongation.

In chicks, rearing from near hatching in the dark produces elongated, hyperopic eyes
(Gottlieb et al., 1987; Troilo and Wallman, 1991). The increased axial length is due to
vitreous chamber elongation; the hyperopia occurs because there is substantial flattening of
the cornea. However, it appears that the initial response is axial elongation and myopia
(Gottlieb et al., 1987; Troilo and Wallman, 1991). This changes to hyperopia over time due
to corneal flattening despite continued axial elongation. Monkeys (Guyton et al., 1989;
Raviola and Wiesel, 1978) and tree shrews (McKanna et al., 1983) raised in complete
darkness and that have not been allowed to at least partially emmetropize in light/dark
conditions do not appear to develop myopia, perhaps because the emmetropization and/or
circadian mechanisms have not been activated. It may be that visual experience in cyclic
day/night conditions produces retinal maturation and activates the retinal “go” and “stop”
signals (Rohrer and Stell, 1994) of the emmetropization mechanism. Subsequent continuous
darkness may be myopiagenic because it disrupts the circadian rhythms and either produces
“go” signals or removes “stop” signals. Taken together, the low light and dark-treatment
experiments in chicks and tree shrews suggest that very low (less than 1 lux) light levels
favor axial elongation that, if there are no corneal changes, results in myopia.

Effect of “elevated” light levels—The limited number of studies that have examined
refractive development in light levels above 1000 lux have found that “elevated” light levels
(compared with standard colony lighting) slow the normal decrease in hyperopia so that
normal or control eyes are more hyperopic than they would have been if exposed to standard
colony lighting. The normal chicks that Cohen et al. (2011) raised in “high intensity”
(10,000 lux) light became over 1 D hyperopic, compared with chicks raised in 500 lux,
starting by 30 days of exposure and persisting through the end of treatment after 90 days.
The refractive difference occurred because the refractions of the “high intensity” animals
stabilized at a hyperopic level while the refractions of the 500 lux animals continued to
decline toward emmetropia.

Normal eyes of juvenile tree shrews, and untreated control eyes of monocularly form-
deprived or negative-lens treated animals (Fig. 1E & F) that were exposed for approximately
7.5 hours per day to “elevated” light levels of nearly 15,000 lux became hyperopic,
compared to normal and control eyes exposed to standard colony lighting (100 – 300 lux)
(Siegwart et al., 2012). Control eyes of a monocular form-deprived group of tree shrews that
were exposed to the elevated light levels for 11 days were hyperopic compared to standard
light control eyes (1.2 ± 0.3 D vs. 0.1 ± 0.3 D). These control eyes remained hyperopic
when the animals were returned to standard colony lighting for 21 additional days. Control
eyes of monocularly form-deprived rhesus monkeys exposed to 25,000 lux for 6 hours per
day for many weeks became hyperopic compared to the control eyes of animals exposed to
standard colony lighting (15 – 630 lux) (Smith et al., 2012). A hyperopic shift was not found
in the control eye of newly hatched chicks treated for 5 days with 15,000 lux, 6 hours per
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day (Fig. 1A & B) (Ashby et al., 2009; Ashby and Schaeffel, 2010), suggesting that longer
treatment periods and/or older animals may be needed for elevated light levels to affect
normal refractive development.

Although the number of studies and the number of animals studied is small, it appears in
three species that mildly elevated light levels, comparable to those experienced in the shade
outside on a sunny day, slow the gradual decrease in hyperopia so that eyes remain slightly
(approximately 1 D) more hyperopic than in standard indoor lighting. If outdoor activity in
children has a similar effect, it would, on average, slightly increase the modest hyperopia
that normally exists. To the extent that myopiagenic environmental stimuli (such as blur
occurring during near work) may produce myopia, these eyes would begin myopia
progression from a more hyperopic refractive state, which might reduce their final myopic
refractions.

Development of induced myopia
“Standard” colony lighting conditions—Until recently, most studies of axial
elongation and myopia produced with either form deprivation or with negative lenses
occurred in the same indoor lighting conditions used to examine “normal” refractive
development. These have provided the baseline of information about the functioning of the
emmetropization mechanism. Monocular form deprivation is typically produced by holding
a translucent diffuser (resembling the material of a Ping-Pong ball or “frosted” light bulb) in
front of the eye with a mask (Hung et al., 1995; Lu et al., 2006; Schaeffel et al., 1988), a
Velcro ring around the eye (Kee et al., 2001), or a goggle frame attached to a pedestal
permanently installed on the top of the head (Howlett and McFadden, 2006; Siegwart and
Norton, 1994). This reduces image contrast, especially for high spatial frequencies and
prevents focused images from forming on the retina. The result is axial elongation, primarily
enlargement of the vitreous chamber that moves the retina behind the focal plane, producing
an induced myopia (form-deprivation myopia). The amount of myopia typically increases
with the duration of the form deprivation and substantial amounts of myopia (more than 10
D) can result (McBrien and Norton, 1992; Smith et al., 1987; Wallman and Adams, 1987).

If a negative-power lens is used instead of form deprivation, the lens shifts the focal plane
away from the cornea, creating refractive hyperopia or, if the animals are young and have
not reached emmetropia, increasing the amount of hyperopia. The result is an increase in the
rate of axial elongation that moves the retina away from the cornea (Hung et al., 1995;
Schaeffel et al., 1988; Shaikh et al., 1999). This reduces the refractive hyperopia to the point
that the lens-wearing eye’s refraction returns to an age-appropriate level of hyperopia. If
treatment is monocular, the treated eye’s refractive state matches that of the untreated fellow
control eye (the treated eye has “compensated” for the lens); if the lens is removed, the eye
is myopic (lens-induced myopia, LIM). The rate of this refractive compensation varies
across species as does the normal emmetropization process. As shown in Fig. 1A & B, it is
quite rapid in chicks, a bit slower in tree shrews (Fig. 1E & F) and considerably slower in
monkeys (Fig. 1C & D). In both form deprivation myopia (FDM) and negative lens-induced
myopia (LIM), there are minimal changes in corneal shape or in the power of the crystalline
lens (Pickett-Seltner et al., 1987; Qiao-Grider et al., 2010; Schaeffel et al., 1988; Siegwart,
Jr. and Norton, 1998).

A number of studies that have compared form deprivation and negative lens treatments have
suggested that the underlying mechanisms (presumably in the retina) are not identical (Choh
et al., 2006; Kee et al., 2001; Nickla and Totonelly, 2011). One important difference
between these treatments is that a negative lens, worn continuously, is an extremely
powerful stimulus that guides the eye to with-the-lens emmetropia. In contrast, form
deprivation does not offer a target so there is no guidance toward a target; it removes the
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possibility of achieving with-the-lens emmetropia. However, changes in the sclera produced
by both treatments are virtually identical: increased growth in the inner cartilaginous layer in
chick (Rada and Matthews, 1994), remodeling and, in mammals, loss of extracellular matrix
(Gentle et al., 2003; Guo et al., 2011; Norton and Rada, 1995), and increased viscoelasticity
(Siegwart, Jr. and Norton, 1999).

Elevated light levels—Just as exposure to “elevated” light levels slows the gradual
decrease in hyperopia in control and normal eyes, it appears to also reduce the rate at which
myopiagenic stimuli produce axial elongation and, hence, refractive myopia. Reports are
available in three species, chick, macaque monkey, and tree shrew (Fig. 1).

With regard to form deprivation, periods of 5 – 7.5 hours of elevated light levels (15,000 to
28,000 lux) have been found to reduce the amount of myopia produced over a fixed period
of time compared with form deprivation myopia produced in standard colony lighting in
chicks (Fig. 1A) (Ashby et al., 2009), macaque monkeys (Fig. 1C) (Smith et al., 2012) and
tree shrews (Fig. 1E) (Siegwart et al., 2012). In tree shrews, we found that light levels of
15,000 lux presented for 7.5 hours per day (the remaining daytime period in standard colony
lighting [100 – 300 lux]) with a 10-hour lights-OFF period, produced a nearly 40% slowing
of the rate of myopia development in response to form deprivation during an 11 day
treatment period (Fig 1E).

When combined with negative lens wear, elevated light levels also slowed the rate at which
the eyes compensated for the lens in chicks (Fig. 1B) (Ashby and Schaeffel, 2010) and tree
shrews (Fig. 1F) (Siegwart et al., 2012). The rate of myopia development was reduced, but
the eyes eventually compensated fully for the lenses (tree shrew data not shown). In tree
shrews the average time to full compensation was nearly doubled (17.5 days vs. 9 days in
standard lighting). In infant macaque monkeys, similarly elevated light levels did not slow
the response to negative lenses (Fig. 1D)(Smith et al., 2013).

The eventual full compensation to negative lenses in “elevated” light conditions, coupled
with the absence of slowing in rhesus monkeys, has raised questions about whether elevated
light levels exposure will be useful as a treatment for slowing myopia progression in
children. We suggest that these questions ignore important differences between continuous
negative lens wear and the environmental visual stimuli that appear to contribute to axial
elongation and myopia in children (Gwiazda et al., 1993b; Gwiazda et al., 2003; Smith III,
2013). Further, we suggest that it is the slowing of the rate of response to negative lenses
that holds promise for future treatments.

A negative lens produces refractive hyperopia and continuous negative lens wear is a test
applied to a normal emmetropization mechanism in animals. There is a refractive target,
defined by the power of the lens, and one would not expect “elevated” light levels, similar to
outdoor light levels, to significantly alter the endpoint. In contrast, if hyperopic defocus is
the environmental cue that produces elongation in children, there is no refractive target. If
the hyperopia is caused by under-accommodation (Gwiazda et al., 1993b), the under-
accommodation continues as the eye elongates, so that defocus continues to occur rather
than decreasing as with compensation for a negative lens. Similarly, if the elongation and
myopia progression is caused by hyperopic defocus in the peripheral visual field
(Hoogerheide et al., 1971), continued elongation of the eye causes it to become more prolate
in shape, which should actually increase the peripheral hyperopic defocus. In both situations,
the final amount of myopia is determined by the rate of myopia development, over the years
that myopia progresses, not by a refractive target, which with negative lens wear is the
power of the lens.
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It is for this reason that the clinical studies that have used optical or pharmacological
treatments to slow myopia progression in children (Bedrossian, 1979; Chua et al., 2006;
Gwiazda et al., 2003; Shih et al., 2001; Siatkowski et al., 2004; Smith III, 2013) have
measured the success of the treatments by the decrease in the rate of myopia progression.
The reasoning is that if the treatment is continued throughout the years until myopia
progression ceases, the final amount of myopia will be reduced. That the rate of progression
also is slowed in two species in the case of negative lens wear and in all three species in
response to form deprivation suggests that elevated light levels produce a slowing effect on
the response to myopiagenic stimuli. If a safe regime of elevated light levels were devised
that reduced the rate of myopia progression in children by a similar amount and applied
throughout the period of myopia progression, the final amount of myopia might be
substantially reduced.

4. Possible Mechanisms
Blur, and/or vitamin D levels

Several potential mechanisms have been suggested to explain the protective effects of
outdoor activity against myopia in children. To the extent that hyperopic defocus on the
retina from near targets contributes to axial elongation and myopia development in children,
being outside with few nearby objects could remove that stimulus. In addition, the pupils
would be expected to be smaller in the higher outdoor light levels, increasing the depth of
focus and further reducing blur. These factors may contribute to the protective effect in
children. However, in cage-housed animals with ample nearby stimuli, elevated light levels
produce a hyperopic shift in normal and control eyes (Siegwart et al., 2012; Smith et al.,
2012) and slow the response to negative-lens wear (Ashby and Schaeffel, 2010; Siegwart et
al., 2012). Thus the elevated light effect can occur despite the presence of nearby objects.

The possible role of reduced blur outdoors in slowing myopia progression has not been
assessed in human studies. However, the consistent slowing of myopia development in form
deprived animals, in which reduced pupil size cannot reduce the amount form deprivation,
suggests that this is not a necessary component. In addition, elevated light levels in negative-
lens treated animals do not prevent the eyes from eventually fully compensating for the
lenses, suggesting that the reduced pupil size does not dramatically affect the amount of
blur; rather elevated light levels slow the rate of response to the blur in tree shrews and
chicks.

Could vitamin D be involved? Sunlight produces increased blood levels of vitamin D. Mutti
et al. (2011) found polymorphisms within the vitamin D receptor (VDR) that appeared to be
associated with low to moderate amounts of myopia in Caucasian subjects, leading to the
possibility that elevation of vitamin D levels might be protective against myopia
development. However, in a small sample of children, vitamin D levels did not appear to be
associated with the amount of myopia (Mutti and Marks, 2011). In a study of tree shrews,
oral vitamin D3 supplementation that dramatically raised blood serum levels for vitamin D
did not affect the refractions of the control eyes and did not affect the development of
myopia induced with either a negative lens or form deprivation (Siegwart et al., 2011).
Taken together, studies thus far suggest that the roles of fewer nearby objects, smaller
pupils, and vitamin D levels may be minimal.

Retinal dopamine activity
The release of dopamine from dopaminergic retinal neurons (i.e., activation of dopaminergic
pathways) has long been known to be stimulated by light (Witkovsky, 2004). Dopamine
activity (synthesis, turnover, and release) is higher during the day and lower at night on a
circadian rhythm (Brainard and Morgan, 1987; Doyle et al., 2002; Iuvone et al., 1978). In
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addition, dopaminergic activation has been implicated in the control of myopia development
in animals (Iuvone et al., 1991; McCarthy et al., 2007; Rohrer et al., 1993; Schaeffel et al.,
1995; Stone et al., 1989; Stone et al., 1990). Thus, as reviewed recently, retinal
dopaminergic activation seems very likely to play a role in the protective effects of outdoor
activities in children and the effects of elevated light levels in the animal studies (Stone et
al., 2013).

Until recently, studies of the role of dopamine have mostly focused on 1) the mechanisms
that alter retinal sensitivity and function involved with switching between scotopic (rod
mediated) visual function and photopic (cone-dominated) visual function and 2) the
mechanisms involved in establishing and maintaining circadian rhythms of sleep vs.
wakefulness. These studies have provided important information, particularly about the role
of dopamine and melatonin in modulating retinal function in the transition between states.
Rarely, however, have studies been concerned with visual function from low to high
photopic (outside) conditions and/or with considerations of seasonal changes in the length of
the day (the photoperiod).

It is well established that light triggers dopamine synthesis and release by dopaminergic
amacrine cells (some in the inner nuclear layer of the retina, some with interplexiform
processes); activity of the retinal dopaminergic system is higher in the day (Witkovsky,
2004). However, there have not been systematic studies of retinal dopamine levels and
levels of dopamine metabolites in animals exposed to illuminance levels ranging from low
photopic to the “elevated” levels that have been shown to slow myopia development. One
study found that light-triggered dopamine release plateaus at around 100 lux (Brainard and
Morgan, 1987). In preliminary studies, we have found that mid-day retinal levels of the
dopamine metabolite dihydroxyphenylacetic acid (DOPAC), generally accepted as an
indicator of dopamine release, were 30% higher in our “elevated” light-level condition
(15,000 lux 7.75 hours per day, n=4) than in standard colony lighting (100 – 300 lux, n=4).
Thus, light levels above those examined previously may produce further elevations in retinal
dopaminergic activity.

A role for the retinal dopaminergic system in the control of eye growth has been explored in
numerous studies (Iuvone et al., 1991; McCarthy et al., 2007; Rohrer et al., 1993; Schaeffel
et al., 1995; Stone et al., 1989; Stone et al., 1990). DOPAC levels are reduced in chick and
monkey eyes developing form-deprivation and negative-lens-induced myopia (Iuvone et al.,
1989; Schaeffel et al., 1994). In addition, apomorphine, a non-specific dopamine agonist,
reduced the amount of induced myopia in both chicks and macaque monkeys (Iuvone et al.,
1992; Nickla et al., 2010; Rohrer et al., 1993; Schmid and Wildsoet, 2004; Stone et al.,
1989). Interestingly, chicks raised in low light that became myopic also showed lower
dopamine release (Cohen et al., 2012). Studies using selective dopamine agonists and
antagonists, overwhelmingly in chicks, have implicated the dopamine D2 receptor system as
playing a critical role. D2 receptor activation has been found to slow axial elongation and
induced myopia development (Ashby and Schaeffel, 2010; McCarthy et al., 2007; Nickla et
al., 2010; Rohrer et al., 1993). The elevated light level effect (slowed response to negative
lenses) is mediated by the D2 receptor pathway in chicks; intravitreal administration of the
D2 antagonist, spiperone, in ascorbic acid vehicle blocked the protective effect of ELL
(Ashby and Schaeffel, 2010). However, in a line of guinea pigs that develops spontaneous
myopia, Jiang et al. (2012) found that activation of the D1 receptor pathway appears to
reduce axial elongation and myopia. They also found that D2 agonists increased axial
elongation and myopia. Although we would like to think that all vertebrates use similar
mechanisms to achieve something as fundamental as emmetropia, it may be that other
species differences, such as the inner layer of cartilage in the sclera of birds vs. the all-
fibrous sclera of eutherian mammals, may have dictated differing retinal mechanisms.
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An additional factor may participate in activation of retinal dopaminergic pathways as
illuminance levels rise, activation of intrinsically photoresponsive retinal ganglion cells
(ipRGCs). These recently discovered neurons contain melanopsin and directly respond to
light (peak response near 490 nm), become active in photopic illuminance levels, and
demonstrate relatively little fatigue (Gamlin et al., 2007). ipRGCs have been found to
synapse on dopaminergic amacrine cells (Zhang et al., 2008). Although this may not be as
strong an input as that provided through the traditional photoreceptor/bipolar cell pathway
(Cameron et al., 2009) it does provide a way, in addition to that pathway, for increasing light
levels to produce activation of the retinal dopaminergic pathways.

5. Illuminance as a Continuous Variable
The research reviewed in the previous sections leads us to suggest that ambient light levels
act as a continuous variable that, as light levels rise through the photopic range, has an
increasing impact on the emmetropization mechanism (Fig. 2). The effect of rising
illuminance is to shift the endpoint of normal refractive development towards hyperopia and
to slow the response to myopiagenic stimuli. In this model it is assumed that illuminance
varies on a circadian cycle with a period of low light (night) and a period of high light (day),
which is known to be important for normal emmetropization (Lauber et al., 1961; Lauber,
1991; Li and Howland, 2003; Stone et al., 2013).

The relevant range of illuminance values that affect refractive development and the response
to myopiagenic stimuli is not yet known. We, somewhat arbitrarily, place the low end at 1
lux (Fig. 2(a)), in the human mesopic range, because it is known that normal circadian sleep-
wakefulness cycles are maintained in tree shrews at 1 lux (Meijer et al., 1990). This is
somewhat lower than the light level (50 lux) at which Cohen et al. (2011) found many
normal chick eyes gradually became myopic. It is over an order of magnitude lower than
most lighting indoors and in most vivaria. Thus, studies conducted at an illuminance level of
500 lux (approximately) in Fig. 2 (baseline) have provided most of the human and animal
data on refractive development and response to myopiagenic stimuli reviewed in the
previous sections. At this baseline illuminance level, we suggest that retinal dopaminergic
activity (Fig. 2(a)), though higher during the light cycle than in the dark (Brainard and
Morgan, 1987), is relatively low. Although ipRGCs directly respond to light at this level, the
strength of their effect on dopaminergic amacrine (interplexiform) cells is small (Cameron et
al., 2009); input to dopaminergic neurons arrives via inputs from on-bipolar cells driven by
photoreceptors (Hokoc and Mariani, 1987; Yazulla and Zucker, 1988) even though the
dendrites of the ipRGCs extend into the off sublamina of the inner plexiform layer
(Dumitrescu et al., 2009). This is consistent with findings in nob1 mice, which have an ON
pathway defect, have low retinal dopamine and DOPAC levels in both light and darkness,
and are more susceptible to form-deprivation myopia (Pardue et al., 2008).

When illuminance decreases below baseline, toward 1 lux, retinal dopaminergic activation
from photoreceptors will be lower and input from ipRGCs may be decreased or absent. We
suggest that the effect of reduced dopaminergic activation may affect normal refractive
development (Fig. 2(c)) so that the endpoint may not be the small hyperopia found in most
children and animals in baseline lighting conditions, but often will be lower so that normal
eyes become less hyperopic and perhaps even myopic (Cohen et al., 2011; Cohen et al.,
2012). Also, we suggest the lowered retinal dopaminergic activation produces an increased
rate of response (Fig. 2. (d)) to myopiagenic stimuli (form deprivation; hyperopic defocus);
the rate of myopia development is faster in animals and in children in keeping with the
results seen in nob1 mice (Pardue et al., 2008).
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As illuminance increases above standard baseline indoor levels toward outdoor levels (Fig.
2(a)), activation of the retinal dopaminergic system increases (Fig. 2(b) ), both from
“traditional” photoreceptor/bipolar-cell connections (Cameron et al., 2009) and,
increasingly, from slowly-adapting ipRGCs (Gamlin et al., 2007; Morgan and Boelen, 1996;
Zhang et al., 2008). This affects the response of the emmetropization mechanism, altering
the course of normal refractive development (Fig. 2(c)) so that the refractive endpoint of
normal eyes is increasingly hyperopic. This is not to suggest a dramatic hyperopic shift, but
one in the range of 1 – 2 D above emmetropia. This process also slows the response (Fig.
2(d) ), in animals, to form deprivation and negative lens wear; in children we suggest that it
also slows the response to environmental myopiagenic hyperopic defocus. The upper
illuminance point in our model, “outdoor levels,” is purposely vague because there are not
yet studies that have systematically examined the impact of illuminance levels above 15,000
– 25,000 lux. It is possible that the emmetropization mechanism may not need additional
light levels to optimize its performance, an upper limit may occur so that illuminance levels
above 15,000 lux (shade on a sunny day) may be as effective as 130,000 lux (direct
sunlight).

This model is novel primarily in that it extends upward the range of illuminance levels over
which increased illuminance produces increased retinal dopaminergic activation beyond the
apparent ceiling encountered by Brainard and Morgan (1987). It also includes a potential
role for ipRGCs. Missing from the model is any suggestion of the specific mechanism by
which retinal dopaminergic activation produces its effects on normal refractive development
and the rate of response to myopiagenic stimuli. The emmetropization mechanism normally
operates as a feedback system in which refractive error either increases or decreases the
axial elongation rate of the eye. Refractive hyperopia acts to increase the elongation rate and
refractive myopia acts to slow it. The rate at which this occurs is set by the gain of the
feedback loop, which can vary across eyes. This is reflected in the differing rates of myopia
development seen with form deprivation, which creates an “open loop” condition in which
the mechanism operates without visual feedback. Given that elevated light levels
consistently slow the rate of axial elongation and myopia in form deprived animals, it
appears that a primary impact of elevated illuminance is on the gain of this system. The
complete compensation to negative lenses suggests that the “set point” is not strongly
affected. To the extent that an increased rate of axial elongation from myopiagenic
conditions can be thought of as reflecting a retinally-generated “go” signal, the effect of high
illuminance could be characterized as reducing the strength of the “go” signal.

6. Concluding Comments
In this review, we have tried to integrate information from human epidemiological studies,
from investigations using animals models of refractive development and myopia, and from
studies of retinal circuitry to suggest ways in which illuminance levels may impact normal
refractive development and the response to environmental myopiagenic stimuli. We
recognize that the resulting model is incomplete and, no doubt, contains some incorrect
conclusions. The intersection of illuminance levels, circadian pathways, and refractive
development appears to be a promising area for research. We propose our model not as a
complete story, but as a way, we hope, to help stimulate and structure future investigations
both in children and in animals.
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Highlights

• Reviews the effects of outdoor light levels on human refractive development
and myopia

• Reviews the effects of low and high light levels on animal models of refractive
development and induced myopia

• Examines possible mechanisms for the effect of elevated illuminance

• Proposes a model of how elevated illuminance may act through retinal
dopaminergic pathways to promote hyperopia and slow the rate of myopia
development
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Fig. 1.
Effects of “elevated” light levels (“high ambient lighting”) on the response to form
deprivation and negative (minus) lens wear in chick (Ashby et al., 2009; Ashby and
Schaeffel, 2010), macaque monkey (Smith et al., 2012; Smith et al., 2013), and tree shrew
(Siegwart et al., 2012). A, C and E: In all three species, “elevated” light levels (ELL) slowed
the rate of myopia development in response to form deprivation when compared with
standard (200 – 600 lux) colony lighting. B and F: In chicks and tree shrews ELL slowed the
initial rate of negative lens-induced myopia. In macaque monkeys (D), no effect from
elevated light levels was found. Chick: A. refractive values for the treated and the control
eyes exposed to 50 lux, 500 lux or 15,000 lux for 6 h per day. B. exposure to 500 or 15,000
lux for 5 hours per day; Macaque: the refractive difference (treated – control eyes) of
animals exposed colony lighting or to to 18 – 28,000 lux from metal halide lamps (filtered to
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remove wavelengths below 360 nm) for 6 h per day. Tree shrew: treated and control eye
refractive values comparing animals exposed to “standard” colony lighting (100 – 300 lux)
or elevated light levels (ELL): 15,000 lux from compact fluorescent lamps for 7.75 h per
day. In tree shrews, the untreated control eyes in both ELL groups were hyperopic compared
with control eyes in standard colony lighting. A, B, C, and D, copyright Association for
Research in Vision and Ophthalmology. Reproduced with permission.
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Fig. 2.
Schematic illustration of our hypothesis that ambient light levels produce a continuum of
effects on normal refractive development and the response to myopiagenic stimuli. Left
vertical panel (a): light levels rising from low (1 lux) through standard indoor illuminance
levels (500 lux) to “high” (outdoor levels). The wider bar indicates higher illuminance. Most
animal studies have examined animals at around 500 lux, providing baseline information
about refractive development and responses to myopiagenic stimuli. Second panel (b): low
(below standard indoor levels) daytime illuminance levels produce low activity of retinal
dopaminergic amacrine cells through inputs from the photoreceptor/bipolar cell pathway. As
illuminance rises, ipRGC input and traditional inputs raise the retinal dopaminergic activity
levels in a graded manner. Third panel (c) suggests the effect of illuminance levels (via
dopaminergic activation) on normal refractive development. At low light levels, the
refractive endpoint of normal development is lower hyperopia or myopia. Increasing levels
to and above baseline alter the endpoint toward more hyperopia. The fourth panel (d)
suggests that the rate of response of the emmetropization mechanism to myopiagenic stimuli
(form deprivation, hyperopic defocus) is inversely related to illuminance levels; high
illuminance levels slow the rate of myopia development and low levels raise the response
rate.
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