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Abstract

During lung development, Fibroblast growth factor 10 (Fgf10), which is expressed in the distal mesenchyme and regulated
by Wnt signaling, acts on the distal epithelial progenitors to maintain them and prevent them from differentiating into
proximal (airway) epithelial cells. Fgf10-expressing cells in the distal mesenchyme are progenitors for parabronchial smooth
muscle cells (PSMCs). After naphthalene, ozone or bleomycin-induced airway epithelial injury, surviving epithelial cells
secrete Wnt7b which then activates the PSMC niche to induce Fgf10 expression. This Fgf10 secreted by the niche then acts
on a subset of Clara stem cells to break quiescence, induce proliferation and initiate epithelial repair. Here we show that
conditional deletion of the Wnt target gene c-Myc from the lung mesenchyme during development does not affect proper
epithelial or mesenchymal differentiation. However, in the adult lung we show that after naphthalene-mediated airway
epithelial injury c-Myc is important for the activation of the PSMC niche and as such induces proliferation and Fgf10
expression in PSMCs. Our data indicate that conditional deletion of c-Myc from PSMCs inhibits airway epithelial repair,
whereas c-Myc ablation from Clara cells has no effect on airway epithelial regeneration. These findings may have important
implications for understanding the misregulation of lung repair in asthma and COPD.
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Introduction

A complex interplay between endodermal and mesodermal cell

types defines early developmental competence and cell fate in the

lung. As such, proximal-distal patterning of the lung is accompa-

nied by the gradual restricted ability of developmental progenitors

to generate the various epithelial lineages in the mature organ [1].

During lung development, Fgf10 (Fibroblast growth factor 10) is

expressed in mesenchyme distal to the branching tips where it

maintains the multipotent distal epithelial progenitors, but is

suppressed proximally and at bifurcation points [2,3,4,5,6,7]. We

previously identified the Fgf10-expressing cells in the distal

mesenchyme as parabronchial smooth muscle cell (PSMC)

progenitors [3,8]. Fgf10 expression as well as the amplification of

these PSMC progenitors is regulated by Wnt signaling [3,9,10].

Suppression of Fgf10 expression around the developing airway is

crucial to allow for proper maturation of the lung airway

epithelium [11,12,13,14,15].

The adult lung is a vital and complex organ that normally turns

over very slowly. The epithelial cells that line the airways are

constantly exposed to potential toxic agents and pathogens in the

environment, and they must therefore be able to respond quickly

and effectively to both cellular damage and local production of

immune cytokines. Adult stem cells are implicated in both

homeostatic tissue maintenance and functional restoration after

injury in organs such as skin and gut.

A widely used lung injury model involves the destruction of

Clara cells by naphthalene. Only those Clara cells that express

cytochrome P4502F2 (encoded by Cyp2f2) are able to convert

naphthalene into toxic epoxides leading to cell death. Within a few

hours after naphthalene administration nearly all Clara cells have

died, except for the few less differentiated variant Clara stem cells

that do not express Cyp2f2, making them therefore resistant against

naphthalene [16,17,18,19,20]. Ciliated cells quickly spread out, or

squamate, under the dying Clara cells in an attempt to cover the

basal lamina and maintain the permeability barrier of the

epithelium [21].

We have previously shown that surviving ciliated cells after

naphthalene, ozone or bleomycin-mediated airway epithelial

injury start to secrete Wnt7b, which then activates the PSMC

niche to induce Fgf10 expression [22]. We found that Fgf10

secreted by the niche acts on surviving Clara stem cells to break

quiescence, induce proliferation and initiate epithelial repair. Here

we show that after naphthalene-mediated airway epithelial injury,

the Wnt target c-Myc is important for the activation of the PSMC

niche and as such induces proliferation and Fgf10 expression in

PSMCs. Myc proteins coordinate many interdependent processes,

including cell growth (increase in cell mass), cell proliferation
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(DNA replication and cell cycle progression), differentiation and

apoptosis [23]. Using an allelic series of mice in which c-Myc

expression was incrementally reduced to zero, Trumpp et al.

showed that fibroblasts from these mice exhibit reduced prolifer-

ation and after complete loss of c-Myc function exit the cell cycle

[24]. Our data indicate that conditional deletion of c-Myc from

PSMCs prevents activation of the airway epithelial stem cell niche

after airway epithelial injury resulting in deficient epithelial repair.

Results

c-Myc Expression in the Lung Mesenchyme is not
Required for Normal Lung Development

During lung development, Nmyc expression is normally restrict-

ed to a distal population of undifferentiated epithelial cells [25],

whereas c-Myc is only expressed in the mesenchyme [3]. c-Myc

expression is regulated by b-catenin signaling and is lost upon

conditional deletion of b-catenin from the lung mesenchyme [3]. In

some organs most of the effects of b-catenin signaling are primarily

mediated by c-Myc [26]. To test whether during lung development

the effects of mesenchymal b-catenin signaling are primarily

mediated via c-Myc we conditionally deleted c-Myc from the lung

mesenchyme using a Dermo1(Twist2)-Cre line [27]. Interestingly,

while ablation of b-catenin from the lung mesenchyme resulted in

major differentiation defects and reduced Fgf10 expression [3,28],

we found that conditional deletion of c-Myc from the lung

mesenchyme has no significant effect on either (Fig. 1A–D). At

E18.5, Dermo1-Cre;c-Mycf/f [24] conditional knock out lungs appear

normal, with normal Fgf10 expression (Fig. 1A,B) and with proper

differentiation of the airway and vascular smooth muscle cells

(Fig. 1C,D), proper differentiation of the distal epithelium in ATII

(Sftpc) and ATI (Pdpn) cells (Fig. 1C–F) and proper differentiation

of the bronchial epithelium into Clara (Scgb1a1) and ciliated cells

(ß-Tub) (Fig. 1G,H).

c-Myc Regulates Activation of the Airway Epithelial Stem
Cell Niche after Airway Epithelial Injury

We recently showed that after airway epithelial injury, surviving

epithelial cells secrete Wnt7b, which then activates PSMCs (which

constitute a niche for airway epithelial stem cells) to induce

proliferation and Fgf10 expression [22]. This Fgf10 secreted by the

PSMC niche then acts on a subset of Clara stem cells to break

quiescence, induce proliferation and initiate epithelial repair [22].

To investigate the requirement of c-Myc in the activation of the

PSMC niche and the induction of Fgf10 expression in the adult

lung after airway epithelial injury we generated Myh11-Cre;c-Mycf/f

mice (Myh11: smooth muscle myosin heavy chain) [29], in which

we conditionally deleted c-Myc from the PSMCs, shown by in situ

hybridization in Fig. 2A,B. Interestingly, we found that the PSMC

niche in Myh11-Cre;c-Mycf/f lungs does not get activated after

naphthalene-mediated airway epithelial injury. This is manifested

by reduced proliferation of the PSMCs, as 9.2% 61% of PSMCs

were BrdU positive in control lungs vs. 2.6% 60.23% of PSMCs

in Myh11-Cre;c-Mycf/f lungs (P = 0.000005, n$4) (Fig. 2C,D) [22].

To investigate whether induction of Fgf10 expression is also

regulated by c-Myc we crossed Myh11-Cre;c-Mycf/f mice with an

Fgf10LacZ reporter line [3,7,8,22,30]. In contrast to our observa-

tions during lung development we found that in the adult lung, 3

days after naphthalene-mediated airway epithelial injury, Fgf10

expression in the PSMC niche is regulated by c-Myc, as

demonstrated by the lack of induction of Fgf10 expression in

Myh11-Cre;c-Mycf/f;Fgf10LacZ mice (Fig. 2F) compared to control

littermates (Fig. 2E). We previously reported a similar drastic

reduction in Fgf10 expression and proliferation in PSMCs, after

naphthalene-mediated airway epithelial injury, in mice overex-

pressing Dkk1, a secreted inhibitor of Wnt signaling [22]. To

investigate whether epithelial Fgf10 signaling is also reduced we

checked for Scgb1a1+Sftcp+ [22,31] and Scgb1a1+Fgfr2b+ [22]

double positive Clara stem cells in the regenerating distal airways

near bronchoalveolar duct junctions (BADJs). In accordance with

our previously reported results showing that Sftpc and Fgfr2b

expression in Clara stem cells is at least in part regulated by Fgf10

[22], we found a reduction in Scgb1a1+Sftcp+ and

Scgb1a1+Fgfr2b+ double positive distal airway Clara stem cells

at the BADJs in Myh11-Cre;c-Mycf/f mice 7 days after naphthalene

injury compared to control littermates (Fig. 3A–D) [22,31,32].

Conditional Deletion of c-Myc from Airway Smooth
Muscle Severely Impairs Airway Epithelial Regeneration
After Injury

Fgf10 secreted by the PSMC niche after airway epithelial injury

is critical for proper regeneration of the airway epithelium [22].

We next investigated how airway epithelial regeneration is affected

in Myh11-Cre;c-Mycf/f mice with a conditional inactivation of c-Myc

from the PSMC niche. Myh11-Cre;c-Mycf/f and control littermates

were injured with naphthalene resulting in a .95% decrease in

Scgb1a1 expression, as a measure of Clara cell loss, by 3 days after

injury and airway epithelial regeneration was monitored over time.

At 3 days post injury both control and Myh11-Cre;c-Mycf/f mice

show similar levels of injury demonstrated by low levels of Scgb1a1

mRNA expression (a Clara stem cell-specific marker) and the

presence of limited Scgb1a1 positive Clara stem cells at BADJs

and near CGRP-expressing neuroendocrine bodies, while most of

the airway is lined with ciliated cells (b-tubulin) (Fig. 4A,D,G,J,M).

At 7 days after injury, Myh11-Cre;c-Mycf/f mice show a 40%

decrease in airway epithelial regeneration (Fig. 4H,K,M) com-

pared to control mice (Fig. 4B,E,M). This decrease in regeneration

is even more evident at 14 days post injury, with Myh11-Cre;c-

Mycf/f mice showing an almost 3 fold decrease in regeneration

(Fig. 4I,L,M) compared to control mice (Fig. 4C,F,M).

Conditional Deletion of c-Myc from Clara Stem Cells does
not Affect Airway Epithelial Regeneration after Injury

We have previously shown that after naphthalene injury a

subset of Clara cells undergo a transient epithelial to mesenchymal

transition (EMT) to acquire stem cell-like properties and as such

are able to transiently induce the expression of Myh11 [22]. To

investigate whether the decrease in airway epithelial regeneration

in Myh11-Cre;c-Mycf/f mice is not due to deletion of c-Myc from

these Clara cells, transiently expressing Myh11-Cre, we generated

Scgb1a1-Cre;c-Mycf/f [33,34] mice in which the c-Myc gene is

deleted specifically from all Clara cells. We found that airway

epithelial regeneration after naphthalene injury is not affected in

Scgb1a1-Cre;c-Mycf/f mice compared to control littermates (Fig. 5A–

E), indicating that epithelial c-Myc does not play an important role

in airway epithelial regeneration and that the defect in regener-

ation observed in Myh11-Cre;c-Mycf/f mice can be attributed solely

to the loss of c-Myc from the PSMC niche. This is consistent with

the fact that during lung development c-Myc expression is

restricted to the mesenchyme, whereas Nmyc is expressed solely

in the epithelium [3,25].

Discussion

The lung has a complex three-dimensional structure that

features major differences along its proximal-distal axis in terms of

the composition of the endoderm-derived epithelium. The trachea

and primary lung buds arise by different morphogenetic processes

c-Myc Activates the Airway Stem Cell Niche
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Figure 1. Mesenchyme-specific c-Myc ablation does not affect lung development. (A,B) Fgf10 in situ hybridization on E18.5 ctrl (A) and
Dermo1-Cre;c-Mycf/f (B) lungs showing that Fgf10 expression is not affected. (C–H) Immunostaining for a-SMA (smooth muscle cells) and Sftpc (ATII
cells) (C,D), PDPN (ATI cells) (E,F), and Scgb1a1 (Clara cells) and b-tubulin (ciliated cells) (G,H) on E18.5 ctrl (C,E,G) and Dermo1-Cre;c-Mycf/f (D,F,H)
lungs. n$3. Scale bars: 100 mM (A,B and G,H); 200 mM (C–F).
doi:10.1371/journal.pone.0071426.g001
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from contiguous regions of the embryonic foregut [35]. A

distinguishing feature of the adult mouse cartilaginous airways

(i.e. trachea and primary bronchi) is that Fgf10 is expressed in the

mesenchyme between the cartilage rings [36,37] and that they

contain a discontinuous population of basal stem cells that express

p63 and specific keratins (K14 and K5). In addition to basal cells,

the luminal epithelium in cartilaginous airways consists of two

main columnar epithelial cell types: ciliated cells and Clara cells

with a limited number of Clara cell-derived goblet cells. Ciliated

cells contain cilia which are involved in the clearance of mucus

produced by goblet cells, whereas Clara cells produce secretoglo-

bins, the most abundant of which is Scgb1a1 (also known as

CCSP, CC10 and CCA) [38,39,40].

The more distal airways (small bronchi and bronchioles) have a

columnar epithelium surrounded by airway smooth muscle which

does not express Fgf10 during normal homeostasis [8]. Clara stem

cells predominate over ciliated cells and there are more

neuroendocrine cells than in the trachea. More importantly, there

is no evidence of basal cells in smaller airways in the mouse during

normal homeostasis [41].

In the cartilaginous airways basal cells are considered to be on

top of the stem cell hierarchy and are able to self renew and give

rise to both Clara cells, goblet cells and ciliated cells [42]. Clara

Figure 2. c-Myc regulates activation of the airway epithelial stem cell niche after airway epithelial injury. (A,B) c-Myc in situ
hybridization on ctrl (A) and Myh11-cre;c-Mycf/f (B) lungs 7 days after naphthalene injury, showing that c-Myc is expressed by airway smooth muscle
cells after airway epithelial injury and the absence of c-Myc expression in Myh11-cre;c-Mycf/f lungs. (C,D) Immunostaining for BrdU (proliferation
marker) and a-SMA (airway smooth muscle cells) on ctrl (C) and Myh11-cre;c-Mycf/f (D) lungs 3 days after naphthalene treatment. (E,F) b-gal staining
on Fgf10LacZ ctrl (E) and Myh11-cre;c-Mycf/f;Fgf10LacZ (F) lungs 3 days after naphthalene injury. n$3. Scale bars: 50 mM (A,B); 100 mM (C,D); 200 mM (E,F).
doi:10.1371/journal.pone.0071426.g002
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cells themselves are also considered stem cells and during normal

homeostasis can give rise to new Clara cells and terminally

differentiated ciliated cells [43,44]. Cellular plasticity (including

but not limited to differentiation, dedifferentiation, and transdif-

ferentiation) is a frequently encountered cell behavior during

injury repair [45,46,47,48,49,50,51]. Interestingly, p63 is a master

regulator required for the development of basal cells [52] and

induces a basal cell phenotype and squamous metaplasia when

ectopically expressed in Clara cells [53]. This form of Clara cell

reprogramming may happen to some extent after airway epithelial

injury, as under such conditions Clara cells have been shown to be

able to give rise to basal cells [44].

Interestingly, our unpublished data suggest that Fgf10 plays a

role in the differentiation of airway epithelial cells into basal stem

cells during lung development (Volckaert et al., manuscript

submitted).

Our data presented here indicate that c-Myc plays an important

role in regulating the activity of the PSMC niche in the adult lung.

We found a role for c-Myc in regulating proliferation of PSMCs as

well as the induction of Fgf10 expression within PSMCs cells after

airway epithelial injury. Interestingly, we found no important role

for c-Myc in the mesenchyme during lung development indicating

that the function of c-Myc during lung development is redundant

and that other not yet identified factors may compensate for the

loss of c-Myc during lung development. The lack of defective

smooth muscle cell differentiation or maintenance in Myh-Cre;c-

Mycf/f lungs suggests that c-Myc may play a specific role in

activation of the PSMC niche after injury. Together with the

finding that epithelial c-Myc does not play an important role in

lung epithelial homeostasis or repair after injury we conclude that

targeting c-Myc may be a great way to treat lung diseases

characterized by abnormal proliferation of smooth muscle cells,

such as asthma and pulmonary arterial hypertension in which Wnt

signaling plays a role [54]. In addition, we have previously shown

that Fgf10 secreted by the PSMCs modulates the differentiation of

Clara cells into goblet cells [22], which is a hallmark of the

asthmatic airway. Future experiments will be needed to determine

if loss of mesenchymal c-Myc may also reduce proliferation of

(myo)fibroblasts in the bleomycin model of pulmonary fibrosis, in

which Wnt signaling plays an important role

[55,56,57,58,59,60,61]. If so, targeting c-Myc might be an

effective and selective way to treat fibroproliferative lung diseases

in general.

Materials and Methods

Study Approval
All experiments were conducted in strict accordance with the

recommendations in the guide for the care and use of laboratory

animals. The protocol was approved by the National Jewish

Health institutional animal care and use committee #AS2774.

Mouse Strains
Myh11-Cre [Tg(Myh11-cre,-EGFP)2Mik/J] mice were obtained

from Jackson Laboratories. Dermo1-Cre mice were a kind gift from

Dr. David Ornitz [27]. Scgb1a1-Cre were a kind gift from Dr.

Thomas Mariani [33,34]. c-Mycf/f mice were a kind gift from Dr.

Andreas Trumpp [24]. Adult mice were 8 weeks old at time of

Figure 3. Conditional c-Myc deletion from PSMCs reduces Fgf10 signaling in Clara stem cells after naphthalene-mediated injury. (A–
D) Immunostaining for Scgb1a1 and Sftpc (A,B), Scgb1a1 and Fgfr2b (C,D) on ctrl (A,C) and Myh11-cre;c-Mycf/f (B,D) lungs 7 days after naphthalene.
n$3. Scale bars: 50 mM (A–D).
doi:10.1371/journal.pone.0071426.g003
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Figure 4. Conditional c-Myc deletion from the epithelial stem cell niche impairs epithelial regeneration after injury. (A–L)
Immunostaining for Scgb1a1 (Clara stem cells) and b-tubulin (ciliated cells) (A–C,G–I) or Scgb1a1 (Clara stem cells) and CGRP (neuroendocrine bodies)
(D–F,J–L) on ctrl (A–F) and Myh11-cre;c-Mycf/f (G–L) lungs 3 days (A,D,G,J), 7 days (B,E,H,K) and 14 days (C,F,I,L) after naphthalene injury. (M) qPCR
analysis of relative Scgb1a1 mRNA abundance in lungs from ctrl and Myh11-cre;c-Mycf/f mice 3, 7 and 14 days after naphthalene treatment. **P,0.01,
*P,0.05 vs. respective control. n$3. Scale bars: 200 mM (A–C and G–I); 50 mM (D–F and J–L).
doi:10.1371/journal.pone.0071426.g004
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naphthalene administration. Animals were maintained in a

pathogen-free environment.

b-gal Staining
Tissues containing Fgf10LacZ allele were dissected, and b-gal

staining was performed at 3 days after naphthalene injury. Lungs

were dissected and fixed in 4% PFA in PBS at room temperature

for 5 minutes, rinsed in PBS, injected with freshly prepared X-gal

solution, transferred into a vial of X-gal solution, and stained at

37uC overnight. After rinsing with PBS, lungs were postfixed in

4% PFA in PBS at room temperature overnight. For microtome

sections, after 4% PFA fixation, lungs were washed in PBS,

dehydrated, and paraffin embedded.

Immunofluorescence
All staining was done on paraffin sections of formalin-fixed

lungs. Immunofluorescent staining was performed with the

following primary antibodies: mouse anti–b-tubulin (3F3-G2;

Seven Hills Bioreagents), goat anti-Scgb1a1 (T-18; Santa Cruz

Biotechnology Inc.), rabbit anti-Scgb1a1 (Seven Hills Bioreagents),

rabbit anti-CGRP (Sigma-Aldrich), rabbit anti-Fgfr2 (Bek) (C-17;

Santa Cruz Biotechnology Inc.), mouse anti–a-SMA cy3 conju-

gate and unconjugated (14A; Sigma-Aldrich), rabbit anti-Sftpc

(Seven Hills Bioreagents), mouse anti-PDPN (Iowa hybridoma

bank). All fluorescent staining was performed with secondary

antibodies from Jackson Immunoresearch (except the Cy3-

conjugated a-SMA) and mounted using Vectashield with DAPI

Figure 5. Epithelial c-Myc deletion does not affect airway epithelial regeneration after injury. (A–D) Immunostaining for Scgb1a1 (Clara
stem cells) and b-tubulin (ciliated cells) (A,B) or Scgb1a1 (Clara stem cells) and CGRP (neuroendocrine bodies) (C,D) on ctrl (A,C) and Scgb1a1-Cre;c-
Mycf/f (B,D) lungs 7 days after naphthalene injury. (E) qPCR analysis of relative Scgb1a1 mRNA abundance in lungs from ctrl and Scgb1a1-Cre;c-Mycf/f

mice 7 days after naphthalene treatment. P.0.05, n$3. Scale bars: 200 mM (A,B); 50 mM (C,D).
doi:10.1371/journal.pone.0071426.g005
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(Vector Labs). Photographs were taken with a Zeiss AxioImager

and Axiovision software.

qPCR
RNA was isolated from lung accessory lobes using RNALater

(Ambion) and Total RNA Kit I (Omega Biotek) according to the

manufacturer’s instructions. RNA concentration was determined

by spectrophotometry. cDNA was generated using SuperScript III

First-Strand Synthesis System (Invitrogen) according to the

manufacturer’s instructions. Comparative real-time PCR was

performed for b-glucuronidase (Mm00446953_m1) and Scgb1a1

(Mm00442046_m1) Taqman Gene Expression Assays (Applied

Biosystems) using a StepOne Plus system (Applied Biosystems). b-

glucuronidase was used as a reference control to normalize equal

loading of template cDNA.

Naphthalene Treatment
Naphthalene (Sigma-Aldrich) was dissolved in corn oil at

30 mg/ml and administered intraperitoneally at 8 weeks of age,

with doses adjusted according to strain to achieve a 95% decrease

in the abundance of Scgb1a1 mRNA in total lung RNA of WT

mice at 3 days after injection. Control mice for regeneration

studies were WT littermates.

Proliferation
Mice were given intraperitoneal injections of 10 ml BrdU (GE

Healthcare) per gram body weight 4 hours before sacrifice. Lungs

were fixed in 4% paraformaldehyde, dehydrated, and paraffin

embedded. Sections were treated with monoclonal anti-BrdU

(clone BU-1; GE Healthcare) according to the manufacturer’s

instructions. FITC-labeled anti-mouse secondary antibodies were

used (Jackson Immunoresearch). All slides were mounted using

Vectashield with DAPI.

In situ Hybridization
In situ hybridization on paraffin sections of formalin-fixed lungs

was performed as previously described [3]. A 584-bp Fgf10 mouse

cDNA [2] and 201-bp fragment of c-Myc [3] mouse cDNA were

used as templates for the synthesis of digoxigenin-labeled antisense

riboprobes.

Statistics
For BrdU labeling and qPCR analysis, each experiment was

repeated with samples obtained from at least 3 different lungs

preparations. All results are expressed as mean 6 SEM. The

significance of differences between 2 sample means was deter-

mined by the Student’s t test. P values less than 0.05 were

considered statistically significant.
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