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Reversal of Neurofibrillary Tangles and Tau-Associated
Phenotype in the rTgTauEC Model of Early Alzheimer’s
Disease
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Neurofibrillary tangles (NFTs), a marker of neuronal alterations in Alzheimer’s disease (AD) and other tauopathies, are comprised of
aggregates of hyperphosphorylated tau protein. We recently studied the formation of NFTs in the entorhinal cortex (EC) and their
subsequent propagation through neural circuits in the rTgTauEC mouse model (de Calignon et al., 2012). We now examine the conse-
quences of suppressing transgene expression with doxycycline on the NFT-associated pathological features of neuronal system deaffer-
entation, NFT progression and propagation, and neuronal loss. At 21 months of age we observe that EC axonal lesions are associated with
an abnormal sprouting response of acetylcholinesterase (AChE)-positive fibers, a phenotype reminiscent of human AD. At 24 months,
NFTs progress, tau inclusions propagate to the dentate gyrus, and neuronal loss is evident. Suppression of the transgene expression from
18 to 24 months led to reversal of AChE sprouting, resolution of Gallyas-positive and Alz50-positive NFTs, and abrogation of progressive
neuronal loss. These data suggest that propagation of NFTs, as well as some of the neural system consequences of NFTs, can be reversed
in an animal model of NFT-associated toxicity, providing proof in principle that these lesions can be halted, even in established disease.

Introduction

An early and prominent neuropathological lesion in human AD
is neurofibrillary tangles (NFTs) in the entorhinal cortex (EC),
which then extend to the hippocampus, and ultimately the neo-
cortex (Hyman et al., 1984; Braak and Braak, 1991; Delacourte et
al., 1999). Recently, three groups modeled this process taking
advantage of the fortuitous observation that a line of neuropsin
(kallikrein related-peptidase 8, KIk8) promoter-driven tTa mice
expressed this transcriptional activator primarily in the medial
EC (Yasuda and Mayford, 2006). When crossed with a responder
line that expresses the P301L mutant version of human tau, re-
stricted and controllable expression of the transgene in the me-
dial EC was obtained (Harris et al., 2012; Liu et al., 2012; de
Calignon et al., 2012). As the animals age, tau becomes mislocal-
ized from the axons to the soma, tau-positive NFT-like aggregates
form, and human tau-positive aggregates develop in downstream
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targets of the EC. We showed by in situ hybridization and by laser
capture microdissection and qRT-PCR that tau mRNA is not
detectable in the dentate gyrus neurons that are human tau
protein-positive and RNA-negative, suggestive of a transsynaptic
propagation of tau (de Calignon et al., 2012). These results show
that tau overexpression in the EC led to damage of its major
efferent projection to the dentate gyrus (DG), the perforant path-
way. Damage of this neural system in patients is thought to
underlie memory impairment in AD (Hyman et al, 1984;
Gomez-Isla et al., 1996), and to be the first stage of what has been
considered to be an irreversible cascade of lesions leading ulti-
mately to widespread damage and dementia.

Taking advantage of the restricted pattern of expression, well
defined anatomy, and the suppressible nature of transgene ex-
pression in the rTgTauEC line, we now studied the consequences
of prolonged expression of the transgene, and asked whether, and
to what extent, the damage caused could be reversed by suppress-
ing tau overexpression. Remarkably, we found that extended
transgene suppression for 6 months reverses many of the
transgene-associated phenotypes, including Gallyas-positive
NEFTs, and stops neuronal loss, providing proof in principle that
these lesions could be halted, even in established disease.

Materials and Methods

Animals

rTgTauEC mice. We generated transgenic animals (called rTgTauEC—
for reversible tau restricted to entorhinal cortex) by crossing FVB-
Tg(tetO-Taup,y;;) 4510 mice (Santacruz et al., 2005) with a transgenic
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mouse line on a C57BL/6 genetic background expressing tet transactiva-
tor under the control of the KIk8 neuropsin promoter (EC-tTa) that was
developed at the Scripps Research Institute (Yasuda and Mayford, 2006).
F1 offspring were used as experimental animals ensuring a uniform 50:50
mix of FVB and C57BL/6 genetic background. Inheritance of both the
responder and activator transgenes (designated rTgTauEC) results in
P301L mutant tau expression restricted to layer II of the EC and presubicu-
lum and parasubiculum (de Calignon et al., 2012). Age-matched littermates
expressing only the activator transgene were used as human tau-negative
controls. rTgTauEC and control mice were identified by PCR screening
using the primer pairs 5'-ACCTGGACATGCTGTGATAA-3' and 5'-
TGCTCCCATTCATCAGTTCC-3' for activator transgenes, and 5'-
TGAACCAGGATGGCTGAG CC-3' and 5'-TTGTCATCGCTTCCAGTC
CCCG-3' for responder transgenes. Each of the different age groups studied
(3,18,21,24 months) contained transgenic and control animals of either sex.
Three groups of animals were treated with doxycycline (dox; 200 ppm in
chow ad libitum) to suppress the transgene expression: 18-month-old mice
were treated for 3 months or 6 months, and 21-month-old mice were treated
for 3 months.

EC-tdTomato/Syp-GFP mice. Mice expressing a tetracycline transacti-
vator under the neuropsin promoter (EC-tTa) (Yasuda and Mayford,
2006) were crossed with Tg(tetO-tdTomato,-Syp/mut4EGFP)1.1Luo/J
(obtained from Jackson Laboratory) expressing Myc-tagged tdTomato
and full-length mouse synaptophysin/mut4EGFP fusion protein (Syp-
GFP) expression under the control of the bidirectional tet-responsive
promoter (tetO or TRE) (Li et al., 2010; Miyamichi et al., 2011). tdTo-
mato expression is cytoplasmic, marking the entire cell, while GFP ex-
pression is directed to the synapse/synaptic vesicle.

All animal experiments were performed under United States National
Institutes of Health guidelines and were reviewed and approved by the
Institutional Animal Care and Use Committees of Massachusetts Gen-
eral Hospital and McLaughlin Research Institute.

Western blot analysis

Dissected EC were homogenized in RIPA buffer (Invitrogen) supple-
mented with a mixture of protease and phosphatase inhibitors (Roche).
Samples were homogenized using a Polytron and the protein content was
determined by BCA protein assay (Thermo Scientific). The materials for
SDS-PAGE were obtained from Invitrogen (NuPAGE system). Protein
lysates were boiled in sample buffer consisting of lithium dodecyl sulfate
sample buffer and reducing agent and resolved on 4%-12% Bis-Tris
polyacrylamide precast gels in MES SDS running buffer. Thirty milli-
grams of protein were loaded per lane; proteins were transferred onto
nitrocellulose membranes Protran (Whatman) in transfer buffer con-
taining 20% methanol. Blots were blocked in Odyssey blocking buffer
(Li-Cor Biosciences), followed by incubation with primary antibodies
[B-actin (mouse monoclonal antibody, Sigma; 1:10,000), HT7 (mouse
monoclonal antibody, Thermo Scientific; 1:5000)], and detected with
anti-mouse or anti-rabbit IgG conjugated to IRDye 680 or 800 (Li-Cor
Biosciences; 1:10,000). Densitometric and molecular weight analyses
were performed using Image] software (National Institutes of Health).
Band density values were normalized to B-actin levels. Mean band den-
sities for samples from rTgTauEC mice were normalized to correspond-
ing samples from 24-month-old mice that did not receive doxycycline
treatment.

Real-time quantitative RT-PCR

Total RNA was extracted by homogenizing tissue in 500 ul of Trizol
reagent (Invitrogen) followed by addition of 100 ul of chloroform at
room temperature and incubated for 10 min. Samples were centrifuged
for 15 min at 12,000 X gat 4°C and the aqueous phase was transferred to
new, RNase-free Eppendorf tubes. The RNA was precipitated by addition
of 250 ul of isopropanol and frozen for 1 h at —80°C. These samples were
then centrifuged for 15 min at 12,000 X g at 4°C, the RNA pellets were
washed in 70% EtOH, air-dried for several minutes, and then suspended
in 14 pl of UltraPure DNase/RNase-Free Distilled Water. RNA samples
were assayed for quality with an Agilent 6000 Bioanalyzer and a Nano-
drop spectrophotometer. Reverse transcription was performed on all
RNA samples (Superscript II, Invitrogen) and random hexamers. gPCR
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analysis (on Bio-Rad iCycler) of the cDNA product was performed using
primers against the transgenic human tau construct (5-CCC AAT CAC
TGC CTATAC CC-3 and 5-CCA CGA GAA TGC GAA GGA-3), mouse
tau exon 7 (5-AGC CCT AAG ACT CCT CCA-3 and 5-TGC TGT AGC
CGCTTCGTTCT-3). Duplicates of cDNA samples were added to a 25 ul
reaction containing 12.5 ul of SYBR Green Master Mix (Applied Bio-
technology). For the standard curve, we subcloned cDNA amplicons
generated using the qPCR primers in the pcDNA 3.1 vector system
(Invitrogen) according to the manufacturer’s instructions. After verify-
ing the respective specificities of the cDNA clones by sequencing, these
were used to generate individual standard curves, thus allowing for cal-
culation of molarity and number of mRNA molecules in the samples.
Finally, the respective transgenic tau mRNA levels were normalized to
murine tau mRNA levels.

Immunohistochemistry

Standard immunofluorescence techniques were used. Briefly, animals
were killed by CO, inhalation and brains were fixed in 4% paraformal-
dehyde with 15% glycerol cryoprotectant for 48 h. Horizontal floating
sections throughout the entire brain were cut at 40 or 50 wm. Endoge-
nous peroxidase activity was quenched for 30 min in H,0, and sections
permeabilized by 20 min incubation in 0.1% Triton X-100 solution. After
blocking in 5% normal goat serum (NGS) for 1 h, the appropriate pri-
mary antibody was applied in 5% NGS, and sections were incubated
overnight at 4°C. The antibody 5A6 antibody (1:1000) (courtesy of Dr.
G.V. Johnson, University of Rochester, Rochester, NY), a monoclonal
antibody raised against the longest form of recombinant human tau that
recognizes an epitope between amino acids 19 and 46 (Johnson et al.,
1997) was used to detect human tau; HT7 (1:1000) was used to specifi-
cally detect human tau; the conformation-specific Alz50 antibody (cour-
tesy of Peter Davies, Albert Einstein College of Medicine, Bronx, NY;
1:50) was used to detect misfolded tau; and CP13 (pSer202) and PHF1
(pSer396/404) (courtesy Peter Davies, Albert Einstein College of Medi-
cine; 1:500) were used to detect phospho-tau. GFP antibody (BD Biosci-
ences; 1:1000) was used to reveal Syp-GFP fusion protein. Sections were
subsequently washed in TBS to remove excess primary antibody. Sec-
tions were incubated in the appropriate secondary antibody in 5% NGS
for 1 h at room temperature. For immunofluorescence, Fluorescent Al-
exa Fluor 488 (Invitrogen) or CY3-labeled secondary antibodies (Jackson
ImmunoResearch) were used to reveal primary antibodies; or horserad-
ish peroxidase (HRP)-conjugated secondary antibodies were used and
developed with diaminobenzidine (DAB) substrate by using the avidin-
biotin horseradish peroxidase system (Vector Laboratories).

Gallyas silver staining

Staining was performed on brain sections according to previous descrip-
tion (Gallyas, 1971). Briefly, free-floating brain sections were incubated
in a 0.003% potassium permanganate solution for 10 min. After rinsing
with water the sections were incubated for 1-2 min in a 2.0% oxalic acid
solution, then rinsed thoroughly in water. Sections were then incubated
in a 5.0% sodium metaperiodate solution for 5 min and again rinsed in
water. Sections were then treated with an alkaline silver iodide solution (1
M sodium hydroxide, 0.6 M potassium iodide, 0.053% silver nitrate) for 1
min, then rinsed four times with a 0.5% acetic acid solution. Staining was
developed by combining solutions A (5% sodium carbonate), B (0.024 m
ammonium nitrate, 0.012 M silver nitrate, 0.003 M tungstosilicic acid),
and C (0.024 M ammonium nitrate, 0.012 M silver nitrate, 0.003 M Tung-
stosilicic acid, 0.25% formaldehyde) in a 2:1:1 ratio, adding B and C
dropwise to solution A and incubating for 10—-30 min. The sections were
then rinsed three times in 0.5% acetic acid, then water. The sections were
then incubated in gold tone for 3—4 min and again rinsed in water, then
in a 1% sodium thiosulphate solution for 5 min. After a final rinse in
water the sections were mounted.

Stereology

To assess the effects of transgene suppression on cholinergic innervation,
neuronal loss, and the percentage of Alz50 and Gallyas-positive aggre-
gates in the medial EC and DG, brains were collected from 24-month-old
rTgTauEC mice and control littermates. Subsets of mice were either aged
without treatment (no transgene suppression n = 5 rTgTauEC, 4 wild-
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type) or treated with doxycycline for 3 months (from 21 to 24 months,
n = 41rTgTauEC) or 6 months (from 18 to 24 months, n = 4 rTgTauEC,
3 wild-type) before killing to suppress tau transgene expression. A series
of every 10th horizontal section through the brain was stained for Alz50
as mentioned above. Nuclei were counterstained using cresyl violet (cv).
An image analysis system (CAST, Olympus) mounted on an upright
BX51 Olympus microscope with an integrated motorized stage (Prior
Scientific) was used to estimate region volume, neuron density, neuron
number, and whether neurons were Alz50 positive using the optical dis-
sector method as described previously (Spires et al., 2006). Briefly, on
each section, layer II of the medial EC (including both the caudal and
medial portions of the medial entorhinal area) was outlined as described
previously (Gatome et al., 2010). Neurons were identified by nuclear
morphology as described previously (Spires et al., 2006) and counted in a
28.1 X 28.1 X 40 wm counting frame placed using a meander sampling
paradigm with a 100 um step length (to sample 100-300 neurons per
animal). Coefficient of error for neuron counts in the EC of each animal
was <0.01. Each neuron was labeled as Alz50 positive or negative. Region
volumes were determined according to Cavalieri’s principle and the total
number of neurons in each region calculated.

Stereology data were normally distributed as assessed by Shapiro—
WilK’s test using JMP software. To assess the effects of doxycycline treat-
ment on neuron number in control mice, a one-way ANOVA split by
genotype was used. Since there was no effect of 6 months of doxycycline
treatment on control mice, all control mice (treated and untreated) were
combined as the control condition and an ANOVA with condition as
independent variable used to compare control to rTgTauEC untreated,
rTgTauEC doxycycline treated for 3 months, and rTgTauEC dox-treated
for 6 months. Post hoc Tukey—Kramer HSD tests were used to compare
means of groups. A one-way ANOVA with doxycycline treatment as
independent variable was used to determine the effects of transgene sup-
pression on the percentage of Alz50-positive neurons.

Quantification of the percentage of PHF1 and CP13-positive
neurons in the DG

Using the CAST stereo logy system, the DG was outlined on two sections per
mouse (n = 5 per group). All PHF1- or CP13-positive neurons in the DG
were counted, and the total number of cells in that section of DG estimated
by systematic random sampling every 100 wm through the DG and counting
neurons in a 21.8 X 21.8 wm optical disector, calculating the density of DG
neurons in the disector volumes, and multiplying the density of DG neurons
by the volume of the DG in the section. The percentage PHF1- and CP13-
positive neurons was calculated by dividing the number of PHF1- or CP13-
positive neurons by the estimated total number of DG neurons in the
section. The two sections from each animal were averaged for the mean value
per animal. Comparisons between groups were made by Mann—Whitney
test.

Acetylcholinesterase histochemistry
Cholinergic innervation was revealed by histochemical staining for ace-
tylcholinesterase (AChE), a general marker for cholinergic fibers and
noncholinergic neurons that express AChE (Levey et al., 1984; Mesulam
and Geula, 1991; Aubert et al., 1994). AChE histochemistry was per-
formed as previously described (Geneser-Jensen and Blackstad, 1971).
Before incubation, brain sections mounted on the slides were brought to
room temperature and air-dried for 45 min. AChE activity was deter-
mined by incubating brain sections in a 50 mwm acetate buffer, pH 5.5,
containing 2 mum acetylthiocholine iodide (substrate), 2 mm copper sul-
fate, and 10 mm glycine. Reactions were performed for 75-90 min at
25°C. Following incubation, the sections were rinsed five times in dis-
tilled water and then incubated in 1.25% sodium sulfide solution in
distilled water ( pH 6, freshly prepared) for 1 min at 25°C. After rinsing
sections five times with distilled water, sections were transferred to a 1%
silver nitrate solution in distilled water for 2 min, and then rinsed five
times with distilled water.

Images for figures were collected on an upright Olympus BX51 micro-
scope (Olympus America).
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Array tomography

Tissue from 24-month-old mice, n = 3-5 per group, was fixed, dehy-
drated, and embedded in LR white resin as described previously (Mi-
cheva and Smith, 2007; Koffie et al., 2009). Ribbons of 70 nm serial
sections were cut on an ultracut microtome (Leica) and immunostained
with antibodies for synaptophysin (mouse, Abcam AB8049 lot GR83510-
1), and secondary anti-mouse 488 (Jackson ImmunoResearch Laborato-
ries). Nuclei were counter-stained with DAPI. Images were acquired with
a Zeiss Axiolmager Z2 microscope equipped with automated stage, dig-
ital camera, and array tomography automated imaging plugins in Axio-
Vision software. A tile scan of the entire ribbon was acquired at 10X
magnification, then images taken of the same place in the molecular layer
of the DG on each serial section with a 63X 1.2 NA oil objective. Images
were aligned and stacked using custom macros in Image] software. Re-
gions of interest (crops) were selected on each image stack from the
middle molecular layer of the dentate gyrus from areas that did not
contain any neuronal nuclei or capillaries. The synaptophysin staining in
each crop volume was thresholded using the “Li” algorithm in Fiji and
the number of synapses in each volume was counted using the Watershed
program from the Smithlab. Synapse density was calculated as the num-
ber of synapses in each crop divided by the crop volume. An average
density of synapses was calculated for each animal and the means of all
animals in each genotype and treatment group compared with ANOVAs
(data were normally distributed, Shapiro—WilK’s test p > 0.05).

Results

In this study we used the rTgTauEC mouse line that reversibly
expresses human mutant tau P301L primarily in layer II of ento-
rhinal cortex (EC-II) (de Calignon et al., 2012). The human tau
gene with the P301L mutation, placed downstream of a
tetracycline-operon responsive element from the rTg4510 mice,
is coexpressed with an activator transgene consisting of the tet-off
open reading frame (Gossen and Bujard, 1992) that is down-
stream of the neuropsin promoter (Yasuda and Mayford, 2006),
resulting in P301L tau expression largely restricted to a subset of
neurons in the medial EC-II as well as adjacent presubiculum and
parasubiculum (de Calignon et al., 2012) shown by immunobhis-
tochemistry using the human tau-specific antibody 5A6 (Fig.
1A). The medial entorhinal cortex as a whole has a known pro-
jection pattern that terminates in approximately the middle third
of the molecular layer of the dentate gyrus (van Groen, 2001;
Witter, 2007). To examine the specific pattern of terminals asso-
ciated with the subset of medial EC-II neurons driven by this
promoter, we generated a reporter line in which the neuropsin pro-
moter (EC-tTa) line was crossed with the Tg(tetO-tdTomato,-Syp/
mut4EGFP)1.1 transgenic mice (Li et al., 2010; Miyamichi et al.,
2011) that express Myc-tagged tdTomato and full-length mouse
synaptophysin/mut4EGFP fusion protein (Syp-GFP). Expression of
these proteins is under the control of the bidirectional tet-responsive
promoter (tetO or TRE). tdTomato expression is cytoplasmic,
marking the entire cell, while GFP expression is directed to the syn-
apse/synaptic vesicle. The EC-tdTomato/Syp-GFP mice show tdTo-
mato in the cell bodies, dendrites, and axons of neurons in the
medial EC-1I as well as in the presubiculum and parasubiculum. The
distribution of Syp-GFP shows that the terminals of these
tdTomato-expressing cells are in the middle molecular layer of DG
(Fig. 1B), allowing direct visualization of the pattern of expression
and synaptic connections generated by the neuropsin promotor ac-
tivator line.

As expected, the distribution of tdTomato shows the neurons
of origin and the axons of passage of the perforant pathway, with
a band of axon terminals specifically occupying the middle mo-
lecular layer of the DG. This corresponds to the patterns of tau
immunoreactivity observed in young (3 months old) rTgTauEC
line (Fig. 1A), confirming the exquisite anatomic specificity of the
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tdTomato

Expression of P301L Tau restricted to the entorhinal cortex. rTgTauEC mice express human tau in neurons of the MEC that project to the middle molecular layer (mml) of the DG via the

perforant pathway. These neurons are stained with a human tau antibody in A. To visualize the population of neurons expressing tau and where their synapses are located, we generated
EC-tdTomato/Syp-GFP mice (B), which use the same neuropsin activator transgene to restrict expression to the EC crossed with a responder that expresses both myc-tagged tdTomato (red) in the
entire cell and full-length mouse synaptophysin/mut4EGFP fusion protein (Syp-GFP) that localizes to synaptic vesicles (green); nuclei are labeled with DAPI (blue). Insert shows a higher-
magnification image of the merged image. DG granule cells (gl) are marked by DAPI, Syn-GFP staining shows a fine discrete band in the middle molecular layer (mml) that colocalizes with the
tdTomato labeling of the terminal zone of fibers from the EC cells (yellow). These mice confirm the expression of transgenes under this promoter is largely restricted to the ECand presubiculum and
parasubiculum and that these neurons project axons that synapse in the middle molecular layer of the dentate gyrus. Importantly, they also confirm the absence of transgene expression in the DG

granular cells Scale bars, 200 pm.

pattern of transgene expression driven by the neuropsin pro-
moter. Of importance, neither human tau immunostaining nor
tdTomato revealed expression in the DG granule cells (marked by
DAPI in Fig. 1B), suggesting that the amount of leakiness of the
tTa promoter is minimal. The distribution of synaptophysin-
GFP fusion protein is even more restricted, representing a fine
discrete band occupying part of the middle molecular layer of the
DG (Fig. 1B) as well as showing local terminals within the EC and
presubiculum and parasubiculum. This pattern emphasizes the
limited terminal zone of fibers from neuropsin tTa driven EC
cells, and hence the area most likely to be deafferented if the tau
containing terminals in the rTgTauEC line degenerate.

We confirm that doxycycline treatment suppressed transgene
expression in animals at 24 months of age treated with doxycy-
cline either from 21 months of age for 3 months or from 18
months of age for 6 months (Fig. 2A—C). Western blot analysis
using a human tau-specific antibody HT7 revealed that doxycy-
cline treatment reduced the levels of soluble human tau protein
~60 and 90% after 3 months and 6 months of treatment, respec-
tively (Fig. 2A). The levels of human tau mRNA were quantified
by qPCR and showed a reduction of 78% after 3 months and 88%
after 6 months of treatment (Fig. 2B). Immunocytochemistry
confirmed a marked decrease in protein levels in the entorhinal
cortex following transgene suppression (Fig. 2C).

Reversal of deafferentation phenotype by suppression of the
tau transgene

Classic acute deafferentation experiments in the hippocampus
demonstrate a reinnervation of the deafferented perforant path-
way terminal zone by sprouting of axon terminals from adjacent
fields (Lynch et al., 1972), a homeostatic mechanism that pre-

serves synapses. One robust response is due to AChE-positive
fibers, which appear to sprout from the inner third of the DG
molecular layer (their normal termination) to the deafferented
portions of the DG molecular layer. We asked whether the slow,
more chronic months-long process of deafferentation that plays
out in the rTgTauEC line would also lead to similar plasticity and
sprouting responses. We looked for aberrant sprouting of the
AChE-positive fibers in the middle molecular layer of the DG.

To further evaluate the extent of apparent degeneration of the
terminal zone of the perforant pathway, we quantified the degree
of AChE-positive fibers sprouting into the middle molecular
layer of the DG at different ages compared with the age-matched
control. We observed a significant difference starting from 21
months of age that intensified at 24 months, suggesting that syn-
aptic connections, in the area of projection of tau-expressing
neurons, were altered (Fig. 3A) with resultant exuberant reinner-
vation by adjacent fibers.

We next evaluated the effect of transgene suppression on the
sprouting of AChE fibers. Groups of mice were treated with
doxycycline either from 18 months of age for 3 months (n = 4) or
for 6 months (n = 6), or from 21 months of age for 3 months (n =
7) and compared with untreated groups of equal size. Groups of
age-matched control animals were similarly analyzed. When
started at 18 months of age, before the initial change in AChE
staining patterns, doxycycline treatment for 6 months prevented
the sprouting of AChE fibers, while a shorter treatment gave an
intermediate result with some animals showing decreased AChE
sprouting. When started at 21 months of age, suppression of the
transgene led to a normalized AChE pattern, suggesting that the
AChE sprouting might not only be prevented, but also reversed
by transgene suppression (Fig. 3B,C).
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Figure 2.

Tau expression in the medial entorhinal cortex is suppressed with doxycycline treatment. A—C, Doxycycline treatment suppressed transgene expression in animals at 24 months of age

treated with doxycycline from 21 months of age for 3 months or from 18 months of age for 6 months. Results are labeled nontransgenic (NTG) and transgenic (TG). A, Western blot analysis using a
human tau-specific antibody HT7 shows decreased levels of human tau protein (hTau) after 3 months and 6 months of DOX treatment. Levels of human tau protein were calculated by normalizing
it to actin and are expressed as percentage of levels of hTau in 24-month-old animals that did not receive doxycycline treatment (n = 3 per group). *p = 0.005 and p = 0.008, respectively. B, The
levels of human tau RNA were quantified by qPCR and showed reduced levels of RNA. The levels of hTau RNA were calculated by normalizing it to levels of endogenous mouse tau (n = 3 per group)
and are expressed as percentage of levels of hTau in 24-month-old animals that did not receive doxycycline treatment. *p = 0.000147 and p = 0.00000057, respectively. ¢, Immunocytochemistry
using HT7 confirmed a marked decrease in protein levels in the medial entorhinal cortex following transgene suppression. Scale bar, 200 m. Results are expressed as the mean = SEM.

Suppression of the transgene prevents aggregation of tau in
the entorhinal cortex and propagation of tau to dentate gyrus
Human tau labeling revealed diffuse axonal staining in the mid-
dle molecular layer of the DG, which receives axons originating in
the medial entorhinal cortex (MEC) of rTgTauEC (Fig. 1). This
observation indicates that in young rTgTauEC mice human tau
has a normal axonal distribution, similar to the physiological
distribution of tau. As tau pathology progresses, human tau ex-
pression in the MEC results in age-dependent pathological
changes in tau, including misfolding, hyperphosphorylation, and
mislocalization to the somatodendritic compartment in EC-II

transgene-expressing neurons. To quantify tau accumulation fol-
lowing transgene suppression, groups of mice were treated with
doxycycline either from 18 months of age for 3 months (n = 4) or
for 6 months (n = 5); another group was treated from 21 months
of age for 3 months (n = 8). Groups of equal size of age-matched
control animals were similarly treated. Stereological counting
was performed by an investigator who was unaware of treatment
status to quantify the number of Alz50-positive (misfolded tau)
neurons in the EC-II after transgene suppression. Three and six
months of doxycycline treatment significantly reduced the detec-
tion of Alz50-postive tau in the EC (Fig. 4A).
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Figure3.  Reorganization of AChE fibersin the perforant pathway terminal zone. Histochemistry for AChE-positive fibers in the middle
molecular layer (mml) of dentate gyrus (DG) at 18, 21, and 24 months, in rTgTauEC mice and age-matched controls shows a
deafferentation-induced AChE sprouting response at 21and 24 months (4, arrow). Images are labeled nontransgenic (NTG) and transgenic
(TG). Scale bar, 200 pm. 4, Acetylcholinesterase staining showed sprouting of axon terminals from the inner molecular layer (IML) to a
thinnerand denser linein the middle molecularlayer (MML). Bshows a diagram representation of MEC, perforant pathway (PP), hippocam-
pal regions CA1, CA3, and dentate gyrus (DG) with the region demarcated by black box (molecular layer) enlarged on the top left. Repre-
sentativeimages of the molecularlayer of the DG are shown on the bottom left. Scale bar, 50 um. €, Comparing the ratio of optical densities
between MML and IML reveals that the sprouting of AChE fibers is significant at 21 months of age and increases at 24 months, and that
suppression of the transgene with a 3-month DOX treatment (n = 7) stops this synaptic reorganization when started at earlier age (p =
0.009) or at later age (p = 0.01). A 6-month treatment (n = 6) was more efficient (p = 0.006). Results are labeled nontransgenic (NTG)
and transgenic (TG). Results are expressed as the mean == SEM, *p << 0.05.
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DG granule cells. These results were inter-
preted as propagation of tau protein into
the extracellular space and uptake at post-
synaptic sites. We took advantage of the
ability to suppress the transgene expres-
sion using doxycycline to ask whether,
once started, this process of tau protein
propagation was irreversible or whether
it could be intercepted by a tau-specific
intervention. Doxycycline treatment was
started at 18 months of age, when there is
already obvious spread of tau pathology
into the DG. At this age, EC terminal
staining for human tau protein is fainter;
with age the DG neurons become more
prominently stained. At 24 months of age
the transmission of the pathology is even
more evident with a large number of
human-tau positive aggregates in DG
neurons (Fig. 4B). Human tau-positive
aggregates in the DG are decreased fol-
lowing 3 months of transgene suppres-
sion and are almost completely blocked
after 6 months of transgene suppression
(Fig. 4B).

Spreading of the pathology was quan-
tified by Alz50-positive neurons counts in
the granular layer of the DG. For each
brain, three sections representing the dor-
sal, middle, and ventral parts of the DG
were quantified by an investigator who
was unaware of treatment status or age.
There was no change in the extent of Alz50
staining, which labels misfolded tau, in
the granule cells after 3 months of doxy-
cycline treatment. However, a longer
treatment of 6 months significantly re-
duced the detection of Alz50-postive tau
in the DG (Fig. 4C). Propagation of hy-
perphosphorylated tau to the DG was ac-
cessed by CP13 antibody against pSer202,
an early tau pathology marker, and PHF1
that recognizes pSer396/404 (PHF tau), a
marker of neurofibrillary tangles. The
number of neurons labeled with both
phospho-tau antibodies were markedly
reduced by 3 and 6 months of tau suppres-
sion. Both markers were quantified and
calculated as the percentage of cresyl vio-
let granule cells in the DG labeled with the
phospho-tau antibodies. While there were
no significant differences, CP13 staining
decreased ~28% and PHF1 staining
showed a 49% decrease after 3 months of
transgene suppression. There was a trend
toward reduction in CP13 (~73%, p =
0.1) and PHF1 (~72%) staining by 6
months of tau suppression (p = 0.1 and
p = 0.07, respectively). This experiment

By 18 months of age, both the rTgTauEC line and similar lines ~ was not powered to detect a statistical difference with the small
developed by the Duff laboratory (Liu et al., 2012) and by the  sample size available (n = 5 mice, 2 sections per mouse; Fig. 5).
Mucke laboratory (Harris et al., 2012) developed tau aggregates ~ Nonetheless, when considered with the results of the Gallyas
in neurons synaptically downstream from EC-II, including the  staining, these data are consistent with the idea that the ab-
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Figure 4.  Transgene suppression reduces tau aggregation and propagation down neural circuits. A, Stereological counting of Alz50-positive neurons in the EC-Il after transgene suppression
shows that 3 and 6 months of DOX treatment significantly reduced the detection of Alz50-postive tau in the EC. This indicates that aggregation of misfolded tau in the entorhinal cortex is also
prevented by 3 (p = 0.01751) and 6 months (p = 0.00973) of tau suppression. B, Higher magnification of these sections stained with Alz50 and cresyl violet illustrate the dense, punctate staining
of misfolded tau in 24-month-old transgenic animals without DOX treatment, which is reduced with tau suppression. €, Inmunocytochemistry using HT7 human tau-specific antibody shows a
marked decrease in propagation of human tau protein to the dentate gyrus granular cells in animals at 24 months of age treated with doxycycline from 21 months of age (Figure legend continues.)
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Figure 5.  Propagation of hyperphosphorylated tau to the dentate gyrus after 3 and 6 months of tau suppression. Propagation

of hyperphosphorylated tau to the DG was assessed by CP13 (antibody against pSer202) and PHF1 (antibody against pSer396/404;
PHF tau). There was no significant difference in the number of neurons labeled with CP13 by 3 months (n = 5; p = 0.26) and a
slight trend toward reduction by 6 months (n = 5; p = 0.10) of tau suppression compared with 24-month untreated mice (n =
5). Similar results were observed for PHF1 with no significant changes by 3 months (n = 5; p = 0.14) and a slight trend toward
reduction by 6 months (n = 5; p = 0.07) of tau suppression compared with 24-month untreated mice (n = 5). Sections were also
stained with crystal violet. Images are labeled nontransgenic (NTG) and transgenic (TG). Results are expressed as the mean = SEM,

*p < 0.05. Scale bar, 50 pm.
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(Figure legend continued.)  for 3 months or from 18 months of age for 6 months. Spreading of
tau pathology was quantified by Alz50-positive neuron counts in the granular layer (gl) of
dentate gyrus (DG). Different groups of mice were treated with DOX either from 18 months of
age for 3 months (n = 4) or for 6 months (n = 5); another group was treated from 21 months
of age for 3 months (n = 8). No change in the extent of misfolded tau in the granule cells was
evident after 3 months of doxycycline treatment. Longer treatment (6 months), however, sig-
nificantly reduced the detection of human tau in the DG, showing that propagation of tau
pathology to the dentate gyrus is reversed by 6 months of tau suppression (p = 0.005154).
Images are labeled nontransgenic (NTG) and transgenic (TG). Scale bar, 200 um. Results are
expressed as the mean == SEM, *p << 0.05.
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sence of granule cell and EC pathology
was due to the turn-over of existing aggre-
gated mutant human tau protein after pro-
longed transgene suppression.

Tangles, visualized by Gallyas silver
staining, are reversed by 6 months of
tau suppression

The reduction of misfolded tau, a pre-
tangle marker as well as hyperphosphory-
lated PHF tau, led us to ask whether
tangles had been cleared from the EC as
suggested by the decrease in PHF-1 stain-
ing, a known moderate to late stage
marker of pathological change. We next
evaluated the effect of transgene suppres-
sion on the progression of neurofibrillary
tangles as assessed by silver staining in the
EC. Silver-positive tangles are generally
believed to be insoluble, long-lived lesions
(Sunetal., 2002; Kertesz et al., 2005; Lee et
al., 2010; Braak et al., 2011). We quanti-
fied the number of Gallyas-positive neu-
rons after transgene suppression in the
EC-II and found that 6 months of doxycy-
cline treatment significantly reduced the
detection of Gallyas-positive neurons in
the EC (Fig. 6).

All of the markers of tau pathology
tested, Alz50 (Fig. 4), pSer202, pSer396/404
(Fig. 5), and Gallyas (Fig. 6), seem to be ei-
ther ameliorated or reversed in parallel.

Synaptic loss in the target zone of the
perforant pathway and neuronal loss is
prevented by transgene suppression
Synapse loss is an early AD hallmark and it
strongly correlates with cognitive impair-
ment (DeKosky and Scheff, 1990; Terry et
al., 1991; Scheff and Price, 2006). We have
previously shown that rTgTauEC mice
have synapse loss at 24 months of age in
the middle molecular layer of the DG, in-
dicating loss of synapses between EC-II
neurons and DG neurons (de Calignon et
al., 2012). To assess whether transgene
suppression can improve synapse loss, we
used array tomography to allow high-
resolution quantitative measurement of
synaptic densities in the perforant path-
way terminal zone of rTgTauEC mice af-
ter doxycycline treatment. Array tomography analysis using
synaptophysin reveals a significant 16% decrease in presynaptic
bouton density in the middle molecular layer of 24-month-old
rTgTauEC mice. After 3 or 6 month transgene suppression (Fig.
7A), synapse density in the middle molecular layer was not dif-
ferent from controls.

We have previously shown that rTgTauEC mice have signifi-
cant neuronal loss at 24 months of age, in the areas of robust
transgene expression, EC-II and parasubiculum. The striking
clearance of Gallyas-positive NFTs could be explained by either
turnover or clearance of the misfolded human tau making up the
aggregates, or progressive loss of NFT-bearing neurons. The lat-
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Figure 6.  Tangles, visualized by Gallyas silver staining, are reversed by 6 months of tau
suppression. Most rTgTauEC animals develop silver-positive neurofibrillary tangles in the MEC
by 18 —21 months of age. Transgene suppression from 21 to 24 months (n = 5) did not prevent
Gallyas-positive neurons from accumulating; however, treatment for 6 months from 18 to 24
months (n = 5) both prevented new tangles and reversed existing tangles as there were no
Gallyas-positive cells in any 24-month-old animals treated for 6 months with DOX (p =
0.0386). Images are labeled nontransgenic (NTG) and transgenic (TG). Scale bar, 100 pm.
Results are expressed as the mean = SEM, *p < 0.05.

ter would manifest in continued neuronal loss despite transgene
suppression. To examine whether transgene suppression would
affect ongoing neuronal loss, neuronal counts were performed on
transgenic and control animals at 24 months of age treated with
doxycycline either from 21 months of age for 3 months or from
18 months of age for 6 months, using stereological estimations of
cresyl violet-labeled neuronal nuclei. In concert with the decrease
in tau propagation, we observe a stabilization of neuron number
in the EC after 6 months of doxycycline treatment (Fig. 7B),
supporting the idea that NFTs are cleared rather than neurons
that contained NFTs at 18 months of age degenerating during 6
months of transgene suppression.

Discussion

In this study, we used a mouse model that shows slow progression
of tau aggregation and NFT formation starting in a subset of
neurons in the EC-II and extending over time to the hippocam-
pus and other fields. The model allows us to examine the natural
history and consequences of existing NFTs on a synaptic neuro-
nal circuit in isolation from the continued mutant human tau
transgene expression. Our results suggest that (1) NFTs, even
Gallyas-positive lesions, are reversible; (2) the axonal deafferen-
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tation/plasticity phenotype observed due to hippocampal deaf-
ferentation is reversible; (3) progressive synaptic and neuronal
loss is stabilized. These results suggest an unexpected conclusion:
many of the neural system consequences of tau overexpression,
including aggregation, NFT formation and propagation, neuro-
nal and synaptic deafferentation, can be reversed or stabilized by
suppression of soluble human tau expression rather than being
irreversible consequences of the formation of NFT. The latter
conclusion is in accord with recent observations implicating sol-
uble, nonfibrillar forms of tau in induction of caspases (Spires-
Jones et al., 2008; de Calignon et al., 2010) and mitochondrial
mislocalization (Ebneth et al., 1998; Stamer et al., 2002; Stoothoff
etal., 2009; Kopeikina et al., 2011; Matenia et al., 2012). Together,
these results argue that stabilization and reversal of NFT-
associated damage may be possible even in established disease
when the lesions are already present.

We took advantage of the slowly progressive nature of the
axonal lesions present in the rTgTauEC line to ask questions
about the nature of chronic deafferentation and reinnervation of
the perforant pathway zone. Sprouting of neighboring afferents is
a compensatory plastic response thought to be an attempt to
preserve synaptic inputs. Although most studies of lesion-
induced plasticity use acute maximal lesions and relatively short-
term follow up, it has been noted in multiple settings that chronic
reinnervation of deafferented brain structures can occur. For ex-
ample, the pattern of sprouting of AChE fibers that is observed
both after acute entorhinal or perforant pathway lesion in the
rodent and nonhuman primate (Geddes et al., 1985; Hyman et
al., 1987; Thara, 1988; Deller and Frotscher, 1997; Shamy et al,,
2007; Kadish and van Groen, 2009) is also observed in some AD
patients, presumably due to the EC lesion-induced deafferenta-
tion of the hippocampus in AD (Geddes et al., 1985; Hyman et al.,
1987). Our current data show that chronic slow deafferentation
of the hippocampus results in a very similar process of induced
plasticity in an experimental model as well.

In a related line (rTg4510) with more widespread expression
in which the tau P301L transgene is driven by a CaMKIl« pro-
moter in the majority of pyramidal neurons in the brain, suppres-
sion of the transgene expression with doxycycline for 6 weeks led
to an improvement in behavioral phenotype and an arrest of
progression of neuronal loss, but NFT's continued to be present
(Santacruz et al., 2005). The persistence of NFTs and tau aggre-
gates in the rTg4510 mouse line after doxycycline treatment can
be explained by both the short-term transgene suppression, for
only 6 weeks, which led to diminished soluble tau but continued
presence of aggregated tau. By contrast, our current data in the
rTgTauEC reflect doxycycline suppression of transgene expres-
sion for prolonged periods—up to 6 months—suggesting that
prolonged suppression of the tau transgene appears to lead to
resolution of much of the fibrillar tau pathology. These cross-
sectional studies cannot unambiguously differentiate between
the possibilities that tau aggregate containing neurons die in the
ensuing 6 month period after the transgene is turned off, leading
to a relative paucity of tangle-containing cells after 6 months of
transgene suppression, or the possibility that the tau aggregates
are actually slowly cleared in the absence of new synthesis of tau
molecules. However, stereological assessment of neuron number
in the EC showed that turning off transgene expression for 6
months resulted in stabilization of neuron numbers. Thus, it
seems more likely that tangles are cleared rather than having a
large number of tangle-bearing neurons die, because we do not
detect ongoing additional neuronal loss after the transgene is
suppressed.
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Synaptic loss in the target zone of the perforant pathway and neuronal loss in MEC can be prevented by doxycycline treatment. A, Array tomography using synaptophysin to label

presynapticstructures in the middle molecular layer of the DG (scale bar, 5 rum) shows presynaptic loss at 24 months of age, indicating loss of synapses between EC-Il neurons and DG neurons, which
is prevented by 6 months of tau suppression (p = 0.0233). Images are maximum intensity projections of 15 X 15 wm regions of interest from 10 serial sections (70 nm thickness) from processed
output files showing objects counted as synapses. B, Neuronal counts were performed on transgenic and control animals at 24 months of age treated with doxycycline starting either from 21 months
of age for 3 months or from 18 months of age for 6 months, using stereological estimations of cresyl violet-labeled neuronal nuclei (n = 5 per group). rTgTauEC mice showed decreased neuronal
counts at 24 months of age compared with controls (p << 0.0001), which is ameliorated by 3 months of tau suppression (p = 0.0499) and prevented by 6 months of transgene suppression (p =
0.0009). Representative images of cresyl violet labeled nuclei of the entorhinal cortex (EC) are shown on top; scale bar, 200 rum. There was partial recovery of neuronal loss in the EC after 6 months

of doxycycline treatment. Results are expressed as the mean = SEM, *p << 0.05.

The reversal of tangles is especially striking because assess-
ment of tangles in this mouse model included not only immuno-
staining for human misfolded tau but also the robust NFT
reagent Gallyas silver stain (de Calignon et al., 2012). Gallyas-
positive NFT's are believed to be stable conformations of tau (Sun
etal., 2002; Kertesz et al., 2005; Lee et al., 2010; Braak et al., 2011),
and their apparent clearance leads to the conclusion that even
highly aggregated tau inclusions can be cleared by neurons if the
driving force of aggregation—in this case overexpression of
P301L tau—is suppressed. Intriguingly, Gallyas-positive NFT's
were completely cleared in some brains that still exhibited Alz50-

and PHF1-positive lesions, implying that tangles may be cleared
in the reverse order from which they were formed with silver-
positive aggregates dissolving followed by hyperphosphorylated
and misfolded forms of tau.

The mechanism whereby aggregated tau is cleared is un-
known. Possibly, human tau soluble oligomeric species may
impair the proteasome- or macroautophagy-mediated protein
turn-over and degradation that have been implicated in tau clear-
ance (Berger et al., 2007; Dickey et al., 2007; Carrettiero et al.,
2009; Wang et al., 2009; Tai et al., 2012). We postulate that release
of such clearance mechanisms from tau-based inhibition may
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allow slow but ultimately successful restoration of neuronal mor-
phology. Alternatively, tau aggregates may not be a permanent
accumulation of fibrillogenic proteins but rather a dynamic
structure in a constant slow turnover. Although the clearance of
tau in these studies makes lowering tau an attractive drug target
in the treatment of neurodegeneration, the response of lesions in
human tauopathy and the prevention of propagation by tau re-
duction has yet to be demonstrated as feasible.

In summary, turning off production of newly synthesized
soluble tau is sufficient to prevent synapse and neuronal loss,
reverse the transmission of tau to areas downstream from EC,
and restore the normal pattern of AChE in a deafferented termi-
nal zone. These observations also lead to several new questions:
which pathways contribute to clearance of tau protein and of the
abnormal tau aggregates? Which tau species are transmitted be-
tween neurons? Does the normalization of AChE staining after
transgene suppression reflect also normalized function of the
perforant pathway? Finally, extrapolation from this and other
animal models suggest that caspase activation and cleavage of tau
(Gamblin et al., 2003; Rissman et al., 2004; Spires-Jones et al.,
2008; de Calignon et al., 2010), mitochondrial mislocalization
(Ebneth et al., 1998; Stamer et al., 2002; Stoothoff et al., 2009;
Kopeikina et al., 2011; Matenia et al., 2012), phospho- and
aggregation-specific epitopes (Sydow et al., 2011a, b; Van der
Jeugd et al., 2012), and even Gallyas-positive lesions can all be
reversed by reduction of soluble tau expression. While there is
presumably a “point of no return” after which neuronal death
ensues, we postulate that some or all of these phenomena, long
held to be end-stage pathology lesions in human AD, may be at
least in part amenable to therapeutic intervention as well.
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