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Robust Encoding of Stimulus Identity and Concentration in
the Accessory Olfactory System

Hannah A. Arnson'? and Timothy E. Holy'

'Department of Anatomy and Neurobiology and >Graduate Program in Neuroscience, Washington University, St. Louis, Missouri 63110

Sensory systems represent stimulus identity and intensity, but in the neural periphery these two variables are typically intertwined.
Moreover, stable detection may be complicated by environmental uncertainty; stimulus properties can differ over time and circumstance
in ways that are not necessarily biologically relevant. We explored these issues in the context of the mouse accessory olfactory system,
which specializes in detection of chemical social cues and infers myriad aspects of the identity and physiological state of conspecifics from
complex mixtures, such as urine. Using mixtures of sulfated steroids, key constituents of urine, we found that spiking responses of
individual vomeronasal sensory neurons encode both individual compounds and mixtures in a manner consistent with a simple model
of receptor-ligand interactions. Although typical neurons did not accurately encode concentration over a large dynamic range, from
population activity it was possible to reliably estimate the log-concentration of pure compounds over several orders of magnitude. For
binary mixtures, simple models failed to accurately segment the individual components, largely because of the prevalence of neurons
responsive to both components. By accounting for such overlaps during model tuning, we show that, from neuronal firing, one can
accurately estimate log-concentration of both components, even when tested across widely varying concentrations. With this foundation,

A
the difference of logarithms, log A — log B = log B provides a natural mechanism to accurately estimate concentration ratios.

Thus, we show that a biophysically plausible circuit model can reconstruct concentration ratios from observed neuronal firing, repre-

senting a powerful mechanism to separate stimulus identity from absolute concentration.

Introduction
Sensory systems have a remarkable ability to extract relevant in-
formation from a noisy and inconsistent environment. For ex-
ample, the visual system is able to identify an object despite
variability in observation angle or size (Riesenhuber and Poggio,
2002). A sound can be identified independent of volume or in-
tensity (Barbour, 2011), and a smell can be recognized as a par-
ticular odor over a range of concentrations (Engen and
Pfaffmann, 1959; Slotnick and Ptak, 1977; Bhagavan and Smith,
1997). Sensory stability, particularly in the face of changing con-
ditions, has been subject to numerous investigations in multiple
sensory systems, including olfaction (Stopfer et al., 2003; Wilson
and Mainen, 2006; Uchida and Mainen, 2007; Cleland et al.,
2011).

A central mystery is how olfactory percepts can be relatively
constant despite dramatic changes in the raw peripheral repre-
sentation of odors as stimulus concentration is varied (Wa-
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chowiak and Cohen, 2001). In principle, one possible
computational strategy is through the use of ratios: if an odor has
two components, A and B, the ratio of their concentrations is
constant even if the absolute concentration is subject to environ-
mental influences. This notion is supported by behavioral obser-
vations, such as the attraction of moths to particular pheromone
blends (Baker et al., 1976) and the ability of rats to make choices
based on ratios of components (Uchida and Mainen, 2007).
How might a neural system represent ratios? One possibility is
through the use of logarithms; the log of a ratio is equal to the dif-

A
ference of logarithms as follows: logg = logA — logB.

This requires neural circuitry to represent the logarithm of con-
centration and compute a difference, which could be accom-
plished through inhibitory circuitry. Logarithmic representation
of sensory stimuli has a long history, dating back to early psycho-
physicists Weber and Fechner (Fechner et al., 1966) and has been
previously proposed as a neural mechanism for computing ratios
(Brody and Hopfield, 2003; Uchida and Mainen, 2007). How-
ever, to our knowledge, no direct neural evidence of logarithmic
or ratio coding exists in an olfactory system.

Here we explored the potential computation of logarithms
and ratios by the accessory olfactory system (AOS), an indepen-
dent olfactory system present in most terrestrial vertebrates. The
AOS detects social cues from complex mixtures of stimuli. These
cues are used by organisms to make behavioral decisions about
reproduction and aggression conditional upon the status of other
members of the social group. Behavioral and physiological state is
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known to be reflected in changes in the relative concentrations of
components of stimuli, such as urine (Nodari et al., 2008), but
absolute concentrations are expected to be highly variable (Hurst
and Beynon, 2004) (see Fig. 1). Using multielectrode array re-
cordings of accessory olfactory sensory neurons located in the
vomeronasal organ (vomeronasal sensory neurons [VSNs]), we
demonstrate that a logarithmic representation of concentration,
and in turn log-ratio of concentration of two components, may
be robustly calculated from the firing rates of VSNs. These results
demonstrate the feasibility of quantitative “olfactory scene seg-
mentation” using the responses of neurons with mixed selectivi-
ties for individual odorants.

Materials and Methods

Solutions and stimuli

We stimulated mouse VSN using sulfated steroids (Nodari et al., 2008)
purchased from Steraloids. All other chemicals were obtained from
Sigma, unless otherwise indicated. Stock solutions of steroids were dis-
solved in either methanol or deionized water. The following steroids,
referred to by their Steraloids catalog number, were used: A0225, Q1570,
and Q3910. The exact molecular identities of these compounds are as
documented previously (Nodari et al., 2008; Meeks et al., 2010). Ringer’s
solution contained 115 mm sodium chloride, 5 mm potassium chloride, 2
mM calcium chloride, 2 mm magnesium chloride, 25 mm sodium bicar-
bonate, 10 mm HEPES, and 10 mm p-(+)-glucose and was equlibrated by
bubbling with 95% O,/5% CO,. High potassium Ringer’s solution sub-
stituted 50 mM potassium for equimolar sodium.

Electrophysiological recording

Adult male mice 8—21 weeks of age of the B6D2F1 strain (The Jackson
Laboratory) were used in all recordings. All experimental protocols fol-
lowed the United States Animal Welfare Acts and National Institutes of
Health guidelines and were approved by the Washington University An-
imal Studies Committee.

Dissection and recording procedures were performed as previously
described (Holy et al., 2000; Nodari et al., 2008; Arnson et al., 2010);
briefly, intact vomeronasal epithelia were isolated and mounted on a
multielectrode array. The vomeronasal epithelium was removed from
the bony capsule, the neuroepithelium was mechanically dissected as an
intact sheet from the basal lamina. It was then held in place on the
electrode array using a nylon mesh. Sulfated steroids were diluted with
Ringer’s immediately before the recording session. Sulfated steroids were
used at nine concentrations, ranging from 10 nM to 100 uM, in approxi-
mately threefold increasing intervals. Binary mixtures were prepared by
making mixtures of chosen dilutions of pure compounds, so that each
individual mixture component was half the concentration of the original
solution of pure compound. The following mixtures were used (all in
uM): 5:5,50:50, 15:5, 5:15, 0.05:0.5, 1.5:15, 0.5: 0.05, 15:1.5, 0.5:50, 0.05:5,
50:0.5, 5:0.05. Final methanol concentration in the stimulus solution was
never >0.1%. All experiments included a minimum of two negative
control (Ringer’s) stimuli as well as a vehicle control containing 0.1%
methanol in Ringer’s solution. A positive control of Ringer’s solution
containing 50 mm potassium was also used. Stimuli were dispensed using
an HPLC pump (Gilson 307) (Gilson), and a robotic liquid handler
(Gilson 215) capable of taking samples from prepared tubes and injecting
them in an HPLC valve (Gilson 819 injection module). This robot was
controlled by the Gilson 735 software. Continuously bubbled Ringer’s
solution alternated with stimuli to produce continuous flow over the
epithelium; the flow was heated to a temperature of 35°C and aimed
directly at the epithelium. The timing of stimulus delivery (HPLC valve
switch) was monitored electrically and fed back to the acquisition soft-
ware. Stimuli were presented for 10 s in a block-randomized order. De-
livery was repeated in a newly randomized order 4—6 times.

Extracellular recording was performed using multielectrode planar
arrays (ALA Scientific Instruments) (10 um flat titanium nitride elec-
trodes isolated with silicon nitride) where electrodes were 30 wm apart,
in two fields of 6 X 5 electrodes each. Electrical signals were amplified
with a MEA 1060 amplifier (ALA Scientific Instruments), acquired at 10
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kHz with a data acquisition card (National Instruments), and saved to
disk. We used custom data acquisition and data analysis software based
on COMEDI (http://www.comedi.org) and MATLAB (MathWorks).

Data analysis

Spike sorting. This and all subsequent analyses were performed in MATLAB
(Mathworks). After acquisition, single units were isolated using custom
software. Spikes were sorted based on waveform shape across all elec-
trodes using methods similar to those described previously (Marre et al.,
2012). All single units had clear refractory periods of ~25 ms or more.

Determining firing rate. Change in firing rate of a cell, Ar, was calcu-
lated using a time window of variable length, set independently for each
distinct stimulus. The window started with stimulus onset and ended at
the point yielding the maximum firing rate, averaged over the window
and across all trials of this stimulus. The time window was constrained to
be atleast 1 sin duration and at most 15 s after stimulus onset. A baseline
firing rate was computed by averaging the firing rate across trials for 10 s
before stimulus delivery. The Ar value was calculated by subtracting the
baseline firing from the peristimulus firing rate. Because of time lags
within the delivery system and variability in the placement of the stimu-
lus pipette, an offset was allowed between the time at which stimulus
delivery began and stimulus reached the tissue. The offset was deter-
mined by measuring the activity across all electrodes in a particular re-
cording using 250 ms time bins. The offset was set as the time bin before
an increase in net activity after stimulus delivery onset, with values rang-
ing from 1.25 to 4.75 s.

A response was determined to be statistically significant if it differed
from the Ringer’s control using a rank-sum test with a p value threshold
0f 0.05 with a minimum Ar of 2 Hz. To control for methanol and Ringer’s
artifacts, Ar was computed for the vehicle and Ringer’s solution stimuli.
No cells in this dataset were found to have a significant Ringer’s or vehicle
response. Because of the large number of stimuli and cells examined (see
below), to further exclude false positives we used the Hill equation (de-
scribed in more detail below) to model the response of each cell to the
stimulated compounds based on the fits described below. Cells with
predicted firing rates not exceeding 1 Hz at any concentration were ex-
cluded from further analysis. A total of 22 cells were excluded in this
round (4.4% of the total population, consistent with a statistical cutoff of
p = 0.05). By eye, none of the excluded cells appeared to be responsive.

Concentration characterization. To compute the response properties of
individual cells, the change in firing rate in response to a range of con-
centrations was fit with three models: a log-concentration model, a rec-
tified log-concentration model, and a Hill model. The validity of the
model was verified using the p value computed from the x* statistic. As
the null hypothesis is that the model is an accurate descriptor of the data,
a p value greater than our significance criteria (i.e., 0.05) indicates that
the model provides a reasonable fit. The log-concentration model, a
model in which the firing rate rises linearly with the logarithm of con-
centration, was computed by fitting the cell’s firing rates (r) across con-

centrations to the equation, r = « log ci + [, where « is the slope
4

(Hz), c is the stimulus concentration (M), cf,ef is a normalizing factor to
make concentration unit-less and is equal to 1 M, and 3 is the y-intercept
when ¢ = ¢, (Hz). Firing rates computed on each trial were used (4-6
per stimulus).

The rectified log model differed from the above model in that below a
minimum concentration threshold, ¢, firing was equal to a baseline

c
firing rate r, orif c < ¢p, r = rpandifc = ¢, r = « log: + 1.
0

The Hill equation fit was calculated by fitting the firing rate of the cell
to the Hill equation,

(c/K)"

=1+ (K" (1)

r =1,

where r, is the baseline firing rate, r,, is the maximum firing rate for the
cell, cis the stimulus concentration, K is the binding affinity of the cell to
each ligand, and 7 is the Hill coefficient. Using the 4—6 repeats of each
concentration of each single steroid stimulation, 7, 7., K, and n were all
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fit to minimize y 2. We started from a simplified “flat” model, progressing
to alinear model, a Hill model with n = 1, and finally the full Hill model.
This progressive increase in the number of parameters reliably led to fits
that, by eye, appeared consistent with the global optimum and avoided
getting trapped in local minima. The value of 1, indicating cooperativity,
was initially allowed to be between 0 and 5. We found that cells with n
values at or near 5 consistently were responsive only to the highest con-
centration, providing too little data to constrain model parameters.
These cells were excluded from all analyses involving the Hill parameters.
For subsequent analyses, these cells were refit with the Hill model with a
fixed n of 1. Importantly, when fitting the responses of a cell to two
different pure compounds, the only parameter that was permitted to
differ for the two compounds was K; the remaining parameters were
jointly optimized for both compounds. This choice effectively posits that
the ligands are acting at the same binding site and that the Hill coefficient,
maximum, and minimum firing rates are generic properties of the recep-
tor neuron. In other olfactory systems, violations of these assumptions
have been observed (i.e., Ache and Young, 2005; Rospars et al., 2008), but
our VSN data are well described by this model (see Figs. 2 and 4). In the
absence of evidence to the contrary, we therefore confined our analyses to
this simple model.

Mixtures were also fit with a Hill model incorporating competitive
binding of different compounds within the mixture,

(ci/Ky + /K"
1 + (¢/K, + o/Ky)”

(2)

r =1y + 1.

using r,, 7., K, and n values from the pure compound Hill equation fits.
Because the validity of the Hill equation fit requires approximate satura-
tion to at least one tested compound, only the 24 most sensitive cells were
used to investigate competitive binding. Saturation was determined by a
K value of =10 um.

Log-concentration modeling. To determine whether populations of
VSNs could be used to reconstruct log-concentration, we used a linear
model, log(¢) = w - r where ¢ is an estimate of the concentration pre-
sented, r is a vector containing the responses of each cell to the presented
concentration of that compound, and w is the vector of weights, .,
long. When analyzing mixtures of two ligands, we seek two w vectors, w,
and w,, so that the estimated log-concentration of ligand 1 is w, - r and
w, - r for ligand 2. Only cells that had an EC,, value << 100 M for at least
one compound, indicating a cell that was responsive over the presented
range of concentrations, were used (n = 56 cells). Weights ranged from
—0.52to 1.3 Hz.

Model parameters (the weights w;) were set using two procedures.
First, we explored a “self-tuning” approach, using the pure compound
responses for compound i to tune the weight vector w;,. We generated a
matrix of firing rates, R, one for each trial (46 trials) per concentration
per cell. We used a concentration vector, ¢, covering the range from 300
nM to 100 uM in increments of half log units. w was tuned using linear
least-squares regression for each compound individually, yielding two w
vectors in which each cell has two weights, one for each compound. The
model efficacy was first tested using the aforementioned weights and
average firing rates for all cells in response to each sulfated steroid when
presented independently. The model was also tested using the firing rate
for each cell in response to the mixture of components. To find the
reproducibility of reconstruction, we recalculated concentration using
leave-one-out cross-validation by using an average firing rate obtained
by sampling 4 of 5 repeats. This allows for model verification taking into
account the full extent of sample variability and guards against overfit-
ting. Samples were drawn randomly 100 times, and the response was
averaged. The error bars correspond to the SE. All error values shown are
calculated as E = 3(10g Coeruar — 108 &poder)’> summed across all stimuli
and concentrations.

“Self-tuning,” although straightforward, cannot properly handle mix-
tures; this can be demonstrated using a simple toy model of neuronal
responses. Suppose that the population firing rate to pure compound 1 is
r, = a,log(c,), where a, is an arbitrary vector and ¢, is the actual concen-
tration of compound 1; compound 2 behaves likewise with a different
arbitrary vector a,. Suppose further that a mixture of these two com-
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pounds results simply in the sum of these firing rates, r = r, + r,. Using
the mixture data, we would estimate the log-concentration of each com-
pound as follows:

log(¢;) = wy -+ [a;log(c) + a,log(c,)],
log(é,) = w, * [a, log(c,) + a,log(c,)].

Perfect “self-tuning” for this toy model implies w; - a; = 1. However, to
yield the correct result for mixtures, we require the additional constraints
w, *a, = 0 and w, * a, = 0; these constraints are not imposed by the
least-squares fit when each weight vector is tuned independently. These
constraints can be (approximately) satisfied if the neurons have no over-
lapping stimulus responses, but it does not happen naturally when at
least some neurons respond to both ligands.

Consequently, we developed an alternate procedure, which we call
“cross-tuning,” designed to account for neurons that have overlapping
responses. This procedure also accounts for neurons that violate the
simplistic assumptions of the above toy model. In its most general form,
the strategy is to use single-compound responses to fita model describing
the neuron’s response properties, and then use the parameters to “sim-
ulate” responses to all possible tested mixtures. The simulated mixture
responses are used in a least-squares sense to train the weight vectors to
properly extract the log-concentration of each component. The model is
then tested by comparing its reconstruction of log-concentration using
actual mixture data.

More specifically, we calculated predicted mixture responses based on
the Hill mixture model presented above, using the efficacy ¢, = ¢,/K}; +
¢,/K,; for the ith neuron. For a particular simulated mixture and neuron,
we computed c ¢ To include the effects of noise, we estimated firing rate
responses using a “lookup table” procedure: we compared this efficacy
with all of the efficacies tested with pure compound A and pure com-
pound B, and the closest match was chosen to assign the Ar values for all
simulated trials of this particular simulated mixture for this neuron. This
was repeated for all possible mixtures (using concentrations ranging
from 300 nm to 100 uM in half-log units) and all cells. This yielded a
“response vector” of length 180 (36 mixtures and 5 trials) for each cell, or
in total a 180 X n cells R matrix. Finally, least-squares minimization to
reconstruct the actual concentrations of each component of the simu-
lated mixtures was used to solve for w; and w,.

Ratio computation. Ratios were computed using the reconstructed log-
concentrations. For each mixture, the reconstructed log-concentrations
for each compound were subtracted to give the log-ratio as follows:

I .
logé, — logé, = log X Error bars were computed as described
2

above.

Results

The accessory olfactory system, like all other sensory systems,
must be capable of representing information in a way that is
robust to environmental uncertainties. Here, we explore the pos-
sibility that the activity of sensory neurons can be used to com-
pute concentration ratios, as the ratio is insensitive to absolute
changes in concentration yet still sensitive to relative changes
(Fig. 1A). As an initial step, we explore the degree to which the
logarithm of concentration, a natural stepping-stone to comput-
ing ratios, might be represented. In principle, this may be
achieved by individual VSN, or alternatively as a consequence of
population activity (Fig. 1B).

We began by investigating how individual sensory neurons
represent concentration across the large dynamic range of the
system. We performed multielectrode array recordings of VSNs
in response to three sulfated steroids: two glucocorticoids (Q1570
and Q3910, two “similar” odors) and one androgen (A0225, a
more “dissimilar” odor). Each preparation was tested with two of
these stimuli, each over a wide range of concentrations, and with
binary mixtures of the two compounds. As has been previously
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Figure 1.

Seconds

VSNs respond to a wide range of concentrations A, An example of environmental uncertainty facing the AOS. The concentration of ligands measured in a pool of urine of volume V

depends strongly on environmental uncertainties, such as evaporation. However, ratios allow for robust representation of concentration invariant to environmental uncertainties. B, A population
of idealized cells with slightly different sensitivities to the same compound are shown (top). Summing their activity produces a result that is linear with respect to log-concentration (bottom) over
therange spanned by the cells. €, An example voltage trace from a single electrode in response to Ringer’s solution control (top) and Q3910 (bottom). The tissue was stimulated for 10s. D, Summary
of average firing rates in response to presented stimuli in the same cell as shown in €. Error bars correspond to the SEM. E, A raster plot of the same cell shown in Cand D in response to two negative
controls and nine concentrations of two different sulfated steroids. Each stimulus was presented five times (rows within each block). Average firing rate is shown on the right.

reported (Nodari et al., 2008; Arnson et al., 2010; Meeks et al.,
20105 Celsi et al., 2012; Turaga and Holy, 2012), we observed that
sulfated steroids induced activity in VSNs. Of 494 total cells (n =
18 mice), 95 were responsive to at least one sulfated steroid (rank-
sum test, p < 0.05, see Materials and Methods).

Individual neurons provide poor representation of log-
concentration across a large dynamic range

Receptor-ligand interactions are frequently described by a Hill
model (Firestein et al., 1993; Wilson and Mainen, 2006). Quali-
tatively, this model captures three regimens: one at low concen-
trations in which little or no response is observed, a rising phase
where response increases with increasing ligand concentration,
and a high-concentration regimen in which the response satu-
rates. Applied to the spiking rate of neurons, the Hill model can
be written as follows:

(c/K)"

T (@R ©)

r=r, +
where r is the firing rate, c indicates ligand concentration, K cor-
responds to the concentration at which the half-maximal re-
sponse is achieved (ECs,), 1, is the spontaneous firing rate, 7., is
the maximum stimulus-induced increase in firing rate, and n
reflects the receptor cooperativity. Using this model, the response
can be viewed as being approximately linear with respect to log-
concentration near ECs,,. The extent of approximately linear be-
havior depends on the Hill coefficient, n; larger values of n
correspond to a more narrow dynamic range (Fig. 24, top),
whereas smaller values indicate a larger concentration span
over which the response is approximately log-linear (Fig. 2A,
bottom). To investigate whether individual sensory neurons
can represent log-concentration across the large dynamic

range, we explored the stimulus responses of a population of
VSN in terms of a Hill model.

We tested each VSN using two different sulfated steroids, at
concentrations spanning four orders of magnitude, ranging from
10 nM to 100 uM (Fig. 1C—E). Of the 95 steroid-responsive cells, a
sizable subset showed responses only to the highest concentra-
tions, and thus the fitting parameters were not well determined
by the data. Therefore, here we focused on the 47 cells for which
EC5, < 100 uM (for at least one of the two compounds) and n <
5. This group of cells was virtually synonymous with the subset
responding to at least two of the presented concentrations. Each
neuron’s responses to both compounds was fit simultaneously to
the Hill model (Eq. 3). The only parameter associated with the
Hill model that differed with each compound was K, or ECs,
where K, and K, describe the ECs, to each of the two compounds.
Quality of fit was measured by the p value of the y? fit, as shown
in Figure 2B. For 42 of 47 cells (89%), the Hill model served as a
plausible description of their response, in the sense that this
model could not be statistically discounted (p > 0.05). The Hill
coefficient, n, ranged from 0.39 to 4.9, with the majority (23 of
42) falling between 0.5 and 2 (Fig. 2C). The ECs, varied from
7.7 X 10 % to 1 X 10" M across the population; EC5os >1 X
10 ~* M, the highest stimulated concentration, indicated that the
cell was not responsive to that particular compound (Fig. 2D).

As the value of n directly influences the dynamic range of the
neuron, we considered individual neurons with high, medium,
and low n values (Fig. 2E—-G, respectively). We fit each cell with a
rectified log model (see Materials and Methods) to test whether
any portion of the cell’s response was approximately log-linear
(red dotted line). As shown in Figure 2E, the cell with a high n
(n = 4.9) did not exhibit any sizable span over which the response
was approximately log-linear, and an attempt at reconstructing
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Single neuron encoding of log-concentration. A, Top, Simulated cell with a “typica
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approximate log-concentration, we fit the response with a rectified-log model (red dotted line). Bottom, Another simulated cell with a smaller Hill coefficient. This cell approximates log-
concentration over the entire range shown (red dotted line). B, Goodness of fit to the Hill model for each VSN as measured by the 1/p value to the x *it. Cells below the dotted line (p = 0.05) are
well described by the model (n = 47 neurons from 18 mice). €, Hill coefficients for each VSN. D, EC,, to each compound. E-G, Example cells with a rectified-log model (red dotted line) or an
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(n = 0.76) appeared to be reasonably log-
linear across the tested range (Fig. 2G).
We were able to decode log-concentration
from this cell with an average error of 0.4
log-units, with a maximum difference of 0.8 log-units (sixfold).

was accurately reconstructed.

For this particular cell, a log-linear model, r = m log , was a

statistically plausible (p > 0.05) fit. Of 95 responsive cells, from
an initial population of 494 cells, we observed only three cells that
appeared to respond log-linearly over such a wide concentration
range (3% of responsive cells, 0.6% of all cells). None of the
neurons that were stimulated by the androgen compound,
A0225, displayed this property. Although it is possible that a
rare, specialized population encoding log-concentration ex-
ists, it is unclear whether the accessory olfactory system could
rely on such neurons for general ratio computation. Conse-
quently, we also explored the possibility of population coding
for log-concentration.

Populations of VSNs can reliably represent log-concentration
across a large dynamic range

We tested the idea that populations of neurons could be used to
reconstruct log-concentration by using a linear model in which
the estimated log-concentration, log ¢, is calculated as log ¢ = w -
r, where r is the vector of firing rates across the population and w

A0225, sorted by response magnitude. B, The actual concentration presented (black) and the model reconstruction (gray). C, Using
the firing rates obtained in response to six different concentrations of a sulfated steroid presented individually, log-concentration

is a vector of weights. We measured the firing rate of each cell in
the population (Fig. 3A) to the different concentrations (see Ma-
terials and Methods) of a sulfated steroid (i.e., A0225); we then
optimized the match between the estimated log ¢ and the actual
log ¢ by least-squares, thereby solving for the weights. Using the
response of each cell to compounds presented individually, we
were able to reconstruct log-concentration as shown in Fig. 3B, C.
The reconstructed concentration differed from the actual con-
centration by at most 0.28 log units, less than twofold, over three
orders of magnitude. Compared with the concentration repre-
sentation by individual cells (Fig. 2H-J), this scheme proved to
be substantially more accurate and robust over a larger range of
concentrations, from 300 nM to 100 M. This suggests that pop-
ulations of sensory neurons may be better suited to the task of
accurately representing concentrations than are individual
neurons.

Neuronal responses to stimulus mixtures

Natural stimuli for the AOS, such as urine and other secretions,
are complex mixtures (Kimoto et al., 2005; Chamero et al., 2007;
Nodari et al., 2008). Estimating the relative concentrations of
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Competitive binding. 4, The response of a cell to a range of concentrations of Q1570 (top) and Q3910 (bottom). B, The response of the same cell to binary mixtures of Q1570 and Q3910

(black). Using the Hill model parameters fit to this cell previously, we predicted the expected firing rate to these mixtures given that the cell follows competitive binding (gray). The mode! fit and
recorded rates closely agree, providing evidence for the competitive binding model. €, The recorded response (left side of each column) and predicted response (right side of each column) to sulfated

steroid mixtures across the population of 24 cells from 18 mice.

individual components in such mixtures is expected to be far
more complex and is a problem that, in terms of actual neuronal
recordings, appears to have received little or no attention.

To explore how mixtures are represented, we presented VSNs
with mixtures of two similar (Q1570 and Q3910) or two dissim-
ilar (Q1570 and A0225) sulfated steroids at differing concentra-
tions and proportions (for details, see Materials and Methods).
The two similar compounds have previously been shown to acti-
vate overlapping populations of neurons (Meeks et al., 2010;
Turaga and Holy, 2012), representing a challenging decoding
problem with ambiguity in the meaning of each neuron’s re-
sponse. The two dissimilar compounds activate largely nonover-
lapping populations (data not shown), which might be expected
to be a simpler decoding problem.

In addition to the mixtures, each neuron was presented with
each pure compound, allowing us to fit the parameters of a Hill
model (Fig. 4A). We modeled the response to mixtures in terms
of a competitive binding model,

n
Ceff G G
where c g &
2

_ _ 4
1 + g K, (4)

r =1, t 1.

The response to the mixture can be predicted based on the pa-
rameters of the fit to pure-compound responses. To test this
model, only responsive cells that showed saturation to one or
more compounds were used (n = 24 cells) (see Materials and
Methods). An example cell’s predicted response compared with
the actual response is shown in Figure 4B, suggesting that this
particular cell was well fit by the competitive binding model. The
actual responses and predicted fits are shown for the population
of cells in Figure 4C. A majority of recorded cells (16 of 24) were
tolerably well described by this model (p > 0.001, x test), and
poorly fitting cells did not have any obvious systematic departure
from the competitive binding model (Fig. 4C). It is also worth
noting that when we refit the Hill parameters to the aggregate
pure-compound and mixture data (using Eq. 2), the majority (19
of 24 cells) were well described (p > 0.05; x” -test). This suggests
that this model provides a reasonable description of the
responses. In what follows, we use the more strenuous test of
generalizability, where the parameters are fit using only pure-
compound data, and then applied to the analysis of mixture data.

Populations of VSNs encode log-concentration of

mixture elements

These results show that population activity of sensory neurons
can be used to estimate log-concentration of sulfated steroids
across a range of concentrations. Because natural stimuli exist as
mixtures of active ligands, ultimately we are interested in know-
ing whether concentration of the individual components can be
reconstructed from responses to a mixture. Therefore, we tested
whether the same model as previously described, log ¢, = w; * 1,
suffices to reconstruct the log-concentration of all mixture ele-
ments (where the subscript refers to the ith compound) from a
single set of neuronal responses r.

Crucially, we tuned the weights without “access” to the mea-
sured firing rates to mixtures, as we wished to use these responses
asan independent test. We therefore limited our tuning dataset to
responses recorded to each pure compound, across all concen-
trations. We first considered a “self-tuning” model, in which w,
was tuned using responses to compound 1 but blind to the re-
sponses to compound 2, and likewise for w,. This model repro-
duces the pure compound log-concentrations well (Fig. 3C) but
performs relatively poorly on the mixtures, particularly in decod-
ing the Q1570 compound (Fig. 5). The model reconstruction
differed from the actual concentration used by as much as 2.57
orders of magnitude, and consistently underestimated Q1570 by
at least half a log unit. A likely cause of this poor performance is
the fact that some cells respond to both ligands, but tuning the
weights for each compound independently does not take this into
account (see Materials and Methods).

We therefore implemented a “cross-tuning” model, in which
the weights were tuned accounting for the possibility of mixtures.
To implement this tuning without using the measured responses
to mixtures, we used the Hill parameters to calculate the efficacy,
Coir (Eq. 4), for all possible mixtures (see Materials and Methods).
Using the firing rates corresponding to the pure compound re-
sponse closest to each efficacy, we obtained a “predicted” re-
sponse profile for each mixture condition. Therefore, this is a
“cross-tuning” model in the sense that an allowance is made in
the least-squares procedure for the simultaneous presence of
both compounds. However, all the data used to tune the param-
eters come from just the pure compound responses.
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Figure 6. Population coding taking nonlinearities into account. A, Reconstructed versus actual concentration in response to the pure compounds of Q1570, A0225, and Q3910 presented
individually. Error barsindicate SE (n = 63 cells from 18 mice). B, C, Reconstructed versus actual concentration of mixture components using two populations of neurons: 25 cells (B) and 38 cells (C).
Using the recorded responses to mixtures, the model was able to disambiguate mixture elements and concentrations. D, The response of a population of cells to two sulfated steroids presented
separately (30 umQ1570 and 10 m A0225). E, The response of the same population in the same order, to the mixture of the two compounds at half their original concentrations (15 umQ1570 and

5 umA0225). F, The model reconstruction of each element of the mixture compared with the actual concentrations of the mixture elements.

We then tested this cross-tuning model against firing rates ob-
tained in response to mixtures. As before, this was done for both the
“easier” case (Q1570 and A0225) and the “harder” case (Q1570 and
Q3910). Because we did not make further adjustments in the param-
eters to improve the quality of the fit, this represents an independent
test of the model. As shown in Figure 6, the cross-tuning model was
considerably more effective than naive self-tuning. Over three orders
of magnitude of concentration, the error ranged from 0.003 to 1.74
log-units (Q1570). This suggests that populations of VSNs could be
used to represent both log-concentration and identity over a large
range of concentrations.

Model parameters

We explored the model parameters to identify what features the
model emphasized when setting the optimal weights. In both
populations of cells, a few cells were heavily used (Fig. 7A, B).
This suggests that perhaps equivalent results might be obtained
using only a subset of the neuronal population (Fig. 7C,D). To
explore this dependence, we first identified the cell that was most
accurate in reconstructing log-concentration. We then found the
cell that, when combined with the first, reduced the error the
most, and kept adding the “best” cells until all were used. In
the first population of cells stimulated with Q1570 and A0225
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(“easier” case), 81% of error reduction was accomplished with
only three cells, indicating that a quite small subset suffices for
reasonably accurate reconstruction. In the second population
stimulated with Q1570 and Q3910 (“harder” case), the three
“best” cells reduced the error by 62%. In both cases, the mini-
mum error was obtained with a subset of neurons, 13 of 25 cells in
the first case and 15 of 38 cells in the second, reflecting general-
ization error as the number of parameters in the model increased.
In some cases, these “extra” cells incorporated beyond the mini-
mum point were unreliable across trials; in other cases, they were
redundant cells in that there was a more reliable cell with a very
similar response profile that was more valuable in recreating log-
concentration. This emphasis on more reliable cells can be observed
in Figure 7E, F, which reveals that model weight varied inversely with
estimated variance in the ECs,. The general trend across both pop-
ulations was that cells with lower variance, or more reproducibility,
tended to be used in the reconstruction more heavily.

Populations of VSN can be used to represent ratios

Using the log-concentration responses, we tested whether log-
ratios could be computed from VSN activity, based on the idea
that log ¢, — log ¢, = log ¢,/c,. We used the log-concentrations

nents; the resulting model was able to ac-
curately reconstruct log-concentration of
both components of mixtures. Using neu-
ronal data recorded from sensory neu-
rons, we demonstrated the viability of this
coding scheme that allows the AOS to represent concentration in
a robust manner that is both sensitive to changes in relative
concentrations of stimuli yet insensitive to changes in absolute
concentration.

The ability to reconstruct both identity and concentration of
mixtures serves as a form of olfactory “scene segmentation” as we
are able to discriminate and classify discrete elements of complex
stimuli. Although this term is often used in the realm of visual
neuroscience to refer to the ability to pick out objects from a
complex environment, it is also applicable to olfaction as olfac-
tory stimulus space is made up of diverse mixtures that are parsed
by olfactory systems (Brody and Hopfield, 2003; Mainen, 2007).
Although our model is used to identify and quantify only two
compounds presented simultaneously, the framework can be ap-
plied to a higher-dimensional stimulus space.

Ratio coding and the accessory olfactory system

Ratio-computation is particularly well suited for the mouse AOS.
This system is specialized to detect nonvolatile ligands present as
mixtures in bodily substances, such as facial secretions and urine
(Kimoto et al., 2005; Chamero et al., 2012). The VNO in the nasal
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cavity contains a blood vessel acting as a pump that draws liquid
stimuli into contact with receptor neurons when the mouse
makes direct contact with the stimulus (Meredith, 1994). In con-
trast, the main olfactory system detects volatile compounds. Dif-
ferences in volatility between ligands will result in different rates
of evaporation and therefore nonstable concentration ratios. The
nonvolatile nature of AOS stimuli implies that these ligands do
not evaporate when left in the environment. Although the abso-
lute concentration of each ligand will vary with solvent (water)
evaporation, the relative concentration of compounds will not
change. Consequently, this presents an ideal system to use, and
explore, ratio coding.

Biological plausibility of log-ratio coding

A strength of this model is that it is based on biologically plausible
constructs. It incorporates weighted summation and subtraction,
operations that can be readily accomplished via synaptic scaling,
pooling, and a combination of excitatory and inhibitory cir-
cuitry. One prerequisite for log-encoding over a large concentra-
tion range is diversity in the sensitivities of different sensory
neurons (Fig. 1B), a requirement that was met by our observed
data (Fig. 2C). It is unknown whether these differences in sensi-
tivities are the result of neurons expressing the same receptor
with different expression levels (Cleland and Linster, 1999) or the
result of expression of different, possibly closely related receptors,
each with a different threshold. It is unlikely that this phenome-
non results from combinatorial expression of multiple receptors
as VSN are thought to express one, or a few (Martini et al., 2001),
types of receptors of ~300 known varieties (Touhara and
Vosshall, 2009).

From the VNO, it is known that receptor neurons project into
glomeruli in the AOB in which an individual glomerulus receives
input from only one type of receptor neuron (Belluscio et al.,
1999; Rodriguez et al., 1999). Unlike in the main olfactory bulb,
mitral cells, the projection neuron out of the AOB, receive input
from multiple glomeruli. Based on anatomical data, whether
these mitral cells receive redundant input (Del Punta et al., 2002),
input from different receptor types (Wagner et al., 2006), input
from similarly responsive sensory neurons, or some combination
thereof is unknown. However, a comparison of sulfated steroid
responses in VSN versus in mitral cells in the AOB suggests that
most processing streams largely maintain segregation, with a few
cases of mixing observed (Meeks et al., 2010). This may support
the notion that mixed inputs, when they exist, can serve to
expand the dynamic range of the mitral cells but maintain the
stimulus specificity of VSNs. Pooling of VSNs provides a po-
tential locus for log-concentration representation in the AOS;
thus, mitral cells may receive net excitatory input representing
log-concentration.

The AOB also contains laterally-inhibitory circuitry (Hen-
drickson et al., 2008; Larriva-Sahd, 2008), which might in prin-
ciple compute the difference between log-concentrations.
Theoretically, a log-concentration representation of one com-
pound at the glomerular or mitral cell level may provide inhibi-
tory input onto another mitral cell. If this target cell is also
receiving excitatory input representing log-concentration of a
different compound, this cell could be the site of comparison
(subtraction) of the two log-concentrations. Consequently, in
the AOS, it seems possible that ratio-representation might be
observed as early as the mitral cell level.
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Concentration response of VSNs and logarithmic coding
Using multielectrode array recordings of sensory neurons in the
VNO, we measured the response of a group of cells to a range of
concentrations of sulfated steroids and binary mixtures. The re-
sponse of individual neurons could be modeled using the Hill
model, which has previously been used to describe sensory neu-
ron activity in both the accessory (Holy et al., 2000; He et al.,
20105 Celsi et al., 2012) and main olfactory systems (Firestein et
al., 1993; Wilson and Mainen, 2006). The rising phase of a Hill-fit
response approximates logarithmic coding, and potentially is a
way in which the system could represent log-concentration. In-
deed, a model of concentration invariance proposed by Hopfield
(Hopfield, 1999; Brody and Hopfield, 2003) and directly applied
to ratio coding by Uchida and Mainen (2007) is based on the idea
that logarithmic coding can be approximated by receptor-ligand
interactions from threshold to saturation. The activities of VSNs
were fit with a rectified-log model (Fig. 2E-G). However, the
concentration range over which the cells were linear varied across
the population from a very narrow to a wider range (Fig. 2C,D),
and many cells did saturate over our target concentration range.
We did observe a few neurons that responded in a nearly log-
linear fashion over our tested concentration range (Fig. 2G);
however, these cells were very rare (n = 3 of 494 cells), and this
pattern of activity was only observed in response to a subset of
stimuli.

Population coding to represent log-concentration
Single-neuron encoding schemes face a major interpretive chal-
lenge: when a cell responds to more than one stimulus (Meeks et
al., 2010; Turaga and Holy, 2012) (Fig. 1D), the readout of a
neuron’s response is ambiguous. For this reason, the diversity of
activity of VSNs is ideal for a population-coding scheme that
allows for a reliable representation of log-concentration across a
large dynamic range. Our model implements a weighted summa-
tion of populations of sensory neurons to reconstruct log-con-
centration; log-ratios can then be computed by subtraction.

We identified a key computational challenge facing this sys-
tem. Simply tuning the model weights in response to each com-
pound individually yields poor results for mixtures (Fig. 5)
because of the existence of neurons responding to both compo-
nents of the mixture. Significantly better results are obtained
when these overlaps are taken into consideration (Fig. 6).

This study extensively tested mixtures of two compounds.
However, natural stimuli for the AOS, like urine, are complex
mixtures of many compounds. Therefore, for this to be a realistic
coding scheme, it must be capable of scaling to larger numbers of
ligands. At the level of two compounds, the “cross-tuning” mod-
el’s success emphasized the importance of accounting for the
complete receptive field of individual neurons. For an arbitrarily
large number of stimuli, what kind of interactions may occur at
the receptor level and how might the system, or model, handle the
diversity? VSN tuning is determined by receptor expression, and
the receptors are activated by only a specific set of stimuli. Previ-
ous studies have demonstrated that VSNs respond to one or a few
sulfated steroids when presented individually (Meeks et al., 2010;
Turaga and Holy, 2012), implying that the response of single
neurons will be determined by only a small number of com-
pounds out of a complex mixture. This limits the scope of the
“cross-tuning” required for more naturalistic, complex stimuli.

The log-concentration model essentially comes down to
weighted summation, synaptic weights, and inhibitory circuitry,
subtraction. How might the system set these weights? One possi-
bility is that the AOS is wired in development to compute ratios:
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sensory neurons are pooled in glomeruli and lateral circuitry is
established with specific strengths, set over the course of evolu-
tion. Another possibility is that experience shapes the computa-
tion, in which the AOS changes synaptic weights based on stimuli
present in the environment or social cues that are relevant at
particular times or environments.

This study is the first to demonstrate that both logarithmic
and ratio coding can be obtained quantitatively from experimen-
tally observed neuronal data. This represents a biologically plau-
sible model in which populations of neurons can be used to
achieve robust detection of concentration across a very wide dy-
namic range.
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