

NIH Public Access

Author Manuscript

JAMA. Author manuscript; available in PMC 2013 December 26.

Published in final edited form as:

JAMA. 2013 June 26; 309(24): 2563–2571. doi:10.1001/jama.2013.6599.

Aspirin Use and Risk of Colorectal Cancer According to *BRAF* Mutation Status

Reiko Nishihara, PhD, Paul Lochhead, MB, ChB, Aya Kuchiba, PhD, Seungyoun Jung, ScD, Mai Yamauchi, PhD, Xiaoyun Liao, MD, PhD, Yu Imamura, MD, PhD, Zhi Rong Qian, MD, PhD, Teppei Morikawa, MD, PhD, Molin Wang, PhD, Donna Spiegelman, ScD, Eunyoung Cho, ScD, Edward Giovannucci, MD, ScD, Charles S. Fuchs, MD, MPH, Andrew T. Chan, MD, MPH, and Shuji Ogino, MD, PhD, MS

Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave., Boston, MA 02215 (RN, PL, AK, MY, XL, YI, ZRQ, TM, CSF, SO); Department of Nutrition, Harvard School of Public Health, 655 Huntington Ave., Boston, MA 02115 (RN, AK, EG); Gastrointestinal Research Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, United Kingdom (PL); Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Ave., Boston, MA 02115 (SJ, MW, DS, EC, EG, CSF ATC); Department of Pathology, University of Tokyo Hospital, Tokyo, Japan (TM); Department of Epidemiology, Harvard School of Public Health, 677 Huntington Ave., Boston, MA 02115 (MW, DS, EG, SO); Department of Biostatistics, Harvard School of Public Health, 677 Huntington Ave., Boston, MA 02115 (MW, DS); Division of Gastroenterology, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114 (ATC); Department of Pathology, Brigham and Women's Hospital, Boston and Harvard Medical School, 75 Francis Street, Boston, MA 02115 (SO)

Abstract

Importance—Aspirin use reduces the risk of colorectal carcinoma. Experimental evidence implicates a role of RAF kinases in upregulation of PTGS2 (cyclooxygenase-2), suggesting that *BRAF*-mutant colonic cells might be less sensitive to the anti-tumor effects of aspirin than *BRAF*-wild-type neoplastic cells.

Conflict of interest

Co-Corresponding Authors: Andrew T. Chan, MD, MPH, Division of Gastroenterology, Massachusetts General Hospital, Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114, Tel: 617-726-7802, Fax: 617-726-3673, achan@partners.org. Shuji Ogino, MD, PhD, MS (Epidemiology), Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave., Room M422, Boston, MA 02215, Tel: 617-632-1972, Fax: 617-582-8558, shuji_ogino@dfci.harvard.edu.

RN, PL, AK and SJ contributed equally. ATC and SO contributed equally

Contributors

Drs. Nishihara and Chan had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Drs. Nishihara, Lochhead, Kuchiba, and Jung contributed equally. Drs. Chan and Ogino contributed equally.

Study concept and design: Drs. Chan and Ogino.

Acquisition of data: Drs. Nishihara, Lochhead, Kuchiba, Jung, Yamauchi, Liao, Imamura, Qian, Morikawa, Wang, Spiegelman, Cho, Giovannucci, Fuchs, Chan, and Ogino.

Analysis and interpretation of data: Drs. Nishihara, Lochhead, Kuchiba, Jung, Yamauchi, Liao, Imamura, Qian, Morikawa, Wang, Spiegelman, Cho, Giovannucci, Fuchs, Chan, and Ogino.

Drafting of the manuscript: Drs. Nishihara, Lochhead, Chan, and Ogino.

Statistical analysis: Drs. Nishihara, Kuchiba, Jung, Wang, Spiegelman, Chan, and Ogino.

Obtained funding: Drs. Fuchs, Chan, and Ogino.

Administrative, technical, or material support: Drs. Fuchs, Chan, and Ogino.

Study supervision: Drs. Chan and Ogino.

A.T.C. previously served as a consultant for Bayer Healthcare, Millennium Pharmaceuticals, and Pfizer Inc, and Pozen Inc. This study was not funded by Bayer Healthcare, Millennium Pharmaceuticals, Pfizer Inc., or Pozen Inc. No other conflict of interest exists.

Objective—To examine if the association of aspirin intake with colorectal cancer risk differs according to status of tumor *BRAF* oncogene mutation.

Design and Setting—We collected biennial questionnaire data on aspirin use and followed participants from 1980 (in the Nurses' Health Study) or 1986 (in the Health Professionals Follow-up Study) until July 1, 2006 for cancer incidence and until January 1, 2012 for cancer mortality. Duplication-method Cox proportional cause-specific hazards regression for competing risks data was used to compute hazard ratio (HR) for colorectal carcinoma incidence according to *BRAF* mutation status.

Results—Among 127,865 individuals, with 3,165,985 person-years of follow-up, we identified 1,226 incident rectal and colon cancers with available molecular data. Compared with non-use, regular aspirin use was associated with lower *BRAF*-wild-type cancer risk (multivariable HR=0.73 [95% CI, 0.64–0.83]; age-adjusted incidence rate difference [IRD]=–9.7 [95% CI, -12.6 to -6.7] per 100,000 person-years). This association was observed irrespective of status of tumor PTGS2 expression or *PIK3CA* or *KRAS* mutation. In contrast, regular aspirin use was not associated with a lower risk of *BRAF*-mutated cancer (multivariable HR=1.03 [95% CI, 0.76–1.38]; age-adjusted IRD=0.7 [95% CI, -0.3 to 1.7] per 100,000 person-years) ($P_{heterogeneity}=0.037$, between *BRAF*-wild-type vs. *BRAF*-mutated cancer risks). Compared with no aspirin use, aspirin use of >14 tablets per week was associated with a lower risk of *BRAF*-wild-type cancer (multivariable HR=0.43 [95% CI, 0.25–0.75]; age-adjusted IRD=–19.8 [95% CI, -26.3 to -13.3] per 100,000 person-years). The relationship between the number of aspirin tablets per week and colorectal cancer risk differed significantly by *BRAF* mutation status ($P_{heterogeneity}=0.005$).

Conclusions and Relevance—Regular aspirin use was associated with lower risk of *BRAF*-wild-type colorectal cancer, but not with *BRAF*-mutated cancer risk. These findings suggest that *BRAF*-mutant colon tumor cells may be less sensitive to the effect of aspirin. Given the modest absolute risk difference, further investigations are necessary to determine clinical implications of our findings.

Keywords

colon cancer; rectal cancer; adenocarcinoma; epigenomics; epigenetics

INTRODUCTION

Colorectal cancer is a leading cause of cancer-related mortality world-wide. Randomized controlled trials have demonstrated that aspirin use reduces the risk of colorectal neoplasia,^{1,2} including the risk of colorectal cancer in individuals with Lynch syndrome.³ Aspirin is an inhibitor of prostaglandin-endoperoxide synthase 2 (PTGS2; cyclooxygenase-2), a key mediator of inflammatory responses.⁴ We have previously shown that aspirin use is associated with a lower risk of colorectal cancer with PTGS2 overexpression.⁵ However, since colorectal cancer represents a complex disease that cannot be explained by a single biomarker,⁶ the association of aspirin with various tumorigenic processes requires further investigation, which may help us develop effective preventive strategies.⁷

Colorectal cancers develop through accumulation of genetic and epigenetic alterations and through tumor-host interactions (including immune and inflammatory reactions) in the tumor microenvironment.^{8,9} *BRAF* is a member of the RAF kinase family, and an important regulator of the mitogen-activated protein kinase (MAPK) pathway.^{8–10} Activating mutations in the *BRAF* oncogene are observed in approximately 10–15% of colorectal cancers.^{8,9} Experimental evidence suggests that RAF-MAPK signaling plays an important role in upregulation of PTGS2 activity and prostaglandin E2 synthesis.^{11,12} Considering that

oncogenic *BRAF* mutation causes constitutive activation of RAF-MAPK signaling, we hypothesized that *BRAF*-mutant colonic cells might be less sensitive to the anti-tumor effects of aspirin, whereas *BRAF* wild-type neoplastic cells might be more susceptible to its anti-tumor effects.

To test this hypothesis, we examined the association of aspirin use with the risk of colorectal cancer according to *BRAF* mutation status within two, large, U.S. nationwide prospective cohort studies, which provided detailed and updated information on aspirin use. Because of the close relationship among RAF, RAS, and PI3K kinases, we additionally examined the association between regular aspirin use and incident colorectal cancer according to *BRAF* mutation status in strata of PTGS2 expression, *PIK3CA* mutation, and *KRAS* mutation status. As an exploratory analysis, we examined patient survival according to post-diagnosis aspirin use and *BRAF* mutation status.

METHODS

Study population

The Nurses' Health Study (NHS) was established in 1976 as a prospective cohort of 121,701 U.S registered female nurses who were aged 30–55 years at enrollment. The Health Professionals Follow-up Study (HPFS) was initiated in 1986 as a prospective cohort of 51,529 U.S. male health professionals who were aged 40–75 years.¹³ Biennial questionnaires were used to update data on lifestyle factors. Based on the self-report, demographic characteristics, including ethnicity were assessed. In the NHS and the HPFS, 98% and 95% of the participants were non-Hispanic Caucasians, respectively. Informed consent was obtained from all participants. This study was approved by Human Subjects Committees at Harvard School of Public Health and Brigham and Women's Hospital.

Assessment of aspirin use

We have previously published a detailed description of the collection of information on aspirin use and the definition of regular aspirin use in these cohorts.⁵ Briefly, in the NHS, aspirin use was first assessed in 1980 and every 2 years thereafter, except in 1986. NHS participants were asked whether they took aspirin in most weeks, the number of tablets taken per week, and years of aspirin usage. We updated the information on the number of aspirin tablets taken per week (in categories) every 2 years. In the NHS, regular aspirin users were defined as women who reported consumption of two or more aspirin tablets per week, and non-users as women who used less or no aspirin. In the HPFS, in 1986 and every 2 years thereafter, participants were asked whether they used aspirin two or more times per week. Beginning in 1992, the mean number of tablets taken per week was assessed. In the HPFS, regular aspirin users were defined as men who reported consumption of aspirin at least two times per week, and non-users as men who consumed less or no aspirin. For both cohorts, participants were specifically asked about standard-dose (325 mg) aspirin tablets. Beginning in 1992, to reflect secular trends in aspirin use, participants were also asked to convert intake of 4 baby (81 mg) aspirin to 1 standard aspirin tablet in their responses. Aspirin dose was assessed using cumulative mean of tablets per week, which was the mean of all available data up to the start of each 2-year follow-up interval. We further evaluated duration of regular aspirin use (in years).⁵ As previously described,¹⁴ the major reasons for aspirin use among women were headache, arthritis and other musculoskeletal pain, and cardiovascular disease prevention. Among men, the major reasons were cardiovascular disease prevention, musculoskeletal pain, cardiovascular disease, and headache.

Assessment of colorectal cancer cases

Incident colorectal cancer cases were ascertained by biennial questionnaire, the use of the National Death Index, and medical record review. Study physicians, unaware of exposure information, reviewed medical and pathological records to retrieve information on tumor location and disease stage. Considering the colorectal continuum model,^{15,16} we combined rectal and colon cancers to maximize statistical power. We collected available tumor specimens from pathology laboratories across the U.S. As previously reported, the baseline characteristics of participants with colorectal cancer with available tissue molecular data were similar to those of participants without available molecular data.¹⁷ A single pathologist (S.O.) reviewed tumor tissue slides, and recorded pathological features.

"Pyrosequencing of BRAF, KRAS and PIK3CA, and other tumor molecular analyses

DNA was extracted from paraffin-embedded archival tumor tissue.¹³ PCR and Pyrosequencing were performed for *BRAF* (HGNC ID, HGNC:1097; GenBank: NM_004333) codon 600,¹⁸ *KRAS* (HGNC ID, HGNC:6407; GenBank: NM_033360) codons 12 and 13,¹⁹ and *PIK3CA* (HGNC ID, HGNC:8975; GenBank: NM_006218) exons 9 and 20.²⁰ Microsatellite instability, CpG island methylator phenotype, and LINE-1 methylation, which were used in survival analysis models, were assessed as previously described.^{21–24}

Immunohistochemistry for PTGS2 expression

PTGS2 immunohistochemistry was performed using anti-PTGS2 (cyclooxygenase-2) antibody (Cayman Chemical; dilution 1:300), as previously described.⁵ A single investigator (S.O.), unaware of other data, interpreted tumor PTGS2 expression level (absent, weak, moderate, or strong), compared to adjacent normal colonic epithelium. A random sample of 124 cancers was examined by a second investigator (T.M.), and concordance between the two observers was 0.85 (κ =0.69, P<0.0001).

Statistical analysis

A detailed description of the statistical analysis, including our analysis of cancer mortality, is provided in the Online-Only Material. We used SAS software (Version 9.2, SAS Institute, Cary, NC) for all statistical analyses. All *P* values were two-sided and a *P* value less than 0.05 was considered statistically significant. We included participants who provided baseline data on aspirin use in 1980 in the NHS, and in 1986 in the HPFS. We excluded participants with a history of cancer (except for non-melanoma skin cancer), inflammatory bowel disease, or familial polyposis at baseline. We followed participants from the date of return of the baseline questionnaire, through July 1, 2006 for cancer incidence analysis, and through January 1, 2012 for cancer mortality analysis. Participants who died from causes other than colorectal cancer were censored.

To examine differential associations of aspirin use with colorectal cancer risk by tumor molecular subtype, we used Cox proportional cause-specific hazards regression model with a duplication method for competing risks data. This method permits estimation of separate associations of a risk factor (i.e., aspirin use) with each tumor subtype, and has been employed to assess whether a risk factor has statistically different regression coefficients for different tumor subtypes.^{5,25} In incidence analysis of one subtype, incidence of the other tumor subtype or tumor of unknown subtype was treated as censored data. A test of heterogeneity was conducted using a likelihood ratio test that compared the model that allowed for different associations. Trend tests across categories of aspirin dose, and duration of regular use, were performed by assigning median values for these categories and

treating the variables as continuous terms in the model. All analyses were stratified by age (in months), sex (in the combined cohort analysis), and calendar year of the questionnaire cycle. Multivariable HRs were further adjusted for body mass index, family history of colorectal cancer in any first-degree relative, smoking status, lower endoscopy status, postmenopausal hormone use (for women only), history of diabetes, history of cardiovascular disease, physical activity, red meat intake, alcohol consumption, total caloric intake, folate intake, calcium intake, and current multivitamin use. Because information on other relevant medications (cholesterol-lowering drugs, anti-hypertensive drugs, and nonsteroidal anti-inflammatory drugs) was comprehensively collected beginning in 1990 onward in the NHS, we conducted a sensitivity analysis using data from 1990 for the NHS, and from 1986 for the HPFS to include these factors in our multivariable model. We used the most updated available information for all variables prior to each two-year follow-up period, and modeled all variables as time-varying variables to take into account potential changes over follow-up time. If participants missed aspirin or other covariates information in biennial questionnaires, we used most recent available information from the past questionnaires.

RESULTS

Aspirin use and colorectal cancer risk according to BRAF status

At the baseline, there were 82,095 women in the Nurses' Health Study (NHS) and 45,770 men in the Health Professionals Follow-up Study (HPFS). Table 1 shows the demographic characteristics of the participants in 1994 according to regular aspirin use status. During 28 years and 3,165,985 person-years of follow-up, we documented 1,226 incident cases of colorectal cancer (41% of all colorectal cancer cases) with available tissue molecular data. As previously reported,⁵ both women and men who used aspirin regularly had a significantly lower overall risk of colorectal cancer compared with non-users (Table 2). Multivariable-adjusted models yielded similar risk estimates to age-adjusted models.

For *BRAF*-wild-type cancer, age-adjusted incidence rates (IRs) per 100,000 person-years were 40.2 (95% CI, 38.4–42.0) among non-users and 30.5 (95% CI, 28.2–32.9) among regular aspirin users. Regular aspirin use was associated with a significantly lower risk of *BRAF*-wild-type cancer (multivariable HR=0.73 [95% CI, 0.64–0.83]; age-adjusted incidence rate difference [IRD]=–9.7 [95% CI, -12.6 to -6.7] per 100,000 person-years). For *BRAF*-mutated cancer, age-adjusted IRs per 100,000 person-years were 5.0 (95% CI, 4.4–5.6) among non-users and 5.7 (95% CI, 4.9–6.5) among regular aspirin users. Regular aspirin use was not associated with a lower risk of *BRAF*-mutated cancer (multivariable HR=1.03 [95% CI, 0.76–1.38]; age-adjusted IRD=0.7 [95% CI, -0.3 to 1.7] per 100,000 person-years). The association of aspirin use with colorectal cancer risk differed significantly according to *BRAF* mutation status (*P*_{heterogeneity}=0.037). In a sensitivity analysis that included use of cholesterol-lowering drugs, anti-hypertensive drugs, and non-steroidal anti-inflammatory drugs in the multivariable model, we found that inclusion of the medication data in the model did not substantially alter the results (eTable 1).

We observed a lower risk of *BRAF*-wild-type cancer with increasing aspirin tablets per week (P_{trend} <0.0001), while we did not observe a significant trend in risk reduction for *BRAF*-mutated cancer (P_{trend} =0.62) (Table 3). The association of aspirin tablets per week with cancer risk differed significantly by *BRAF* mutation status ($P_{heterogeneity}$ =0.005). Compared with individuals who reported no aspirin use (age-adjusted IR=36.6 [95% CI, 34.4–38.7] per 100,000 person-years), a significantly lower risk of *BRAF*-wild-type cancer was observed among individuals who used 6–14 tablets of aspirin per week (age-adjusted IR=26.8 [95% CI, 24.1–29.4] per 100,000 person-years) (multivariable HR=0.70 [95% CI, 0.55–0.88]; age-adjusted IRD=–9.8 [95% CI, -13.2 to –6.4] per 100,000 person-years) and

among those who used more than 14 tablets of aspirin per week (age-adjusted IR=16.8 [95% CI, 10.7–22.9] per 100,000 person-years) (multivariable HR=0.43 [95% CI, 0.25–0.75]; age-adjusted IRD=-19.8 [95% CI, -26.3 to -13.3] per 100,000 person-years).

We further examined the association between duration of regular aspirin use and colorectal cancer risk by *BRAF* mutation status (Table 4). Longer duration of aspirin use was associated with significant risk reduction for *BRAF*-wild-type cancer (P_{trend} <0.0001), while duration of aspirin use was not significantly associated with *BRAF*-mutated cancer risk (P_{trend} =0.37). However, a formal test for heterogeneity of the association according to *BRAF* mutation status did not reach statistical significance ($P_{heterogeneity}$ =0.17).

Aspirin and cancer risk according to BRAF status, in strata of PTGS2 (cyclooxygenase-2) expression, PIK3CA mutation, or KRAS mutation status

In an earlier study using these cohorts,⁵ we demonstrated that regular aspirin use was associated with a lower risk of PTGS2-positive cancer, but not with PTGS2-negative cancer risk. We evaluated the association between aspirin use and *BRAF*-wild-type cancer risk by strata of tumor PTGS2 expression (Table 5). Regular aspirin use was associated with a significantly lower risk of *BRAF*-wild-type PTGS2-positive cancer (multivariable HR=0.67 [95% CI, 0.56–0.81]; age-adjusted IRD=–7.2 [95% CI, –9.7 to –4.6] per 100,000 person-years). These data suggest that the association between aspirin use and a lower risk of *BRAF*-wild-type cancer is primarily confined to tumors positive for PTGS2 (Table 5).

In the analysis of combined *BRAF*/*PIK3CA* mutation status, regular aspirin use appeared to be associated with a lower risk of *BRAF*-wild-type cancer, regardless of *PIK3CA* mutation status (eTable 2). Moreover, the association between regular aspirin use and a lower risk of *BRAF*-wild-type cancer appeared to be independent of *KRAS* mutation status (eTable 3).

Post-diagnosis aspirin use and patient survival according to BRAF status

We did not observe significant interaction between post-diagnosis aspirin use and *BRAF* mutation status in cancer-specific or overall survival analysis (eTable 4). Further analysis of survival among patients with colorectal cancer according to post-diagnosis aspirin use and combined *BRAF* / *PIK3CA* mutation status had limited statistical power (eTable 4).

DISCUSSION

In two large prospective cohort studies, we found that regular aspirin use was associated with a lower risk of *BRAF*-wild-type colorectal cancer, but not with *BRAF*-mutated cancer risk. The lower *BRAF*-wild-type cancer risk was more pronounced with increasing aspirin tablets per week. Furthermore, the association of aspirin use with lower cancer risk appeared to be most evident for *BRAF*-wild-type PTGS2-positive cancer, whereas aspirin use was not associated with *BRAF*-mutated cancer regardless of tumor PTGS2 expression status. These findings support the hypothesis that *BRAF*-mutated cells may show resistance to the anticancer effects of aspirin due to upregulation of the MAPK pathway. Previous experimental studies have shown that activating *BRAF* mutation results in MAPK-mediated upregulation of PTGS2, and prostaglandin E2 production.^{11,12,26} Considering that *BRAF*-mutation might constitutively upregulate PTGS2 activity, we speculate that, within *BRAF*-mutatin neoplastic cells, PTGS2 may be persistently active even with low expression level, potentially conferring resistance to the effect of aspirin. In contrast, within *BRAF*-wild-type cells, PTGS2 may be relatively inducible and overexpression of PTGS2 may function as a marker of a tumor cell that may be more susceptible to the effects of aspirin. The exact

mechanisms underlying the interplay of aspirin, PTGS2, and *BRAF* mutation need to be elucidated by further investigations.

There was no statistically significant interaction between post-diagnosis aspirin use and *BRAF* mutation status in colorectal cancer-specific or overall survival analysis. This suggests that, the potential protective effect of aspirin may differ by *BRAF* status in the early phase of tumor evolution before clinical detection, but not during later phases of tumor progression. One reason for these seemingly discrepant findings in cancer incidence analysis compared with cancer survival analysis may be related to differences in the effect of aspirin according to tumor microenvironmental changes. During tumor evolution, colonic cells encounter multifactorial molecular events, including changes in genome, epigenome, proteome, metabolome, and interactome. Thus, the interactive effect of aspirin use and tumor molecular characteristics might vary as a tumor's microenvironment evolves.

The association between regular aspirin use and a lower risk of *BRAF*-wild-type cancer appeared independent of *PIK3CA* and *KRAS* mutation status. Together with our previous data,¹³ the interplay between aspirin and *PIK3CA* mutation status may be operative in later phases rather than earlier phases of tumor evolution.

The identification of specific cancer subtypes that are prevented by aspirin is important for several reasons.^{7,27} Firstly, it enhances our understanding of the molecular pathogenesis of colorectal neoplasia and the mechanisms through which aspirin may exert its anti-neoplastic effects. Secondly, development of clinical, genetic, or molecular predictors of specific subtypes of colorectal cancer might lead to the development of more tailored screening or chemopreventive strategies. Nonetheless, given the modest absolute risk difference, further investigations are necessary to evaluate clinical implications of our findings. Lastly, our data provide additional support for a causal association between aspirin use and risk reduction for a specific subtype of colorectal cancer.^{1–3,28–30} The findings of clinical studies in Lynch syndrome mutation carriers further support our results since the vast majority of cancers associated with Lynch syndrome are *BRAF*-wild-type.³¹

Several attributes of the NHS and the HPFS cohorts strengthen our study and its findings. Firstly, because updated information on aspirin use was prospectively collected over 28 years, we were able to assess the long-term association of aspirin exposure with colorectal cancer, which can take many years to evolve. Secondly, our detailed, updated exposure data allowed us to control for the effects of potential confounding by other dietary and lifestyle factors implicated in colorectal carcinogenesis. Thirdly, our present study exploits a molecular pathological epidemiology (MPE) analytic approach,^{8,32} which has enabled us to elucidate the association between a specific exposure and molecular subtype of cancer, to provide better insight into disease pathogenesis. ^{13,33–40}

Our study has limitations. The possibility of residual confounding by measured or unmeasured factors cannot be excluded. Although colorectal cancer case ascertainment was well established in our cohorts, we were not able to retrieve tissue specimens from all incident cancers. Statistical power was limited, especially in the analysis of the number of aspirin tablets per week, due to *BRAF* mutations present in only approximately 10-15% of colorectal cancers.^{10,15,41-43} The vast majority of participants were non-Hispanic Caucasians, and our findings may not be generalizable to other ethnic groups. Although our current study represented a hypothesis-driven analysis, we are aware of the various caveats associated with MPE and tumor subtype analyses.^{8,32} Our results must be validated by independent studies, and further investigations are necessary to confirm the association of aspirin use with a lower risk of *BRAF*-wild-type cancer independent of other tumor markers.

In summary, regular aspirin use was associated with lower risk of *BRAF*-wild-type colorectal cancer, but not with *BRAF*-mutated cancer risk. Nonetheless, given the modest absolute risk difference, further investigations are necessary to determine clinical implications of our findings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Funding

This work was supported by U.S. National Institute of Health (NIH) grants [P01 CA87969 to S.E. Hankinson; P01 CA55075 to W.C. Willett; UM1 CA167552 to W.C. Willett; P50 CA127003 to C.S.F.; R01 CA137178 to A.T.C.; K24 DK098311 to A.T.C.; and R01 CA151993 to S.O.]; the Bennett Family Fund for Targeted Therapies Research; and the National Colorectal Cancer Research Alliance. P.L. is a Scottish Government Clinical Academic Fellow and was supported by a Harvard University Frank Knox Memorial Fellowship. A.T.C. is a Damon Runyon Clinical Investigator. The content is solely the responsibility of the authors and does not necessarily represent the official views of NIH or the Damon Runyon Cancer Research Foundation.

Role of the sponsor

The sponsors did not have any role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript.

We deeply thank participants of the Nurses' Health Study and the Health Professionals Follow-up Study who provided us with information through questionnaires, and biological specimens. We are grateful to hospitals and pathology departments throughout the U.S. for generously providing us with tissue specimens. In addition, we would like to thank the staff of the Nurses' Health Study and the Health Professionals Follow-Up Study for their valuable contributions, the state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY.

Abbreviations

CI	confidence interval
CIMP	CpG island methylator phenotype
HPFS	Health Professionals Follow-up Study
HR	hazard ratio
IR	incidence rate
IRD	incidence rate difference
LINE-1	long interspersed nucleotide element 1
МАРК	mitogen-activated protein kinase
MPE	molecular pathological epidemiology
MSI	microsatellite instability
MSS	microsatellite stable
NHS	Nurses' Health Study

References

- Flossmann E, Rothwell PM. Effect of aspirin on long-term risk of colorectal cancer: consistent evidence from randomised and observational studies. Lancet. 2007; 369(9573):1603–1613. [PubMed: 17499602]
- Rothwell PM, Wilson M, Elwin CE, et al. Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet. 2010; 376(9754):1741–1750. [PubMed: 20970847]
- Burn J, Gerdes AM, Macrae F, et al. Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial. Lancet. 2011; 378(9809):2081–2087. [PubMed: 22036019]
- 4. Wang D, Xia D, DuBois RN. The crosstalk of PTGS2 and EGF signaling pathways in colorectal cancer. Cancers. 2011; 3(4):3894–3908.
- Chan AT, Ogino S, Fuchs CS. Aspirin and the risk of colorectal cancer in relation to the expression of COX-2. N Engl J Med. 2007; 356(21):2131–2142. [PubMed: 17522398]
- Ogino S, Fuchs CS, Giovannucci E. How many molecular subtypes? Implications of the unique tumor principle in personalized medicine. Expert Rev Mol Diagn. 2012; 12(6):621–628. [PubMed: 22845482]
- Thun MJ, Jacobs EJ, Patrono C. The role of aspirin in cancer prevention. Nat Rev Clin Oncol. 2012; 9(5):259–267. [PubMed: 22473097]
- Ogino S, Chan AT, Fuchs CS, Giovannucci E. Molecular pathological epidemiology of colorectal neoplasia: an emerging transdisciplinary and interdisciplinary field. Gut. 2011; 60(3):397–411. [PubMed: 21036793]
- Lao VV, Grady WM. Epigenetics and colorectal cancer. Nat Rev Gastroenterol Hepatol. 2011; 8(12):686–700. [PubMed: 22009203]
- Phipps AI, Buchanan DD, Makar KW, et al. BRAF Mutation Status and Survival after Colorectal Cancer Diagnosis According to Patient and Tumor Characteristics. Cancer Epidemiol Biomarkers Prev. 2012; 21(10):1792–1798. [PubMed: 22899730]
- Wagner EF, Nebreda AR. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer. 2009; 9(8):537–549. [PubMed: 19629069]
- Sumimoto H, Imabayashi F, Iwata T, Kawakami Y. The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J Exp Med. 2006; 203(7):1651– 1656. [PubMed: 16801397]
- 13. Liao X, Lochhead P, Nishihara R, et al. Aspirin Use, Tumor PIK3CA Mutation Status, and Colorectal Cancer Survival. N Engl J Med. 2012; 367(17):1596–1606. [PubMed: 23094721]
- Chan AT, Ogino S, Fuchs CS. Aspirin use and survival after diagnosis of colorectal cancer. JAMA. 2009; 302(6):649–658. [PubMed: 19671906]
- Yamauchi M, Morikawa T, Kuchiba A, et al. Assessment of colorectal cancer molecular features along bowel subsites challenges the conception of distinct dichotomy of proximal versus distal colorectum. Gut. 2012; 61(6):847–854. [PubMed: 22427238]
- Yamauchi M, Lochhead P, Morikawa T, et al. Colorectal cancer: a tale of two sides or a continuum? Gut. 2012; 61(6):794–797. [PubMed: 22490520]
- Morikawa T, Kuchiba A, Yamauchi M, et al. Association of CTNNB1 (beta-catenin) alterations, body mass index, and physical activity with survival in patients with colorectal cancer. JAMA. 2011; 305(16):1685–1694. [PubMed: 21521850]
- Ogino S, Kawasaki T, Kirkner GJ, Loda M, Fuchs CS. CpG island methylator phenotype-low (CIMP-low) in colorectal cancer: possible associations with male sex and KRAS mutations. J Mol Diagn. 2006; 8(5):582–588. [PubMed: 17065427]
- Ogino S, Kawasaki T, Brahmandam M, et al. Sensitive sequencing method for KRAS mutation detection by Pyrosequencing. J Mol Diagn. 2005; 7(3):413–421. [PubMed: 16049314]
- 20. Liao X, Morikawa T, Lochhead P, et al. Prognostic role of PIK3CA mutation in colorectal cancer: cohort study and literature review. Clin Cancer Res. 2012; 18(8):2257–2268. [PubMed: 22357840]

- Ogino S, Nosho K, Kirkner GJ, et al. CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut. 2009; 58(1):90–96. [PubMed: 18832519]
- Nosho K, Irahara N, Shima K, et al. Comprehensive biostatistical analysis of CpG island methylator phenotype in colorectal cancer using a large population-based sample. PLoS One. 2008; 3(11):e3698. [PubMed: 19002263]
- Ogino S, Nosho K, Kirkner GJ, et al. A cohort study of tumoral LINE-1 hypomethylation and prognosis in colon cancer. J Natl Cancer Inst. 2008; 100(23):1734–1738. [PubMed: 19033568]
- Irahara N, Nosho K, Baba Y, et al. Precision of pyrosequencing assay to measure LINE-1 methylation in colon cancer, normal colonic mucosa, and peripheral blood cells. J Mol Diagn. 2010; 12(2):177–183. [PubMed: 20093385]
- 25. Ogino S, Nishihara R, Lochhead P, et al. Prospective Study of Family History and Colorectal Cancer Risk by Tumor LINE-1 Methylation Level. J Natl Cancer Inst. 2013; 105(2):130–140. [PubMed: 23175808]
- Chang MS, Chen BC, Weng CM, Lee WS, Lin CH. Involvement of Ras/Raf-1/p44/42 MAPK in YC-1-induced cyclooxygenase-2 expression in human pulmonary epithelial cells. Pharmacol Res. 2009; 60(4):247–253. [PubMed: 19717011]
- 27. Chia WK, Ali R, Toh HC. Aspirin as adjuvant therapy for colorectal cancer-reinterpreting paradigms. Nat Rev Clin Oncol. 2012; 9(10):561–570. [PubMed: 22910681]
- Rothwell PM, Price JF, Fowkes FG, et al. Short-term effects of daily aspirin on cancer incidence, mortality, and non-vascular death: analysis of the time course of risks and benefits in 51 randomised controlled trials. Lancet. 2012; 379(9826):1602–1612. [PubMed: 22440946]
- 29. Dube C, Rostom A, Lewin G, et al. The use of aspirin for primary prevention of colorectal cancer: a systematic review prepared for the U.S. Preventive Services Task Force. Ann Intern Med. 2007; 146(5):365–375. [PubMed: 17339622]
- 30. Bosetti C, Rosato V, Gallus S, Cuzick J, La Vecchia C. Aspirin and cancer risk: a quantitative review to 2011. Ann Oncol. 2012; 23(6):1403–1415. [PubMed: 22517822]
- Funkhouser WK Jr, Lubin IM, Monzon FA, et al. Relevance, pathogenesis, and testing algorithm for mismatch repair-defective colorectal carcinomas: a report of the association for molecular pathology. J Mol Diagn. 2012; 14(2):91–103. [PubMed: 22260991]
- Ogino S, Stampfer M. Lifestyle factors and microsatellite instability in colorectal cancer: the evolving field of molecular pathological epidemiology. J Natl Cancer Inst. 2010; 102(6):365–367. [PubMed: 20208016]
- 33. Razzak AA, Oxentenko AS, Vierkant RA, et al. Associations Between Intake of Folate and Related Micronutrients with Molecularly Defined Colorectal Cancer Risks in the Iowa Women's Health Study. Nutr Cancer. 2012; 64(7):899–910. [PubMed: 23061900]
- 34. Gay LJ, Mitrou PN, Keen J, et al. Dietary, lifestyle and clinico-pathological factors associated with APC mutations and promoter methylation in colorectal cancers from the EPIC-Norfolk Study. J Pathol. 2012; 228(3):405–415. [PubMed: 22864938]
- 35. Curtin K, Samowitz WS, Ulrich CM, et al. Nutrients in folate-mediated, one-carbon metabolism and the risk of rectal tumors in men and women. Nutr Cancer. 2011; 63(3):357–366. [PubMed: 21462086]
- 36. Shigaki H, Baba Y, Watanabe M, et al. LINE-1 Hypomethylation in Noncancerous Esophageal Mucosae is Associated with Smoking History. Ann Surg Oncol. 2012; 19(13):4238–4243. [PubMed: 22766991]
- Hughes LA, Simons CC, van den Brandt PA, et al. Body size, physical activity and risk of colorectal cancer with or without the CpG island methylator phenotype (CIMP). PLoS One. 2011; 6(4):e18571. [PubMed: 21483668]
- Rosty C, Young JP, Walsh MD, et al. Colorectal carcinomas with KRAS mutation are associated with distinctive morphological and molecular features. Mod Pathol. 2013; 26(6):825–834. [PubMed: 23348904]
- Buchanan DD, Win AK, Walsh MD, et al. Family History of Colorectal Cancer in BRAF p. V600E-Mutated Colorectal Cancer Cases. Cancer Epidemiol Biomarkers Prev. 2013; 22(5):917– 926. [PubMed: 23462926]

- Burnett-Hartman AN, Newcomb PA, Potter JD, et al. Genomic Aberrations Occurring in Subsets of Serrated Colorectal Lesions but not Conventional Adenomas. Cancer Res. 2013; 73(9):2863– 2872. [PubMed: 23539450]
- 41. Popovici V, Budinska E, Tejpar S, et al. Identification of a poor-prognosis BRAF-mutant-like population of patients with colon cancer. J Clin Oncol. 2012; 30(12):1288–1295. [PubMed: 22393095]
- 42. Gavin P, Colangelo LH, Fumagalli D, et al. Mutation Profiling and Microsatellite Instability in Stage II and III Colon Cancer: An Assessment of their Prognostic and Oxaliplatin Predictive Value. Clin Cancer Res. 2012; 18(23):6531–6541. [PubMed: 23045248]
- Zlobec I, Bihl M, Foerster A, Rufle A, Lugli A. Comprehensive analysis of CpG Island Methylator Phenotype (CIMP)-high, -low, and -negative colorectal cancers based on protein marker expression and molecular features. J Pathol. 2011; 225(3):336–343. [PubMed: 21660972]

NIH-PA Author Manuscript

Nishihara et al.

Table 1

Age-adjusted demographic characteristics according to regular a spirin use status^a in 1994

	Women (the Nu	rses' Health Study)	Men (the Health Profe	ssionals Follow-up Study)		otal
	Non-users (N=50,771)	Regular users (N=32,692)	Non-users (N=23,817)	Regular users (n=19,498)	Non-users (N=74,588)	Regular users (N=52,190)
Age^{b} (year)	59.8 (7.1)	61.6 (7.0)	60.2 (9.4)	62.8 (9.4)	60.0 (7.9)	62.0 (8.0)
Body mass index (BMI, kg/m ²)	24.8 (4.2)	25.6 (4.7)	25.6 (3.4)	25.9 (3.3)	25.1 (4.0)	25.7 (4.2)
Family history of colorectal cancer in any first-degree relative, %	13	13	10	10	12	12
Smoking status, %						
Never	45	43	48	43	46	43
Former	41	43	44	50	42	46
Current	14	14	8	7	12	12
Lower endoscopy status, %						
No endoscopy	65	62	50	46	59	55
History of adenomatous polyps	2	2	ε	ю	0	7
Negative endoscopy $^{\mathcal{C}}$	33	36	47	52	38	43
History of diabetes, %	9	8	5	6	6	7
History of cardiovascular disease, %	9	13	∞	22	L	16
Postmenopausal hormone use (ever), %	64	70	·	ı	·	I
Physical activity, METs hours/ week d	17.2 (17.9)	16.6 (17.4)	30.6 (29.1)	31.4 (28.7)	21.6 (23.1)	22.3 (23.5)
Red meat intake, servings/day	1.0 (0.5)	1.1 (0.5)	1.2 (0.9)	1.2 (0.9)	1.1 (0.7)	1.1 (0.7)
Alcohol consumption, g/day	5.7 (8.8)	6.2 (9.2)	10.2 (13.6)	11.5 (14.0)	7.1 (10.8)	8.2 (11.5)
Total calories, Kcal/day	1,684 (425)	1,728 (429)	1,962 (554)	1,983 (549)	1,773 (488)	1,823 (493)
Folate intake, µg/day	395 (187)	416 (177)	484 (233)	520 (233)	423 (207)	455 (206)
Calcium intake, mg/day	907 (329)	950 (338)	893 (358)	918 (353)	903 (338)	938 (344)
Multivitamin use, %	44	51	43	54	43	52
Cholesterol-lowering drug use, %	9	6	4	11	5	10
Anti-hypertensive drug use, %	23	35	17	29	21	33

Non-steroidal anti- inflammatory drug use, %Non-users (N=37,692)Non-users (N=33,817)Regular users (n=19,498)Non-users (N=74,588)Regular users (N=<74,588)		Women (the Nu	irses' Health Study)	Men (the Health Profe	ssionals Follow-up Study)		[otal
Non-steroidal anti- inflammatory drug use, %183210131625BMI, body mass index; MET, metabolic equivalent task.Values are means (standard deviation) or percentages, and are standardized to the age distribution of the study population. ^{an} ^{an} ^{bn}		Non-users (N=50,771)	Regular users (N=32,692)	Non-users (N=23,817)	Regular users (n=19,498)	Non-users (N=74,588)	Regular users (N=52,190)
BMI, body mass index; MET, metabolic equivalent task. Values are means (standard deviation) or percentages, and are standardized to the age distribution of the study population. ^a In the NHS, regular aspirin use was defined as the consumption of at least two 325 mg tablets per week and non-use was defined as consumption of fewer than two tablets per week. In the HPFS, aspirin use was defined as the consumption of aspirin at least two times per week and non-use was defined as the consumption of rewer than two times per week. In the HPFS, by value is not age adjusted.	Non-steroidal anti- inflammatory drug use, %	18	32	10	13	16	25
Values are means (standard deviation) or percentages, and are standardized to the age distribution of the study population. ⁴ In the NHS, regular aspirin use was defined as the consumption of at least two 325 mg tablets per week and non-use was defined as consumption of fewer than two tablets per week. In the HPFS, aspirin use was defined as the consumption of aspirin at least two times per week and non-use use was defined as the consumption of aspirin serveek.	BMI, body mass index; MET, m	tabolic equivalent task.					
a In the NHS, regular aspirin use was defined as the consumption of at least two 325 mg tablets per week and non-use was defined as consumption of fewer than two tablets per week. In the HPFS, aspirin use was defined as the consumption of aspirin fewer than two times per week. In the HPFS, by value is not age adjusted.	Values are means (standard devi:	tion) or percentages, and are	e standardized to the age distrib	oution of the study populati	on.		
b Value is not age adjusted.	^a In the NHS, regular aspirin use aspirin use aspirin use was defined as the co	vas defined as the consumpt isumption of aspirin at least	ion of at least two 325 mg tabl two times per week and non-us	ets per week and non-use v se use was defined as the c	vas defined as consumption of onsumption of aspirin fewer th	fewer than two tablets per aan two times per week.	week. In the HPFS, regular
	$b_{Value is not age adjusted.}$						

Nishihara et al.

 ^{d}MET calculated according to the frequency of a range of physical activities in 1986 for both women and men.

 $\boldsymbol{c}^{t}_{}$ Endoscopy without detection of a denomatous polyps or cancer.

_
~
_
U
~
-
-
~
-
<u> </u>
—
_
\sim
0
_
•
_
~
>
0
~
-5
-
<u> </u>
-
()
~
0
~
<u> </u>
0
<u> </u>

NIH-PA Author Manuscript

Table 2

Regular use of aspirin^a and incident colorectal cancer by BRAF mutation status

	Women (the N	urses' Health Study)	<u>Men (the Health Prof</u>	<u>essionals Follow-up Study)</u>		Total	
	Non-users	Regular users	Non-users	Regular users	Non-users	Regular users	$P_{ m heterogeneity}{b}$
Person-years	1,364,173	907,622	484,644	409,545	1,848,818	1,317,167	
All colorectal cancer							
N	440	245	294	247	734	492	
Age-adjusted HR (95% CI)	1 [referent]	0.73 (0.63–0.86)	1 [referent]	0.82 (0.69–0.97)	1 [referent]	0.77 (0.68–0.86)	
Multivariable HR (95% CI) $^{\mathcal{C}}$	1 [referent]	0.72 (0.61–0.84)	1 [referent]	0.86 (0.72–1.03)	1 [referent]	0.77 (0.68–0.87)	
BRAF-wild-type cancer							
Ν	364	183	274	223	638	406	
Age-adjusted HR (95% CI)	1 [referent]	0.67 (0.56–0.81)	1 [referent]	0.79 (0.66–0.95)	1 [referent]	0.73 (0.64–0.83)	
Multivariable HR (95% CI) $^{\mathcal{C}}$	1 [referent]	0.66 (0.55–0.79)	1 [referent]	$0.84\ (0.69{-}1.01)$	1 [referent]	0.73 (0.64–0.83)	0.037
BRAF -mutated cancer							
Ν	76	62	20	24	96	86	
Age-adjusted HR (95% CI)	1 [referent]	0.99 (0.71–1.39)	1 [referent]	1.14(0.62 - 2.09)	1 [referent]	1.03 (0.77–1.38)	
Multivariable HR (95% CI) $^{\mathcal{C}}$	1 [referent]	0.98 (0.70–1.38)	1 [referent]	1.18 (0.64–2.16)	1 [referent]	1.03 (0.76–1.38)	
CI, confidence interval; HR, hazard	d ratio; N, numbe	r of cases.					

^a In the NHS, regular aspirin use was defined as the consumption of at least two 325 mg tablets per week and non-use was defined as consumption of fewer than two tablets per week. In the HPFS, regular aspirin use was defined as the consumption of aspirin at least two times per week and non-use was defined as the consumption of aspirin fewer than two times per week.

 ^{b}P for heterogeneity test for the heterogeneity of the association of regular aspirin use with colorectal cancer defined by molecular subtype.

equivalent (MET) task hours per week], red meat intake (quintiles of servings/day), total calorie intake (quintiles of g/day), folate intake (quintiles of g/day), folate intake (quintiles of g/day), folate intake (quintiles of g/day), total calorie intake (quintiles of g/day), folate intake (quintiles of g/day), fola CMultivariable HR was further adjusted for body mass index (<25 vs. 25–30 vs. 30 kg/m²), smoking status (never vs. former vs. current), family history of colorectal cancer in any first-degree relative, endoscopy status (no endoscopy vs. history of adenomatous polyps vs. negative endoscopy), history of diabetes, history of cardiovascular disease, physical activity level [quintiles of mean metabolic day), calcium intake (quintiles of mg/day), and current multivitamin use. Models were adjusted for postmenopausal hormone use in the analyses of women.

_
_
_
_
_
_
U
-
D
-
-
~
_
<u> </u>
_
-
\sim
\mathbf{U}
_
_
<
-
01
L L
_
_
-
-
_
0
~
()
~
-
\mathbf{U}
t

Table 3

Aspirin tablets per week^a and incident colorectal cancer by BRAF mutation status

		Number	of aspirin tablets u	ised per week			
	0	0.5-1.5	2-5	6–14	>14	$P_{\mathrm{trend}}^{}b$	$P_{ m heterogeneity}^{c}$
Person-years	607,248	1,055,816	632,189	441,965	112,975		
All colorectal cancer							
N	207	447	247	165	22		
Age-adjusted HR (95% CI)	1 [referent]	1.03 (0.87–1.22)	0.83 (0.69–1.01)	0.74 (0.60–0.91)	0.56 (0.36–0.87)	<0.0001	
Multivariable HR (95% $CI)^d$	1 [referent]	1.06 (0.89–1.26)	0.86 (0.71–1.04)	0.74 (0.60–0.92)	0.56 (0.36–0.88)	<0.0001	
BRAF-wild-type cancer							
Ν	178	377	213	130	14		
Age-adjusted HR (95% CI)	1 [referent]	1.05 (0.87–1.27)	$0.86\ (0.70{-}1.05)$	0.69 (0.55–0.87)	0.43 (0.25–0.75)	<0.0001	
Multivariable HR (95% CI) ^d	1 [referent]	1.08 (0.90–1.31)	0.88 (0.72–1.08)	0.70 (0.55–0.88)	0.43 (0.25–0.75)	<0.0001	0.005
BRAF -mutated cancer							
Ν	29	70	34	35	×		
Age-adjusted HR (95% CI)	1 [referent]	0.92 (0.59–1.42)	0.70 (0.42–1.16)	0.96 (0.59–1.58)	1.13 (0.51–2.50)	0.63	
Multivariable HR (95% CI) ^d	1 [referent]	0.97 (0.62–1.51)	0.73 (0.44–1.21)	0.99 (0.60–1.63)	1.20 (0.54–2.64)	0.62	

⁵ Standard-dose (325 mg)-equivalent tables per week. Analysis in the Health Professionals Follow-up Study was confined to follow-up after 1992, the baseline questionnaire in which we began to routinely collect information on aspirin tablets per week.

 $\boldsymbol{b}_{\text{Based}}$ on the liner trend test by using the median value of each category.

^c Pfor heterogeneity tests for the heterogeneity of the linear association of aspirin dose with colorectal cancer defined by molecular subtype.

equivalent (MET) task hours per week], red meat intake (quintiles of servings/day), total calorie intake (quintiles of kcal/day), alcohol consumption (0 or quartiles of g/day), folate intake (quintiles of hg/ d Multivariable HR was further adjusted for body mass index (<25 vs. 25–30 vs. 30 kg/m²), smoking status (never vs. former vs. current), family history of colorectal cancer in any first-degree relative, endoscopy status (no endoscopy vs. history of adenomatous polyps vs. negative endoscopy), history of diabetes, history of cardiovascular disease, physical activity level [quintiles of mean metabolic day), calcium intake (quintiles of mg/day), and current multivitamin use.

~
~
_
_
0
~
-
-
<u> </u>
<u> </u>
_
=
0
<u> </u>
_
_
~
<u> </u>
=
-
<u> </u>
10
0,
0
U
0
<u> </u>

NIH-PA Author Manuscript

Table 4

Duration of regular aspirin use^a and incident colorectal cancer by BRAF mutation status

		Years of re	gular aspirin use			
	0	1-5	6-10	>10	$P_{\mathrm{trend}}{}^{b}$	$P_{ m heterogeneity}^{}c$
Person-years	1,162,522	644,890	550,075	808,498		
All colorectal cancer						
Ν	408	273	277	268		
Age-adjusted HR (95% CI)	1 [referent]	1.03 (0.88–1.20)	$0.94\ (0.81{-}1.10)$	0.69 (0.59–0.81)	<0.0001	
Multivariable HR (95% $CI)^d$	1 [referent]	1.04 (0.88–1.21)	0.96 (0.82–1.13)	0.69 (0.58–0.81)	<0.0001	
BRAF-wild-type cancer						
N	352	234	242	216		
Age-adjusted HR (95% CI)	1 [referent]	1.03 (0.87–1.22)	0.97 (0.82–1.15)	0.67 (0.56–0.80)	<0.0001	
Multivariable HR (95% CI) ^d	1 [referent]	1.03 (0.87–1.23)	0.98 (0.83–1.17)	0.66 (0.55–0.80)	<0.0001	0.17
BRAF -mutated cancer						
Ν	56	39	35	52		
Age-adjusted HR (95% CI)	1 [referent]	1.01 (0.67–1.52)	0.79 (0.52–1.22)	0.81 (0.55–1.20)	0.36	
Multivariable HR (95% CI) ^{d}	1 [referent]	1.04 (0.69–1.57)	0.82 (0.53–1.26)	0.82 (0.55–1.21)	0.37	
CI, confidence interval; HR, hazarc	d ratio; N, num	ber of cases.				

^a In the NHS, regular aspirin use was defined as the consumption of at least two 325 mg tablets per week. In the HPFS, regular aspirin use was defined as the consumption of aspirin at least two times per week.

b Based on the liner trend test by using the median value of each category.

^c Pfor heterogeneity tests for the heterogeneity of the linear association of aspirin duration with colorectal cancer defined by molecular subtype.

equivalent (MET) task hours per week], red meat intake (quintiles of servings/day), total calorie intake (quintiles of kcal/day), alcohol consumption (0 or quartiles of g/day), folate intake (quintiles of hg/ d Multivariable HR was further adjusted for body mass index (<25 vs. 25–30 vs. 30 kg/m²), smoking status (never vs. former vs. current), family history of colorectal cancer in any first-degree relative, endoscopy status (no endoscopy vs. history of adenomatous polyps vs. negative endoscopy), history of diabetes, history of cardiovascular disease, physical activity level [quintiles of mean metabolic day), calcium intake (quintiles of mg/day), and current multivitamin use.

Table 5

Regular use of aspirin^{*a*} and incident colorectal cancer by PTGS2 status, and combination of BRAF/PTGS2 status

	Non-users	Regular users	$P_{\rm heterogeneity}^{b}$
Person-years	1,848,818	1,317,167	
PTGS2 status			
PTGS2-negative cancer			
Ν	211	170	
Age-adjusted HR (95% CI)	1 [referent]	0.96 (0.79–1.18)	
Multivariable HR (95% CI) $^{\mathcal{C}}$	1 [referent]	0.96 (0.78–1.18)	0.013
PTGS2-positive cancer			
Ν	419	234	
Age-adjusted HR (95% CI)	1 [referent]	0.69 (0.59–0.81)	
Multivariable HR (95% CI) $^{\mathcal{C}}$	1 [referent]	0.69 (0.59–0.82)	
BRAF/PTGS2 status			
BRAF-wild-type PTGS2-negative cancer			0.018
Ν	166	119	
Age-adjusted HR (95% CI)	1 [referent]	0.85 (0.67–1.08)	
Multivariable HR (95% CI) ^C	1 [referent]	0.86 (0.67–1.09)	
BRAF-wild-type PTGS2-positive cancer			
Ν	355	191	
Age-adjusted HR (95% CI)	1 [referent]	0.67 (0.56–0.80)	
Multivariable HR (95% CI) $^{\mathcal{C}}$	1 [referent]	0.67 (0.56–0.81)	
BRAF-mutated PTGS2-negative cancer			
Ν	37	38	
Age-adjusted HR (95% CI)	1 [referent]	1.22 (0.77–1.93)	
Multivariable HR (95% CI) $^{\mathcal{C}}$	1 [referent]	1.23 (0.78–1.94)	
BRAF -mutated PTGS2-positive cancer			
Ν	34	34	
Age-adjusted HR (95% CI)	1 [referent]	1.21 (0.75–1.95)	
Multivariable HR (95% CI) ^C	1 [referent]	1.20 (0.74–1.94)	

CI, confidence interval; HR, hazard ratio; N, number of cases; PTGS2, prostaglandin-endoperoxide synthase 2.

^aIn the NHS, regular aspirin use was defined as the consumption of at least two 325 mg tablets per week and non-use was defined as consumption of fewer than two tablets per week. In the HPFS, regular aspirin use was defined as the consumption of aspirin at least two times per week and non-use was defined as the consumption of aspirin fewer than two times per week.

 ${}^{b}P$ for heterogeneity tests for the heterogeneity of the association of regular aspirin use with colorectal cancer defined by molecular subtype (i.e., the association for at least one subtype is significantly different from the association for at least one of the others).

 C Multivariable HR was further adjusted for body mass index (<25 vs. 25–30 vs. 30 kg/m²), smoking status (never vs. former vs. current), family history of colorectal cancer in any first-degree relative, endoscopy status (no endoscopy vs. history of adenomatous polyps vs. negative endoscopy), history of diabetes, history of cardiovascular disease, physical activity level [quintiles of mean metabolic equivalent (MET) task hours

Nishihara et al.

per week], red meat intake (quintiles of servings/day), total calorie intake (quintiles of kcal/day), alcohol consumption (0 or quartiles of g/day), folate intake (quintiles of μ g/day), calcium intake (quintiles of mg/day), and current multivitamin use.