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Measures of structural similarity between known protein structures
provide an objective basis for classifying protein folds and for reveal-
ing a global view of the protein structure universe. Here, we describe
a rapid method to measure structural similarity based on the profiles
of representative local features of C� distance matrices of compared
protein structures. We first extract a finite number of representative
local feature (LF) patterns from the distance matrices of all protein
fold families by medoid analysis. Then, each C� distance matrix of a
protein structure is encoded by labeling all its submatrices by the
index of the nearest representative LF patterns. Finally, the structure
is represented by the frequency distribution of these indices, which
we call the LF frequency (LFF) profile of the protein. The LFF profile
allows one to calculate structural similarity scores among a large
number of protein structures quickly, and also to construct and
update the ‘‘map’’ of the protein structure universe easily. The LFF
profile method efficiently maps complex protein structures into a
common Euclidean space without prior assignment of secondary
structure information or structural alignment.

protein structural similarity � protein distance matrix � local protein
structural features profile � protein fold � protein fold space

Recent advances of experimental techniques and automation in
molecular and structural biology have led to the rapid increase

in the determination of many protein structures. The number of
structures deposited in the Protein Data Bank (PDB) (1) is now
�20,000 and the contents are growing rapidly. Furthermore, the
ongoing structural genomics projects, which aim to determine
representative structures in protein fold space, have begun to
produce, in a high throughput way, a large number of structures (2),
including many structures of the proteins encoded by genes of
unknown functions, the ‘‘hypothetical’’ proteins. Over half of all of
the proteins of sequenced genomes has no inferable molecular
(biochemical and biophysical) functions. As sequence similarity
infers functional similarity, structural similarity also infers similarity
in molecular function: if a hypothetical protein has a structure
similar to one or more protein structures of known function, the
structural similarity infers a powerful clue to the molecular function
of the hypothetical protein (3).

Measures of structural similarity, assessed computationally or
visually, between pairs of proteins are also the foundation for
classifying protein structures. Many systems have been proposed for
structural classification, such as structural classification of proteins
(SCOP) (4), class architecture topology homology (CATH) (5),
families of structurally similar proteins (FSSP) (6), and others.
Measuring structural fold similarity is usually done by structural
alignment algorithms such as DALI (7), CE (8), VAST (9), SSAP (10),
and others. Most of these methods are computationally intensive
and time-consuming, especially when searching large databases,
due to intrinsic complexity of structural alignment. To shorten
computational time, several methods have been developed that do
not depend on the structural alignment, such as the methods based
on graph theory (11), secondary structure matching (www.ebi.
ac.uk�msd-srv�ssm�ssmstart.html), and C�–C� distances (12).

Methods
In developing our method for quickly assessing structural similarity,
we start with the distance matrix representation of protein struc-

ture. The distance matrix of a protein structure is a square matrix
consisting of the distances between all pairs of C� atoms in the
protein. It not only represents the overall 3D folding of polypeptide
chains in two dimensions, but also provides a simple description of
information about secondary structure and tertiary interactions
between parts spatially distant in the structure. Furthermore, the
matrix contains sufficient information to reproduce the original 3D
backbone structure by using the distance geometry method (13, 14).
Because of its fluent information content, the distance matrix has
been exploited in diverse studies such as domain recognition (15),
structure alignment (DALI) (7), protein folding studies (contact
energy function) (16, 17), and protein database searching (18).

We subdivide the distance matrix of each protein structure into
many overlapping submatrices, each describing a local feature
(secondary and�or tertiary feature). We use a collection of these
submatrices from a large number of distance matrices to extract a
set of K representative local features (medoid submatrices) from K
clusters of submatrices by medoid analysis (19). Then, any given
protein structure can be represented by a profile, a vector of a
common length K, containing the frequencies of occurrence of
these representative local features (medoid submatrices) in the
structure. Thus, we can now treat protein structures as points in
K-dimensional Euclidean space (RK). After converting each protein
structure into a local feature frequency (LFF) profile, the fold
similarity between a pair of proteins can be computed very easily as
Euclidean distance or cosine distance between two corresponding
LFF profile vectors. This enables quick computation of an all-
against-all structural similarity matrix of a very large set of proteins,
which, in turn, can be used for objectively clustering protein
structures of similar fold, for constructing a map of the ‘‘protein
structure universe,’’ and for exploring protein fold space.

Nonredundant Protein Structure Set. The test of the method was
implemented on a representative SCOP fold set from the SCOP
database release 1.61 (November 2002). The PDB-style files for the
SCOP nonredundant set (a sub-SCOP set filtered at 40% sequence
identity) were downloaded from the ASTRAL compendium da-
tabase (20), and LFF profiles were computed for all 3,792 structural
domains in this set, which includes all �, all �, ���, and ��� classes
of proteins.

Representative Local Feature Patterns in Distance Matrix. In this test
100 proteins randomly selected from 3,792 in the nonredundant
SCOP fold set were indexed by p � 1,. . . , P (P � 100). When there
are np residues in protein p, its distance matrix is the matrix Dp �
{dp(i, j):i, j � 1, . . . , np}, where dp(i, j) is the C�–C� distance (in Å)
between residues i and j. The overlapping submatrices presenting
local features involving m-residues by m-residues in the protein is
the collection expressed by

Abbreviations: LFF, local feature frequency; PDB, Protein Data Bank; SCOP, structural
classification of proteins; CATH, class architecture topology homology; SVD, singular value
decomposition.
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�p
�m� � ��p

�m��i, j�:i, j � 1, . . . , np � m � 1	,

of m 
 m submatrices described by

�p
�m��i , j� � �dp�i�, j��:i� � i:�i � m � 1�, j� � j:�j � m � 1�	.

To emphasize the importance of the close contacts in the protein
structures, all C�–C� distances �20 Å are set to 20 Å. The collection
of these submatrices over P proteins is �(m) � �p �p

(m). They are
grouped into K clusters, and each cluster is represented by a medoid
in the space �(m) metrized by the Euclidean distance by using the
partitioning around medoids (PAM) analysis of Kaufman and
Rousseeuw (19). Algorithmically, the PAM procedure searches K
representative objects or medoids among the observations and then
constructs K clusters by assigning each observation to the nearest
medoid. PAM can be applied to general data types and tends to be
more robust than k-means algorithm (19). In this study, we use K �
100 and m � 10 (see Fig. 3). Thus, we use the 100 m 
 m medoid
submatrices as the reference to which all m 
 m submatrices from
all protein distance matrices will be compared.

Generation of the LFF Profile and Calculation of Similarity�Dissimi-
larity Scores. To express the distance matrix of a protein p in terms
of the representative local feature patterns (medoid submatrices),
each of its submatrices �p

(m)[i, j] is labeled by the index of the nearest

Fig. 1. Representation of protein structures
by their distance matrices and representative
local structure feature patterns (medoid
submatrices). The procedure is illustrated by
using 3D protein structures, distance matrices,
and 50 representative patterns (medoids) of
four proteins sampled one each from all-�,
all-�, ���, and � � � classes. Among the pat-
terns, ‘‘null feature patterns’’ (with no C�–C�

distance �20 Å, light pink background only)
are the most abundant in all proteins.

Fig. 2. Optimization of K, the number of representative local feature
patterns (medoid submatrices) and m, the size of the submatrix. The distance
matrices of 100 chosen protein structures were reconstructed by using K
closest representative medoid submatrices of size m. There is no significant
error reduction over K � 100 medoids, and the best reconstruction condition
is at m � 10 and K � 100. The dissimilarity between original distance matrix
and reconstructed distance matrix was measured by distance matrix error,

DME � �1
N2¥i, j � 1

N �dp�i, j� � d�p�i, j��2, where dp(i, j) and d�p(i, j) are the C�–C�

distances (in Å) between residue i and j in the original and reconstructed
distance matrix, respectively. N is the number of residues in the protein.
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medoid submatrix. Again, the space of submatrices is metrized by
the Euclidean distance. Then, the frequency of the medoid subma-
trices assigned to label k, np

(m)(k), is counted. The count vector np �
(np

(m)(k), k � 1, . . . , K) summarizes the frequency distribution of
local feature patterns of the protein. We call this decoding process
profiling of the protein structure by LFF and the final feature vector
np, or its transformation Ap, the structural profile or simply the
profile of protein p. Here, we normalize frequency of local inter-
action pattern k in protein p by

Apk �
n�p, k�

�n��, k�� �
n�p, k�

��
p��1

P

n2�p�, k�

and use Ap � [Ap1 . . . ApK] � RK as the profile of protein p. The
collection of profiles, or the protein-by-pattern matrix

AP
K � �
A11 A12 · · · A1K

A21 A22 · · · A2K···
···

· · ·
···

AP1 AP2 · · · APK

�
is our raw data matrix for computing similarity. As a measure of
structural similarity between two proteins p and q with profiles Ap
and Aq in RK, we use their cosine

cos�Ap, Aq� �
Ap�Aq

�Ap��Aq� .

It is also called the normalized inner product, because the cosine is
simply the dot product if vectors are normalized. The cosine
distance is defined as 1 
 cos(Ap, Aq) and used to represent
structural dissimilarity or structural distance. Note that the cosine
distance ranges from 0 (closest) to 1 (farthest).

Singular Value Decomposition (SVD) and Biplots of Protein-by-Pattern
Matrix. SVD is used for deriving a set of uncorrelated indexing
variables or factors, whereby each pattern and protein is repre-
sented as a vector in RK using elements of the left and right singular
vectors. For a P 
 K matrix A, with P � K and rank(A) � r, the SVD
of A is defined as A� U�VT , where UTU � VTV � IK (K 
 K identity
matrix) and � � diag(�1, . . . , �K), �1 � � � � � �r � 0 � �r�1 � � � �
� �P. The columns ui and vi of U and V, respectively, are referred
to as left and right singular vectors. Matrices U, V, � reflect a
breakdown of the original relationships into linearly independent
vectors or factor values. The use of the 	 factors with the largest
singular values is equivalent to approximating the original protein
by pattern matrix by

A	 � �
i�1

	

ui�ivi
T.

We compute the truncated SVD with 	 � 3 to obtain rank-three
approximation A3 of the protein by pattern matrix, because the first
three � values are significantly greater than the rest. We can
represent proteins and patterns in the same R3 space by their first
three principal coordinates

���1u1,��2u2,��3u3� and ���1v1,��2v2,��3v3�.

In this paper, (1st, 2nd) and (2nd, 3rd) principal coordinates pairs
are plotted as biplots (21) in R2.

Results
One Hundred Representative Local Features of Protein Structures. In
the distance matrix of a protein structure, many local structural
features can be recognized as various contact patterns in subma-
trices. Secondary structure elements such as � helices and � sheets
are visually identifiable as specific local features in the matrix as
thick line patterns and thin line patterns on and off diagonal areas,
respectively, and the tertiary interactions between them appear as
patches of contacts in off-diagonal areas of the matrix. Among �
strands, parallel �-strands appear as thin line patterns parallel to the
main diagonal, and antiparallel �-strands appear as thin line
patterns perpendicular to the main diagonal. Other tertiary fea-
tures, like �–� interactions and coils, also emerge as specific
patterns in the distance matrix (Fig. 1).

There are millions of different local feature patterns (submatri-
ces) in all protein structures. However, we expect that most of these
are common in many protein structures, and the majority of the
local feature patterns are null patterns without any contact within
a threshold of 20 Å (i.e., all submatrix elements have the C�–C�

distance �20 Å). Thus, we expect that a finite number, K, of
representative local features (K medoid submatrices) will ade-
quately represent all observed local features in all proteins. Then,
all local feature patterns can be labeled according to the index (from
1 to K) of the closest medoids, where ‘‘closeness’’ can be defined in
terms of Euclidean distance or other distance metrics.

To determine the optimum submatrix size (m) and number of
medoids K, 100 protein structures were randomly chosen from the
SCOP representative folds. Lengths of the proteins in the set range
from 29 to 595, with the average of 165. We then varied K � 10–300
and m � 8–16 while doing the medoid analysis. After replacing all
observed submatrices by the representative medoid submatrices,
the reconstructed distance map was calculated by averaging the
overlapping medoid submatrices. The distance matrix error
(DME), which is a root-mean square difference between original
distance map and reconstructed one, is used to plot Fig. 2. Based
on this test, the size of K and m was set to 100 and 10, respectively.

For the submatrix size m � 10, �1.6 
 106, different local
patterns (submatrices) were retrieved from the training set of 100
protein structures. One hundred representative local feature pat-

Fig. 3. One hundred medoid submatrices obtained from partitioning
around medoids (PAM) analysis of distance matrices of 100 sampled proteins.
They reflect 100 representative local structural features. Various combination
of these features can reconstruct the original distance matrices of all 100
proteins. The medoid submatrices are indexed arbitrarily (from 1 to 100).
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terns were identified as 100 ‘‘medoids.’’ They can be considered as
the centers of 100 clusters from 1.6 
 106 input patterns. Then, all
input patterns can be labeled from 1 to 100 according to the index
of the closest medoids, where closeness is defined in terms of
Euclidean distance in this study. Fig. 3 shows the 100 representative
patterns found by this medoid analysis.

LFF Profile as a Representation of Protein Structure. The method we
use here is analogous to that used in text information retrieval (22),
in which each document is represented as a vector of word counts.
In our approach, each protein structure is considered as a docu-
ment, consisting of many words (different medoid submatrices
representing different local features). A protein structure as rep-
resented by its distance matrix is treated as a collection of over-
lapping submatrices (local feature patterns), and each of them is
labeled by the index of the closest medoid submatrix. Thus, a
protein structure can be represented by the profile of the frequency

distribution of the medoid pattern indices. We call this the LFF
profile, or simply the profile of the protein.

Structural Similarity Calculation Using LFF Profile. After the profiling
described above, protein structures can be mapped into a common
space where the similarity or dissimilarity between any two protein
structures can be computed easily as a cosine or cosine distance (or
Euclidean distance), respectively, between two profile vectors.
However, because the abundance of local patterns varies consid-
erably from one pattern to another, some normalization of the
profile is necessary, as shown in Methods. For example, the ‘‘null’’
pattern (15th submatrix in Fig. 3) is most abundant of all, and,
without normalization, such an abundant pattern will dominate
when computing structural similarity or dissimilarity distances. This
is not desirable because the frequency of the void pattern contains
little structural information. As can be seen in Fig. 4, similarity
between structural profiles reflects, in general, the similarity be-
tween 3D structures according to SCOP classification.

A Global Presentation of the Protein Fold Universe. Analogous to the
physical universe map, mapping of the protein fold universe pro-
vides a global view of distribution of different protein structures in
fold space, of unbiased classification of protein structures, and of
evolution of protein structures (23). First, the structural profile of
all 3,792 nonredundant SCOP domains was computed. The profiles
were assembled into a protein-by-local pattern matrix of size 3,792
(proteins) by 100 (patterns). The matrix is processed by SVD as
described in Methods. We compute the truncated SVD with K � 3
to obtain rank-three approximation A3 of the protein-by-pattern
matrix. This approximation is justified by the fact that the first three
eigenvalues are significantly greater than the rest. Fig. 5 shows
biplots of 100 representative patterns (medoid submatrices) and
3,792 representative SCOP proteins, using the 1st–2nd and the
2nd–3rd principal axes pairs. From the plots, a correlation between
representative patterns and structure classes are clearly visible. We
also observe that the first three principal coordinates are approx-
imately related to the length of protein, type of secondary structural
elements (SSEs), and parallelism of � strands, respectively. One
embedding of protein fold universe in 3D space using the SVD
analysis of the profile matrx A is shown in Fig. 5.

Comparison with Other Methods. Compared with other classification
schemes, how similar is our structural similarity? As a test, we asked
whether the nearest neighbor of a given protein structure by our
profile method belongs to the same fold family as the protein
structure in the manually curated SCOP, which is often considered
to be the gold standard. The LFF profile-based classification agrees
with SCOP classification in 93% and 71% of the cases at class and
fold levels, respectively (Table 1). The method agrees less well with
CATH classification: 70% (class) and 61% (architecture). These
features are also shown in Fig. 6 by the dendogram constructed
based on the structural similarity scores by the LFF profile method,
with color coding of the classifications by SCOP and CATH
methods.

When we compared our method with the SCOP classification, we
found examples of discrepancies. One extreme example is the case
of quinohemoprotein amine dehydrogenase C chain (SCOP id:
d1jmxg�), which is classified as ‘‘nonglobular all-� subunits of

Table 1. Overall comparison of agreement in classification of the
LFF profile method to SCOP and CATH methods at different
levels of structural features

SCOP hierarchy Agreement, % CATH hierarchy Agreement, %

Class 93.2 Class 70.0
Fold 70.5 Architecture 60.6
Superfamily 68.6 Topology 57.5
Family 67.0 Homology 55.3

Fig. 4. LFF profiles of protein structures from the globin family (a.1.1.2), the
Ig V set domain family (b.1.1.1), the �-amylases N-terminal domain family
(c.1.8.1), and the microbial ribonuclease family (d.1.1.1) in the SCOP database.
(upper four plots) The raw counts of LFF are plotted as a function of 100
different representative medoids (shown in Fig. 3) in red, blue, yellow, and
green, respectively, of the four protein families. The highest peak in each
family corresponds to the medoid index 15 of Fig. 3, which is the ‘‘null’’ medoid
submatrix, with all of the matrix elements having a distance �20 Å. LFF profiles
for five proteins sampled from each family are shown. The quality of clustering
of local features is difficult to discern because of the domination of the null
medoid and low signal to noise ratio of the rest of the modoids (lower four
plots). However, after normalization by the spread of the counts in each
representative medoid, the similarity among LFF profiles within each family is
evident.
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Fig. 5. Biplots of 3,792 protein structure profiles and 100 representative medoid patterns after SVD of the protein-by-pattern matrix. The 1st–2nd and the
2nd–3rd principal axes pairs are drawn. The 1st, 2nd, and 3rd principal coordinates can be interpreted as approximately related to the length of protein, types
of secondary structure elements (SSEs), and parallelism of � strands, respectively. Proteins belonging to all-�, all-�, ���, and ��� classes according to SCOP are
colored red, blue, yellow, and green, respectively. The overall 3D plot is also shown.

Fig. 6. The dendogram of 3,792 SCOP
protein domains (in four classes, 40% se-
quence identity filtered) was constructed
by the hierachical clustering method based
on the LFF profile distances. The red (all �),
blue (all �), yellow (���), and green (���)
colors in the top bar indicate SCOP class
designations. The CATH classification on
2,679 intact protein chains that have coun-
terparts in SCOP domains was used above.
Three CATH classes are color-coded red
(mainly �), blue (mainly �), and yellow
(mixed �
�) in the bottom bar.
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globular proteins’’ fold in SCOP. Among other proteins in the same
SCOP fold, the closest one (SCOP id: d1l8cb�) ranks 3,350th among
3,792 structures by our profile method. Furthermore, our method
finds a DNA�RNA-binding three-helical bundle fold (SCOP id:
d1opc�), which belongs to a SCOP fold different from that of
d1jmxg�, as the nearest neighbor fold to d1jmxg�. The distance map
shows that the contact pattern of d1jmxg� is quite different from

other structures in the same SCOP fold, whereas d1jmxg� and
d1opc� share considerable similar contact patterns (Fig. 7). This
difference illustrates the different criteria used by the two methods
in assessing the similarity between two proteins structures: assess-
ment based on visual similarity of 3D fold in SCOP and that based
on computational similarity of distance matrix features in the LFF
profile method.

Discussion
For testing the concept of the structure profile method, we used a
simplified approach: (i) in constructing the reference set of medoid
submatrices, we extracted them from 100 protein structures ran-
domly selected from 3,792 nonredundant folds in the SCOP data-
base; (ii) instead of extracting 100 representative LFs (medoid
submatrices) from all submatrices of the 100 distance matrices
(which will be about several million submatrices), we first found 50
medoids from each distance matrix, collected them together (50 

100), and then extracted 100 medoids from the 5,000 medoids.
These 100 medoid’s medoids were used as the representative local
features of all 3,792 proteins in LFF profiling.

In addition to expanding the structure database, from which we
can extract a better set of medoid submatrices, we expect that the
accuracy of the structural similarity score is likely to improve with
calibration of various parameters in our method: varying the size of
the local submatrix window to be large enough to capture nontrivial
3D interactions but at the same time be small enough to be
observable in many different proteins and computable. Also, the
number K of representative local feature patterns or medoids can
be increased beyond our test of 100 to achieve optimum signal-to-
noise ratios. Furthermore, a statistical score function can be
developed to recognize folds that have no statistically significant
structural similarity with known structures.

One immediate utility of the LFF profile method is a quick
‘‘mapping’’ of a recently determined structure in relation to all other
structures in PDB or any subset in protein fold space (23). Another
application may be to search for structural homologs of a query
structure. For example, one could screen whole PDB quickly by
using LFF profile method to find, say, the top 20 structural
homologs of the query protein structure, then do the DALI search
among the 20 to find the best alignment.
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Fig. 7. An example of discrepancy between the LFF profile method and the
SCOP classification. The distance matrix of Quinohemoprotein amine dehy-
drogenase C chain (SCOP ID: d1jmxg�) is visually quite different from those of
other proteins in the same SCOP fold (a.137). However, the OmpR DNA
binding domain (SCOP ID: d1opc�), which belongs to another SCOP fold (a.4),
is detected by the profile method to be closest to d1jmxg�.
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