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Abstract
In genetic association studies, much effort has focused on moving beyond the initial single
nucleotide polymorphism (SNP)-by-SNP analysis. One approach is to re-analyze a chromosomal
region where an association has been detected, jointly analyzing the SNP thought to best represent
that association with each additional SNP in the region. Such joint analyses may help identify
additional, statistically independent association signals. However, it is possible for a single genetic
effect to produce joint SNP results that would typically be interpreted as two distinct effects (e.g.
both SNPs are significant in the joint model). We present a general approach that can (1) identify
conditions under which a single variant could produce a given joint SNP result, and (2) use these
conditions to identify variants from a list of known SNPs (e.g. 1000 Genomes) as candidates that
could produce the observed signal. We apply this method to our previously reported joint result
for smoking involving rs16969968 and rs588765 in CHRNA5. We demonstrate that it is
theoretically possible for a joint SNP result suggestive of two independent signals to be produced
by a single causal variant. Furthermore, this variant need not be highly correlated with the two
tested SNPs nor must it have a large odds ratio. Our method aids in interpretation of joint SNP
results by identifying new candidate variants for biological causation that would be missed by
traditional approaches. Also, it can connect association findings that may seem disparate due to
lack of high correlations among the associated SNPs.
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Introduction
In genetic association studies of a complex disease, a chromosomal region that contains one
variant associated with a phenotype often harbors additional SNPs that also display
statistically significant association with the phenotype. In such situations, it is common to
report the most significantly associated SNP in the region or a highly correlated proxy that
has biological support from other sources. An important next step is to interpret the
remaining associations. The remaining associations in the region may be due to linkage
disequilibrium (LD) with the reported SNP or may represent additional distinct genetic
effects. One commonly used approach to discern distinct associations in a chromosomal
region is joint SNP analysis [Cordell and Clayton 2002; Ma, et al. 2010]. In application to a
dichotomous phenotype, a single logistic regression model can be used to jointly estimate
the odds ratios of multiple SNPs at the same time. Often, the reported SNP is paired with
each additional SNP in the region in the model. If the odds ratios are significant for both
SNPs, they are typically interpreted as representing two distinct effects on the phenotype.
This approach has been useful in identifying multiple distinct association signals in complex
diseases such as smoking [Saccone, et al. 2009; Saccone, et al. 2010], psoriasis [Cargill, et
al. 2007], diabetes [Zeggini, et al. 2008], rheumatoid arthritis [Plenge, et al. 2007], and
systemic lupus erythematosus [Graham, et al. 2008].

However, although joint SNP analysis results (univariate and joint odds ratios for two SNPs)
may suggest that there are two distinct genetic effects in the region, it cannot guarantee that
this is the case. The associations may, in fact, be produced by one underlying causal variant.
In this paper, we introduce a method that identifies conditions under which observed
univariate and joint results for two SNPs can be produced by a single causal SNP, D. This
method identifies properties of D (minor allele frequency, pair-wise correlations to the two
SNPs, and odds ratio) that would give rise to an observed joint SNP analysis result of two
SNPs. Real SNPs that match an identified minor allele frequency and pair-wise correlations
can be considered candidates for D. We demonstrate the utility of this method by applying it
to our previously reported joint SNP results for nicotine dependence [Saccone, et al. 2009].

Methods

Notation—A, B = Two SNPs in a theoretical three-SNP model whose associations to the
phenotype are solely produced by correlations to the causal variant.

D = The causative SNP in the above three-SNP model giving rise to the joint results for A
and B

A, B = two SNPs that are each significant in joint SNP association result in a specific real
dataset1

rxy = pair-wise correlation between SNPs where X and Y ∈ {A,B,D}

A1, B1, D1 = major alleles of A, B, and D respectively

A2, B2, D2 = minor alleles of A, B, and D respectively

P(X) = allele frequency of X where X ∈ {A1,A2,B1,B2,D1,D2}

Ai-Bj-DK = haplotype of SNPs A, B, and D where i, j, k ∈ {1,2}

Pijk = population level haplotype frequency for Ai-Bj-DK
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Pijk
case = haplotype frequencies for Ai-Bj-Dk among cases

Pijk
control = haplotype frequencies for Ai-Bj-Dk among controls

K = Population disease prevalence

fij = Probability of disease given genotype DiDj where I, j ∈ {1,2} (i.e. penetrance)

Rij = relative risk of DiDj compared to D1D1 where I, j ∈ {1,2}

ORX = odds ratio of X in a logistic regression (LR) with X as the only genetic predictor, X
∈ {A,B,D}

ORX|Y = odds ratio of X in a LR with X and Y as the only genetic predictors, X, Y ∈
{A,B,D}.

N = Number of copies of haplotypes used in three-SNP model generation step

1Other notation for quantities related to A and B follows the notations given for A and B
(e.g. ORA = odds ratio of A).

OVERVIEW
We will describe a general method that, given two real SNPs A and B, each significant in a
joint analysis, will determine properties (minor allele frequency, pair-wise correlations to A
and B, and odds ratio) that if possessed by an additional SNP, D, would produce the
observed association results of A and B in the absence of any true causal effect of A and B.
Such a D could be the biological cause of the observed joint signal and thus would be of
interest for further investigation. Any D satisfying the conditions generated by this method
will produce the observed results for A and B (i.e. the conditions are sufficient but need not
be necessary). We will then use these theoretical properties of D to identify candidates from
a database of known SNPs (e.g. 1000 Genomes) [Genomes Project 2010]. Our presentation
focuses on additive, dominant, and recessive models but generalizes to other models.

I: GENERATING THREE-SNP MODELS WITH FIXED ALLELE FREQUENCIES
AND CORRELATION FOR A AND B AND WHERE D IS CAUSAL—We consider
diplotype models consisting of three SNPs (A, B, and D), where D has a direct impact on the
phenotype (disease) and any association between A and B and the phenotype is due solely to
their correlation to D. Each such model is entirely specified by a set of 3-SNP haplotype
frequencies, Pijk where i,j,k ∈ {1,2], and a trio of penetrance values for the genotypes of D,
(f11, f12, f22). We will show how to construct such models and compute the corresponding
univariate and joint odds ratios for A and B in the following 4 steps.

Step 1: Generate a set of frequencies for (A-B-D) haplotypes such that P(A2), P(B2) and
rAB will match the a priori values for P(A2), P(B2) and rAB: From the values of P(A2),
P(B2), and rAB, we can estimate the population-level frequencies of the four haplotypes of
A and B (A1-B1, A1-B2, A2-B1, A2-B2). After setting haplotype frequencies for (A-B) to
match the population-level values for (A-B), each two-SNP haplotype frequency is split into
two 3-SNP haplotype frequencies, i.e. Pij1 + Pij2 ≡ freq(Ai-Bj-D1) + freq(Ai-Bj-D2) =
freq(Ai-Bj). This extends the set of four haplotype frequencies of A and B into multiple (or
in theory an infinite number of) sets of 8 haplotype frequencies for (A-B-D).

We operationalize this process in the following finite manner:
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1. Instantiate the A-B haplotype frequencies in a total of N (A-B) haplotypes,
rounding to the nearest unit (e.g. if N=100, and the 4 haplotypes are equally
frequent, we would use 25 copies of each haplotype).

2. Since D2 is the minor allele for D, there should be ≤ N/2 copies of D2 among the N
instantiated haplotypes. For each integer X in [1,N/2], consider all the distinct ways
that X copies of the D2 allele can be distributed across the 4 two-locus haplotype
classes for A-B (instantiated in a total of N haplotypes. (e.g. if X = 1 and each of
the 4 two-locus haplotypes was instantiated in at least 1 copy, there would be 4
distinct ways the copy of D2 could be placed.) All remaining instantiated
haplotypes would carry a copy of D1.

3. By stepping through all the ways X copies of D2 could be distributed among the N
two-SNP haplotypes and dividing the number of each resulting 3-SNP haplotype by
the N, we generate a finite list of sets of haplotype frequencies {Pijk,| i,j,k ∈ {1,2}},
each of which has values for P(A2), P(B2), and rAB essentially matching the values
of P(A2), P(B2), and rAB. Across the sets of Pijk, the values of P(D2) will only range
up to 50%, and pair-wise correlations of D to A and B (rAD, rBD) will range
between complete repulsion and complete coupling.

Step 2: For each set of haplotype frequencies from Step 1, generate multiple three-SNP
models of disease: We consider the most commonly used disease models for D (additive,
dominant, recessive), and fix the disease prevalence (K) to the relevant value for the given
phenotype. Then, given a relative risk value (R12 for additive disease model and R22 for
dominant and recessive disease models) and one set of haplotype frequencies {Pijk|I,j,k ∈
{1,2,3}} from Step 1, the values of f11, f12, and f22 can be calculated using equations S1a
(additive), S1b (dominant), and S1c (recessive) (see Supporting Information). By ranging
through the three disease models (additive, dominant, recessive) and stepping through values
for R12 or R22 that range between protective (R12, R22 < 1) and risk (R12, R22 > 1) effects
(for example, 1 to 10 by an increment of 0.1 for risk effect and reciprocal of each risk value
for protective effect), we end up with many three-SNP models, each composed of a set of
haplotype frequencies {Pijk} and a triple of penetrance values for D, (f11, f12, f22).

Step 3: Calculate case/control haplotype frequencies for each three-SNP model: From a
three-SNP disease model (i.e. a set of haplotype frequencies for Ai-Bj-Dk and a triple
penetrance values for D), we first calculate haplotype frequencies in cases and controls
(followed by corresponding genotype frequencies) using the formulas derived below.

We derive equations for the 8 haplotype frequencies in cases and the 8 haplotype
frequencies in controls assuming Hardy-Weinberg equilibrium (HWE) in the population. For
example, for haplotype frequency of A1-B1-D1 among the cases (P111

case), the equation is as
follows (See Supporting Information for proof):

Eq. 1

The additional 15 equations (one for P111
control and 2 for each of the 7 other haplotypes) for

haplotype frequencies in cases and controls are computed in a similar fashion (see
Supporting Information).

Step 4: Estimate odds ratios for each generated three-SNP models (i.e. ORA, ORB,
ORA|B, ORB|A, and ORD): For a given three-SNP model, we use Eq.1 to Eq. 16 to
calculate P111

case, P112
case, …, P222

case, and P111
control, P112

control, …, P222
control. Under

HWE in the population, the resulting 8 haplotype frequencies in controls and 8 haplotype
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frequencies in cases specify genotype frequencies of A, B and D in cases and in controls.
We obtain ORA, ORB, ORD, ORA|B, and ORB|A for each three-SNP model by running
logistic regression models predicting case status from (1) SNP A, (2) SNP B, (3) SNPs A
and B, and (4) SNP D using genotype frequencies among cases and controls as weights.

II: IDENTIFYING REAL SNPS THAT ARE CANDIDATES FOR D
Step 1: Identify three-SNP models that are consistent with the results observed for A
and B: We begin with the set of generated three-SNP models with ORA, ORB, ORA|B, and
ORB|A matching the observed odds ratios for A and B (ORA, ORB, ORA|B, and ORB|A) to
obtain a set of “grid-based theoretical candidate models.” We call this set Spoint because it is
based on point estimates of ORA, ORB, ORA|B, and ORB|A from a real dataset. Any real
SNP with MAF, correlation to A and B, and odds ratio corresponding to a three-SNP model
in this set (i.e. matching the values of P(D2), rAD, rBD, and ORD), would be statistically
indistinguishable from being entirely responsible for the observed results for A and B.
Because we have considered only additive, recessive, and dominant models, and we have
stepped through a grid of possible allele frequencies and penetrances, Spoint does not include
all theoretical candidates.

Although our primary interest is in determining when a single variant could account for an
observed joint result, we acknowledge that observed point estimate results are subject to
error and do not typically match true population parameters perfectly. For this reason, we
also consider an expanded set, S95, of three-SNP models based on the 95% confidence
intervals and confidence regions of the odds ratio estimates. That is, this set, S95, is filtered
not on the single point estimate of univariate and joint odds ratios for A and B, but includes
any model such that

where the 95% Confidence Region (C.R.) of ORA|B and ORB|A is generated using the R
package ellipse which generates a C.R. based on point estimates, variance, and covariance of
two odds ratios [Murdoch, et. al. 2007].

Step 2: Match real data to consistent three-SNP models: A set of three-SNP models
matching the observed results, Spoint (or S95), is then compared to a list of known variants
(e.g. catalogued in 1000 Genomes). The list is filtered to retain only those real SNPs with
allele frequencies and correlations to A and B that match a model in Spoint (or S95). We call
these real SNPs candidates for D.

At this point there are several possible outcomes:

1. If there are no candidates (and particularly if there are no “broad-sense” candidates
that match S95), then under the models examined (e.g. additive, dominant, recessive
with certain ranges for relative risks), no SNPs from 1000 Genomes can
theoretically be the sole cause of associations seen at A and B. We have no
evidence against the usual interpretation that A and B represent two distinct
association signals.

2. If there are candidates that match Spoint (or S95), we would wish to examine the
OR, in our real association study dataset, for each candidate. The goal is to identify
whether or not these candidate SNPs also have the corresponding odds ratios to be
in Spoint or S95, and in particular to rule out the ones that do not. This step requires
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either measured or estimated genotypes of the SNP in the applied dataset.
Therefore we have the following options

2.1 If a candidate is already genotyped in the current dataset, we perform
association analysis to determine its odds ratio.

2.2 If a candidate is not genotyped, but can be imputed (accurately) from
the current data, the imputed genotypes for SNPs could be evaluated as
in 2.1. Confirmatory genotyping should be considered as well.

2.3 If a candidate is not genotyped and cannot be accurately imputed in the
current dataset, it can be flagged as a target for future genotyping.

Any candidate that does not have matching odds ratios is ruled out as potential SNP D. For
the candidates that do possess matching odds ratios, association analyses of the candidate
alone and candidate together with A and B (a 3 SNP joint analysis) could be compared to
determine if the candidate accounts for the joint analysis result of A and B. More
specifically, we examine whether or not adding A and B to a model with D (a 3 SNP joint
analysis) adds substantially to the phenotypic variance explained by D alone. We divide this
difference by the variance explained by just A and B; this ratio is the proportion of variance
explained by A and B that is not accounted for by D. Additionally, −2log likelihoods from
the model that includes A, B, and D can be subtracted from a model that includes D alone.
Under the null (A and B do not add to the signal from D), the difference is chi-square
distributed with 2 degrees of freedom. If resulting p-value is significant, it indicates that
adding A and B to the model with D substantially increases model fitness, suggesting that D
does not account for the effects observed at A and B.

AN APPLICATION: A JOINT RESULT RELATED TO NICOTINE DEPENDENCE
An interesting joint SNP result involving rs16969968 and rs588765 (two SNPs located in
the CHRNA5 gene in chromosome 15q25.1) and nicotine dependence has been previously
reported in multiple datasets [Saccone, et al. 2009; Saccone, et al. 2010]. In the initial report
using data from the Collaborative Genetic Study of Nicotine Dependence (COGEND),
univariate analysis found that rs16969968 (SNP A) was strongly associated with nicotine
dependence while rs588765 (SNP B) was not significantly associated with nicotine
dependence [Saccone, et al. 2009]. However, joint analyses of A and B strengthened the
evidence for association for B without weakening the strength of A's association, suggesting
two distinct findings [Saccone, et al. 2009]. This pattern of univariate and joint analysis
association evidence was subsequently confirmed, with genome-wide significance, for the
two SNPs in a large collaborative meta-analysis of heavy/light smoking [Saccone, et al.
2010].

We applied the general method described above to the COGEND European-American
sample (sample size=2053) to investigate the possibility that this joint analysis result could
have arisen from a single third SNP. Cases are nicotine dependent based on the Fagerström
Test for Nicotine Dependence (FTND) [Heatherton, et al. 1989; Heatherton, et al. 1991],
with FTND score ≥ 4. Controls have no lifetime dependence to nicotine and have FTND
score ≤ 1.

We used 1000 Genomes estimates for the population-level frequencies and correlation
between these variants to represent rs16969968 and rs588765 in the three-SNP models.
Here, P(A2) = 0.42, P(B2) = 0.39, and rAB = −0.68 (1000 Genomes, August 2010 release)
(Table I). Using the steps described in the previous section, and using a total haplotype
count of N=100, we generated a mesh of sets of Pijk consistent with the estimated
frequencies for haplotypes of A and B. N thus determines the step size in sampling between
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the minimum and maximum values of the pair-wise correlation values between D and A and
D and B (rAD and rBD). For each generated set of haplotype frequencies of A-B-D, we
generated values of f11, f12, and f22 using the equations S1a, S1b, and S1c by stepping
through values of R12 (additive model) and R22 (dominant and recessive models) from 1 and
10 in increments of 0.1 to generate models where D2 increases risk and the reciprocal of
each value for R12 and R22 to generate models where D2's effect is protective.

Table I lists the point estimates and the 95% C.I.s of ORA, ORB, ORA|B, and ORB|A, as well
as the covariance value used to calculate the 95% C.R. of ORA|B and ORB|A. We examined
the 2793 SNPs in 1000 Genomes (August 2010 release) that lie in the ~500Kb region
centered at rs16969968 (Chr15:78,711,803-79,263,811) as possible candidates for a single
explanatory SNP. This region is flanked by recombination hotspots and spans well beyond
the gene cluster (70kb in length) that includes rs16969968 and rs588765. Of these 2793
SNPs, 212 SNPs were genotyped in COGEND. The remaining 2561 SNPs were imputed in
COGEND samples using the BEAGLE software (version 3.3.1) with a reference panel of
283 individuals of European origin from the 1000 Genomes (August 2010 release) prepared
by the BEAGLE developers (http://bochet.gcc.biostat.washington.edu/beagle/) [Browning
and Browning 2009]. The minor allele frequencies and (signed) pair-wise correlations to
rs16969968 and rs599765 were calculated from the same reference panel using the verbose
option of LDmax [Abecasis and Cookson 2000].

We used these values to filter the generated set of models to determine a set of candidates to
be evaluated.

A BROADER EXPLORATION OF JOINT EFFECTS CAUSED BY A SINGLE VARIANT
Finally, we performed a more general exploration of models that share essential features
with our example from real data, that is, a scenario wherein a single causative variant creates
a substantial univariate association for locus A and a second association for locus B which is
seen only in joint analysis with A.

As in the real COGEND data example, we fixed P(A2) = 0.42, P(B2) = 0.39, and rAB =
−0.68. However, this portion of the study examined a range of odds ratios of potential
interest, rather than just the specific empirical values from that example. As before, we
generated all combinations of Pijk possible from a total haplotype count of 100, and for each
of the 3 disease models generated the values of f11, f12, and f22 using the equations S1a, S1b,
and S1c and ranging the value of R12 for additive model and R22 for dominant and recessive
models between 1 and 10 by an increment of 0.1 for risk effect of D2 and the reciprocal of
each values of R12 and R22 for protective effect of D2.

We examined the subset of models with the following properties: (1) A is associated with
disease with effect sizes comparable to those typically seen in GWAS (1.30 ≤ ORA ≤ 2.00),
(2) B does not show strong association when analyzed alone (0.91 ≤ ORB ≤ 1.10), and (3) A
and B both show association to disease when analyzed together in a joint model (1.30 ≤
ORA|B ≤ 2.00, 1.30 ≤ ORB|A ≤ 2.00). The results of these examinations provide important
and surprising insights.

Results
BROADER EXPLORATION OF JOINT EFFECTS CAUSED BY A SINGLE VARIANT

For models where a single causative SNP, D, can give rise to odds ratios for non-causative
SNPs A and B where 1.3 ≤ ORA ≤ 2.0, 0.91 ≤ ORB ≤ 1.1, 1.3 ≤ ORA|B ≤ 2.0 and 1.3 ≤
ORB|A ≤ 2.0, we observed the following:
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1. Such disease causing SNPs are not required to be highly correlated to A
nor B—Figure 1a illustrates the range of pair-wise correlations (rAD and rBD) between the
disease causing SNP, D, and the two null SNPs, A and B, under additive disease models.
Three-SNP models with low to moderate effect size of D (0.33 ≤ ORD ≤ 3.0) are highlighted
with filled red circles; remaining three-SNP models are open black circles. We see that the
correlation between the disease causing SNP, D, and both SNPs, A and B, is modest for
these three-SNP models, with r2 between D and A ≤ 0.45 and between D and B ≤ 0.03
(More specifically, rAD ∈ [−0.67, −0.15] ∪ [0.11, 0.53], corresponding to signed r2 ∈
[−0.45, −0.02] ∪ [0.01, 0.28] and rBD ∈ [−0.15, 0.18], corresponding to signed r2 ∈ [−0.02,
0.03]). This figure illustrates the surprising fact that even when the correlation between B
and D is 0, B can become significant in a joint analysis with A while simultaneously
strengthening the association between A and the phenotype. The fact that rAD and rBD can
be moderate indicates that the typical approach of considering only SNPs highly correlated
with A or B as candidates to explain the associations observed at A and B is insufficient –
such an approach could not identify these Ds. This is true even for disease causing SNPs of
moderate effect size (e.g. 0.33 ≤ ORD ≤ 3.00, identified by red dots in figure 1a).

Under dominant and recessive models, D showed similar modest values of rAD and rBD. For
dominant models, rAD ∈ [−0.67, −0.16] ∪ [0.12, 0.53] and rBD ∈ [−0.15, 0.18]
corresponding to signed r2 ∈ [−0.45, −0.03] ∪ [0.01, 0.28] and [−0.02, 0.03] respectively
(Figure S1a) and for recessive, rAD ∈ [−0.67, −0.41] ∪ [0.16, 0.53] and rBD ∈ [−0.14, 0.18],
i.e. signed r2 ∈ [−0.45, −0.17] ∪ [0.03, 0.28] and [−0.02, 0.03] respectively (Figure S2a).

2. Such disease causing SNPs are not required to have low MAF or large odds
ratios—The range of MAF for possible disease causing D versus the corresponding odds
ratio of D under additive disease model with the given properties is illustrated in Figure 1b.
This two dimensional figure shows that the disease causing SNPs from such models, cannot
be small and have a wide range of values (0.13 ≤ P(D2) ≤ 0.50). D also can have modest
odds ratios as low as 1.75. Again, we have highlighted the three-SNP models with modest
odds ratios of D (0.33 ≤ ORD ≤ 3.0) in red.

D under dominant disease model can have lower MAF than for the additive model (0.06 ≤
P(D2) ≤ 0.50) but still can have modest odds ratios as low as 2.13 (Figure S1b). D under
recessive models must have MAFs that are common (0.21≤ P(D2) ≤ 0.50) and can have odds
ratios as low as 2.07 (Figure S2b).

To confirm that D does account for A and B's effects on the phenotype in these models, we
compared the amount of variance explained (R2, the coefficient of determination) in two
logistic regression models; D alone and A, B, and D together. In these two models, the
amount of variance explained was the same, indicating that A and B did not add to the
explained phenotypic variance accounted by D alone. Thus D accounts for the effects of A
and B.

APPLICATION TO NICOTINE DEPENDENCE
We did not find any three-SNP models that could individually account for the point
estimates of ORA, ORB, ORA|B and ORB|A in the COGEND data under additive, dominant,
or recessive disease models. In other words, Spoint is empty. One way to see this concretely
is to note that under all three disease models, all of the three-SNP models examined whose
ORA and ORB matched the point estimates of ORA and ORB resulted in values for ORA|B in
the range [1.68, 1.72] and values for ORB|A in the range [1.32, 1.36]. The point estimates
from COGEND for these values (ORA|B = 1.55, ORB|A = 1.19) both fall outside these
ranges. This suggests that it is unlikely that any single SNP acting under a common disease
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model produced the joint analysis results observed in the COGEND data. Because the set of
candidate models, Spoint, is empty, no comparison to the 1000 Genomes SNPs was needed.

S95, the less restrictive set of three-SNP models in which allele frequencies and correlations
precisely match observed values but odds ratios need only lie within a confidence region
(i.e. (ORA, ORB, ORA|B, ORB|A) ∈ (95%C.I. for ORA) × (95%C.I. for ORB) × (95% joint
C.R. for ORA|B and ORB|A), was not empty. Figure 2a shows, for additive disease models,
the combinations of minor allele frequencies and odds ratios for D (i.e. P(D2) and ORD
respectively) for which a single additively acting causative SNP, D, could give rise to joint
SNP results in the S95 for rs16969968 and rs588765 in COGEND. The large area depicted
indicates that in theory, many SNPs could be candidates for such a D, producing joint SNP
results within the somewhat broad space formed by the C.I. and C.R.: (1.22,1.58) ×
(0.80,1.03) × (95% joint C.R. for ORA|B and ORB|A). We note that under an additive disease
model, D must be common (MAF ≥ 6%) and can have modest odds ratios (as small as 1.37).
These results were based on 3-SNP models generated with N = 100 (number of haplotypes),
which thus determines the density of the plotted gray circles. A larger N would result in a
higher density of gray circles, but is not expected to change the overall shape.

Because S95 was not empty, we filtered S95 against the 2793 SNPs listed in the 1000
Genomes that lie in the ~500Kb region centered at rs16969968. Under additive model, we
found 362 SNPs that match MAF, rAD and rBD. Out of these 362 candidates, 25 were
previously genotyped, and 320 could be imputed well (using a lenient threshold of estimated
allelic R2 ≥ 0.4). The remaining 17 potential candidate SNPs were not imputable in
COGEND and cannot be tested at this time (Table SII). We tested the 345 genotyped and
well-imputed SNPs in COGEND to obtain odds ratios and plot them against P(D2) and ORD
(Figure 2a, blue dots). None of these SNPs possessed an appropriate odds ratio to remain as
a candidate.

For models in S95 under dominant disease models, we similarly plot P(D2) and ORD (Figure
2b). As we found for additive models, dominant S95 models cover a large area in this space.
These models include less common (MAF can be as low as 2%) causative SNPs, which
must have very large odds ratios, as well as common SNPs, which may have modest effects
(e.g. MAF = 0.41, ORD = 1.40).

The same list of 2793 real SNPs was filtered against S95 under dominant disease model for
D. There was a total of 370 SNPs that possess MAF, rAD, and rBD values that fall within
S95. Of the 370 candidates, 25 were previously genotyped and 323 were imputed well
COGEND. The remaining 22 candidates were not imputable in COGEND (Table SII).
Figure 2b shows that out of the 348 candidates, 329 did not have matching odds ratios (blue
dots) leaving 19 SNPs (red dots) that have odds ratios to remain as candidates for D under
dominant disease models in S95 (Table SII).

Lastly, Figure 2c plots P(D2) and ORD that for models in S95 under recessive disease
models. Compared to additive and dominant models, we find models in S95 covering a
smaller area in these dimensions. In these models the causative SNPs must be common
(MAF ≥ 13%). Still, D can have modest odds ratios (ORD ≥ 1.38). The 2793 real SNPs were
filtered against the recessive disease models in S95. A total of 307 SNPs had MAF, rAD, and
rBD values that match S95. Of these candidates, 23 were previously genotyped and 275 were
imputed in COGEND. The 9 that were not imputable in COGEND remain as potential
candidates and are listed in Table SII. Figure 2c shows that out of the 298 candidates, 280
did not have matching odds ratios to remain as candidates (blue dots) and 18 SNPs (red
dots) remain as candidates for D under the recessive disease models in S95 (Table SII).
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Finally, we wish to determine if any of the 37 candidates (dominant and recessive models)
can account for rs16969968 and rs588765, in the sense that adding both these SNPs to the
model with D alone does not increase the variance explained. Each candidate was tested in
the COGEND dataset alone and together with both additional SNPs rs16969968 and
rs588765 in logistic regression models with the appropriate genotyping coding for D
(dominant or recessive). In COGEND, we found that none of the candidates could account
for all of the variance explained by rs16969968 and rs588765; 29% to 98% of the variance
explained by rs16969968 and rs588765 was not contributed by the candidates. Also using
tests based on −2log likelihood differences, for each candidate D, the model including D,
rs16969968, and rs588765 provided a significantly better fit to the data than the model that
includes D alone (last column of Table SII). Therefore, we conclude that none of the
candidates fully account for the originally observed associations of rs16969968 and
rs588765.

Discussion and Conclusions
We have presented a novel approach that provides a list of candidate SNPs that could
produce observed associations of two SNPs, A and B, to a phenotype in a joint analysis.
Typically, only variants that have high r2 with either A or B are considered as potential
candidates, as they are clearly “tagged” by either SNP. Our method demonstrates that lower
correlation SNPs could cause such phenomena and provides a systematic approach to
identify candidates that may represent a single effect underlying the associations of A and B.
In addition, these candidates may have only modest correlation to the observed association
signals. Therefore our approach is important because it (1) identifies potential causal
candidates that would be missed by the traditional approach of searching for causal variants
among the “tags” that are highly correlated with the statistically identified SNPs, and (2) it
has the potential to connect association signals that might have seemed disparate due to lack
of high pair-wise correlations among the SNPs. This method can be applied to any joint SNP
analysis finding for two SNPs and a dichotomous trait. Our SAS (Cary, NC) code is
available upon request.

Based on a scenario in which SNP A is associated in univariate analysis and SNP B is
associated only after joint analysis with A, we observed that even with modest effect sizes,
the causative SNP D can have moderate to low pair-wise correlations to A and B. This is
striking since examining only highly correlated SNP (r2 ≥ 0.8) is typically thought to be
sufficient to identify SNPs whose statistical associations are due to the same causal source.
However in our simulations we found A and B, whose significant associations to the
phenotype were due solely to causative SNP D, were not required to be highly correlated to
D. In fact, D's pair-wise correlations to A and B were limited to modest to low values. This
makes sense, since if either A or B were highly correlated to D, then any joint SNP analysis
with the highly correlated variant would yield only one significant association (representing
D). Our demonstration that high correlation does not necessarily identify key candidates that
represent the same underlying joint signal has some parallels to a previous simulation study
of single SNP association results which showed that two highly correlated SNPs do not
necessarily have highly correlated test results [Nielsen, et al. 2008]. Our findings and theirs
both caution against relying solely on high pair-wise correlation among SNPs to make
inferences from association findings to identify variants underlying observed association
signals.

Our work shows that it is possible for two apparently distinct signals to be explained by a
single underlying causal variant. This is the flip-side of a previous simulation-based
demonstration that it is possible for an association signal at a single common SNP to be
explained by multiple rare causal variants that co-occur on the haplotype background
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(synthetic association) [Dickson, et al. 2010]. In both studies, results show that relying on
high correlations with observed association signals to identify causal variants is not adequate
and will miss many potential causal variants.

It is important to note that even though our three-SNP models are set up so that D is the
single causal variant, this does not guarantee that any candidate identified by our approach is
indeed the underlying causal SNP for a given joint analysis finding. The candidate list alerts
researchers as to (some of the SNPs) which have this potential. Biological assays or
functional evidence are ultimately required to establish causal relationships, either of a pair
of SNPs A and B or of a single SNP D, to the disease.

In our application to nicotine dependence association results in COGEND, we found no
convincing evidence that a third SNP D is responsible for the joint results observed at
rs16969968 (A) and rs588765 (B). First, Spoint is empty, meaning that no single SNP, under
the models examined (additive, dominant, recessive), would in theory produce the precise
odds ratio point estimates observed in COGEND. Second, none of the 37 candidates
identified using S95 could account for the effects of rs16969968 and rs588765 in a 3 SNP
logistic regression, which indicates that these candidates are not the underlying variants.
Lastly, it is important to note that a great deal of biological support is emerging for the
functional effects of rs16969968 [Bierut, et al. 2008] and of rs588765 or its high r2 proxies
[Smith, et al. 2011; Wang, et al. 2009]. This biological evidence supports the idea of distinct
roles for these two loci in nicotine dependence, thereby supporting the thesis that the two
SNPs represent two different effects.

The candidates from the 1000 Genomes for D in S95 could connect our nicotine findings in
CHRNA5 to variants in IREB2, CHRNA3, CHRNB4, and ADAMTS7 where the candidates
are located. The genes IREB2, CHRNA3, and CHRNB4 contain other variants with strong
correlation to rs16969968 or rs588765 and previously have been reported in relation to
smoking. Our analysis also revealed a potential connection between smoking loci and
ADAMTS7 (Table SIII). Interestingly, ADAMTS7 (rs1994016) was recently reported as
associated with coronary artery disease (CAD), a phenotype closely related to smoking
[Reilly, et al. 2011]. Increased attention to potential overlap or relationships between
associations for smoking behavior and heart disease may therefore be warranted.

It is important to note that the process of identifying broad-sense candidates for a joint result
(i.e. SNPs in S95) is influenced by the accuracy of the estimates of ORA, ORB, ORA|B, and
ORB|A. More accurate estimates of the odds ratios (i.e. tighter confidence interval) will force
the SNPs in S95 to more closely represent the observed joint SNP analysis result. Also, in
generation of three-SNP models, it is important to select population-level values for P(A2),
P(B2), and rAB from an appropriate reference that represents the ancestral make up of the
real data well. If inaccurate population values were used, the generated three-SNP models
would deviate from the values of P(A2), P(B2), and rAB observed in the real dataset. Use of
an appropriate reference is also important when performing imputation in the applied study
dataset, and differing imputation strategies may yield differing results. However, imputation
is only involved in the final filtering step to identify “real” candidates that match the
theoretical properties in Spoint or S95. We first retain only those real SNPs with matching
allele frequencies and correlation. As in all cases involving imputed variants of interest,
confirmatory genotyping remains important.

Our work highlights the usefulness of reporting odds ratios and confidence intervals for both
SNPs that are included in a joint analysis. Oftentimes, when joint analyses are carried out
using a selected SNP (SNP A) already known to be disease-associated, only the second
SNP's result (SNP B) is reported from the joint model. Odds ratios of both SNPs are
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important for interpretation of joint SNP association results, and can be used by our method
to identify potential candidates for a single causal SNP.

In conclusion, our method identifies theoretical properties sufficient for a single underlying
variant to be the sole cause of a specific joint SNP analysis result and can be applied
systematically to identify real candidate causal SNPs (e.g. from the 1000 Genomes data).
We have shown that these candidates would not necessarily be obvious from current
approaches. In addition, our method can connect association signals that might otherwise be
thought to be distinct. This work provides information that can aid in designing follow-up
studies to further elucidate the genetic underpinnings of diseases.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
a. Plot of D's pair-wise correlation to A (rAD) and to B (rBD) among the three-SNP models
that produced the following odds ratios for A and B under additive disease model for D;
1.30 ≤ ORA ≤ 2.00, 0.91 ≤ ORB ≤ 1.10, 1.30 ≤ ORA|B ≤ 2.00, and 1.30 ≤ ORB|A ≤ 2.00.
Each open circle indicates a combination of D's theoretical properties (P(D2), rAD, rBD,
ORD). Red filled-in circles indicate Ds that have odds ratios between 0.33 and 3.00.
b. Plot of D's minor allele frequencies (P(D2)) and odds ratios (ORD) among the three-SNP
models that produced the following odds ratios for A and B under additive disease model for
D; 1.30 ≤ ORA ≤ 2.00, 0.91 ≤ ORB ≤ 1.10, 1.30 ≤ ORA|B ≤ 2.00, and 1.30 ≤ ORB|A ≤ 2.00.
Each open circle indicates a combination of D's theoretical properties (P(D2), rAD, rBD,
ORD). Red filled-in circles indicate Ds that have odds ratios between 0.33 and 3.00.
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Figure 2a–c.
Plot of D's minor allele frequencies (P(D2)) and odds ratios (ORD) from S95 under additive
(a), dominant (b) and recessive (c) disease models for D. Each open circle indicates a
combination of D's theoretical properties (P(D2), rAD, rBD, ORD). Blue dots indicate
candidates for D from 1000 Genomes that do not have matching odds ratios and are
therefore ruled out as potential causal Ds. Red dots indicate candidates that possess
matching odds ratio.
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Table I

Table of observed properties values of rs16969968 (SNP A) and rs588765 (SNP B). Minor allele frequencies
of A and B and pair-wise correlation between the two SNPs are obtained from the 1000 Genomes European
reference panel to match the ancestry background of the COGEND European-American (EA) dataset. Odds
ratio estimates and 95% C.I. of ORA, ORB, ORA|B, and ORB|A and covariance between ORA|B and ORB|A are
calculated from the COGEND EA sample (1062 cases, 991 controls).

RS16969968 (A) Rs588765 (B)

MAF in 1000 Genomes 0.42 0.39

Pair-wise correlation in 1000 Genomes r = −0.68

Univariate OR (L95%,U95%) 1.39 (1.22,1.58) 0.91 (0.80,1.03)

Joint SNP OR (L95%,U95%) 1.55 (1.31,1.83) 1.19 (1.01,1.39)

Covariance between joint SNP OR estimates 4.52 × 10−3
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