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Abstract
The use of growth modeling analysis (GMA)--particularly multilevel analysis and latent growth
modeling--to test the significance of intervention effects has increased exponentially in prevention
science, clinical psychology, and psychiatry over the past 15 years. Model-based effect sizes for
differences in means between two independent groups in GMA can be expressed in the same
metric (Cohen’s d) commonly used in classical analysis and meta-analysis. This article first
reviews conceptual issues regarding calculation of d for findings from GMA and then introduces
an integrative framework for effect size assessments that subsumes GMA. The new approach uses
the structure of the linear regression model, from which effect sizes for findings from diverse
cross-sectional and longitudinal analyses can be calculated with familiar statistics, such as the
regression coefficient, the standard deviation of the dependent measure, and study duration.
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Traditionally, psychological data have been examined with classical statistical techniques,
such as analysis of variance (ANOVA) and multiple-regression analysis, which use ordinary
least squares (OLS) for estimation and are unified under the general linear model (GLM).
Accordingly, effect sizes have been developed largely to determine the practical significance
of treatment effects and associations in conventional analyses and for use in meta-analysis
(Shadish & Haddock, 2009). The well-known equations for calculations of such effect sizes
can be found in numerous sources (e.g., Grissom & Kim, 2005; Hedges, 2009; Lipsey &
Wilson, 2001; see also special section in Child Development Perspectives, Supplee, 2008).

The effect size used is often determined by the nature of the independent and dependent
variables. In randomized clinical trials and other experiments, the independent variable is
typically categorical (groups or conditions) and the dependent variable is continuous (e.g.,
scores). Thus, Cohen’s (1988) d (the standardized mean difference between two groups) is
generally the effect size of choice for conveying the magnitude of experimental effects.
However, when an experiment has a binary outcome (e.g., success vs. failure) and the data
are analyzed by chi-square or logistic regression analyses, the odds ratio (OR) is a frequently
used effect size that expresses the group difference in probabilities (Fleiss & Berlin, 2009).
When the independent and dependent variables are both continuous, the effect size r (the
ordinary Pearson correlation coefficient), or associated measures based on percent of
variance explained (e.g., Fairchild, MacKinnon, Taborga, & Taylor, 2009), is frequently
used.
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Growth Modeling Analysis of Data from Controlled Clinical Trials
Over the last 15 years, growth modeling analysis (GMA), which most often uses maximum-
likelihood estimation and the expectation-maximization (EM) algorithm (Dempster, Laird,
& Rubin, 1977), has emerged as a compelling alternative statistical framework to classical
analysis, particularly for analyzing longitudinal data from controlled clinical trials. GMA—a
family of modeling approaches that includes types of multilevel analysis/hierarchical linear
models (HLM; Raudenbush & Bryk, 2002; Hedeker & Gibbons, 2006) and covariance
structural models/latent curve analysis (Meredith & Tisak, 1990; Singer & Willett, 2003)—
compares temporal trajectories (growth curves) between conditions to determine treatment
effects. GMA can be conceptualized as a more flexible version of a split-plot ANOVA that
uses polynomial contrasts to examine whether trajectories for the repeatedly-measured
outcome (the within-subjects factor) are moderated by the treatment (between-subjects)
factor (Winer, 1971).

GMA uses repeated measures data from all participants rather than from study “completers,”
and affords more accurate parameter estimates, especially when data are missing (Atkins,
2005; Little & Rubin, 2002; Schafer & Graham, 2002). In addition, ANOVA has restrictive
statistical assumptions (e.g., compound symmetry, homogeneity of variance over time) that
are rarely met in practice but are relaxed for GMA (Gibbons, Hedeker, Elkin, Waternaux,
Kraemer, Greenhouse, et al., 1993; Gueorguieva & Krystal, 2004). Finally, recent
developments in GMA, including latent class growth analysis (e.g., Nagin, 2005) and
growth mixture modeling (GMM; e.g., Muthén, Brown, Masyn, Jo, Khoo, et al., 2003),
allow for extraction and use of latent classes in the analysis. GMM, for example, can be used
to examine whether an intervention is more efficacious for some types of participants than
others, which would be useful information when clinicians match individuals to
interventions (Babor & Del Boca, 2003).

Because of the many advantages of GMA over classical longitudinal methods, Aiken, West,
and Millsap (2008) recently deemed it one of the most important methodological
innovations of the twenty-first century, and Kuljanin, Braun, and DeShon (2011) averred
that these methods “are currently the dominant approaches to the analysis of longitudinal
data in psychology” (p. 249). Thus, GMA is now widely used in program evaluations.
Reviews of clinical trials published in Prevention Science, Journal of Consulting and
Clinical Psychology (JCCP), and Archives of General Psychiatry found an increasing
number of studies using GMA in all three journals (Feingold, 2009; Gueorguieva & Krystal,
2004).

Ideally, methods for significance testing and effect size calculations for group differences
observed in GMA would have evolved concurrently to facilitate comparisons between
findings from traditional and GMA studies. Moreover, it would be useful for meta-analysts,
who frequently combine results to produce syntheses of intervention outcomes that typically
have far more impact than results of individual trials, to have the effect size from a GMA
expressed as the standardized mean difference (d) that is most often used in quantitative
synthesis (Lipsey & Wilson, 2001).

However, Feingold (2009) reviewed 43 clinical trials regarding interventions for treatment
and prevention published in JCCP that had used GMA and found p values to be ubiquitous
but noted only 13 reports of effect sizes calculated from model-based coefficients.
Moreover, the formulas used in those 13 studies were not conceptually or mathematically
equivalent, and none of them expressed the effect size in the same metric deployed in
classical analysis, precluding their use in meta-analysis. These results are consistent with the
recent conclusion that “in certain situations (e.g., multilevel designs), no consensus exists on
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how to conceptualize and/or calculate effect size measures” (APA Publications and
Communications Board Working Group on Journal Article Reporting Standards, 2008, p.
850).

There are several factors that may have affected attention paid to effect sizes for GMA
findings. Equations for calculating effect sizes for classical analyses became ubiquitous a
generation ago but only for cross-sectional analyses conducted with independent groups.
Formulas for determining effect sizes for classical repeated measures designs--even when
only two time points are used--have been little known or applied (Dunlap, Cortina, Vaslow,
& Burke, 1996; Feingold, 2009; Morris & DeShon, 2002).

The effect size d is calculated by dividing the difference between the means of two
independent groups by the pooled within-group standard deviation (Cohen, 1988). The
denominator in the equation is thus an estimate of the standard deviation of the outcome
measure in the population. However, when participants have been measured twice (e.g.,
before and after a manipulation), primary investigators and meta-analysts alike have often
computed d for the difference in means between the two times (or from the interaction
between time and group when a comparison group was included) by using the standard
deviation of the pretest-posttest change scores as the denominator rather than the more
appropriate standard deviation of the outcome (Morris & DeShon, 2002). An effect size
based on change score variations from a within-subjects design does not convey the
magnitude of an effect because it is confounded with the pretest-posttest correlation (Dunlap
et al., 1996), which generalizes to repeated-measures designs that include a control group.

Effect Sizes for ANOVA and Growth Modeling Analysis
The classical design that is the true analogue of GMA is a repeated-measures ANOVA with
polynomial contrasts that examines changes in outcomes over time, and whether these
trajectories vary across conditions. That effect sizes for GMA hypothesis tests are not
routinely reported is not surprising because the corresponding effect sizes for ANOVA and
multiple regression analysis also have rarely been addressed. When repeated-measures
ANOVA is used, the standard operating procedure is to report the F for the interaction
contrast (or sometimes just the omnibus F for the interaction) and graph the means for each
group over the time factor to display the difference in trends between the treatment and
control conditions. GMA users engage in essentially the same reporting practices, except
that the temporal trend is expressed as a line or curve of the means--as estimated from the
GMA equation--for each condition. Moreover, major GMA programs, such as HLM
(Raudenbush, Bryk, Cheong, Congdon, & du Toit, 2004), output only an unstandardized
coefficient for the group difference in growth rate (e.g., the effect of a time-invariant
covariate, such as a treatment factor, on a random slope), and users’ manuals for such
software--including both HLM (Raudenbush et al., 2004) and Mplus (Muthén & Muthén,
2010)--do not explicitly mention the effect size associated with it.

Need for a New Framework for Effect Size Assessments
Raudenbush and Liu (2001) described an approach for calculating an effect size for the
difference between two groups in linear trends from a GMA that uses differences in growth
rates between the groups and the standard deviation of raw scores to determine baseline-
adjusted effect magnitude at the end of the study in the familiar d metric. Feingold (2009)
presented a formal equation for an effect size for GMA based on their ideas but it expresses
only the difference between two groups in linear growth of a continuous outcome. In many
trials, however, three or more groups may be used; trajectories may not be linear;
randomization to conditions may occur at the cluster instead of at the individual level (i.e.,
clinic or school rather than patient or student); subject-factor covariates (e.g., gender or risk
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status) may be included in the model; the effects of unobserved heterogeneity may be
examined; and outcomes may be categorical (e.g., binary) rather than continuous.

Therefore, there is a pressing need for an approach that can guide the calculation of effect
sizes for multilevel findings from the wide range of longitudinal designs used to compare
means of two or more groups. Ideally, a conceptual basis for effect size assessments would
be provided via an integrative framework that can be adapted to different research cross-
sectional and prospective designs, thus allowing GMA effect sizes to be comprehended in
the context of a general model. Moreover, effect sizes obtained from between-subjects
ANOVA, repeated-measures ANOVA, and GMA should all estimate the same parameter
(e.g., mean difference between groups at end of study), as design factors should not
moderate estimates of effect potency (Olejnik & Algina, 2003) and use of a common metric
would allow findings from different kinds of studies to be combined in a meta-analysis.

The Current Work
This article first formulates a regression framework that will be useful to empirical
researchers and meta-analysts in computing effect sizes for findings obtained with varied
research designs. Next, conceptualizations and calculations of effect sizes are presented.
Finally, methodological issues related to these methods—including selection of the standard
deviation and handling of groups formed by non-random assignment or measured subject
characteristics—are discussed.

Most of this article is concerned with effect sizes for mean differences in analyses conducted
with a categorical independent variable and a continuous dependent variable (characteristic
of most experiments) that are generally in the metric of d. However, the generalization of the
procedures to analyses with categorical outcomes—where the OR is the effect size—is
described, and issues regarding effect sizes when the predictor variable is continuous are
also discussed.

A GLMM Regression Framework for Effect Size Assessments
Predictor variables (covariates) used in an analysis conducted with OLS estimation and the
GLM may have different distributions (e. g., normal, multinomial, and Poisson) but
normality is assumed for the dependent variable (Cohen, Cohen, West, & Aiken, 2003).
Generalized linear models (Nelder & Wedderburn, 1972) is an extension of GLM that
integrates OLS regression with logistic and Poisson regression analyses and uses maximum-
likelihood estimation in analysis of both normally-distributed and categorical dependent
variables, with similar structural models (Agresti, 2002; Hosmer & Lemeshow, 2000).
Generalized linear models also subsumes GMA with fixed effects, including latent class
growth analysis, and its formulation has recently been hailed as one of statistics’ most
important contributions to psychology (Wright, 2009).

An extension of generalized linear models, called generalized linear mixed models (GLMM;
McCulloch & Searle, 2001) or hierarchical generalized linear models (Raudenbush & Bryk,
2002), can accommodate GMA with both fixed and random effects for dependent variables
having normal, Bernoulli (binomial), Poisson, or multinomial distributions and thus
subsumes GLM and generalized linear models. HLM is a special case of GLMM with
normally distributed outcomes using an identity link function (Raudenbush & Bryk, 2002).
Although these frameworks unify a wide range of statistical procedures (see Table 1),
researchers who have discussed these models have typically been more concerned with null
hypothesis significance testing than with effect size estimation. Accordingly, this article
discusses conceptualizations and calculations of effect sizes associated with hypothesis tests
from different GLMM regression models.
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Continuous Outcomes with No Moderation of Intervention Effect
Two Independent Groups

In the simplest (posttest-only) experimental design, participants are randomly assigned to
either an experimental or a control condition; an intervention is administered only to the
experimental group; a continuous measure is administered to both groups at the end of the
study; and the means of the two groups on the outcome are compared. The effect size for
this cross-sectional between-subjects design is the classical standardized mean difference,
most often calculated with Equation 1,

(1)

where MT is the mean of the treatment group, MC is the mean of the control group, and the
SD is the pooled within-group standard deviation.

By contrast, the integrative GLMM framework uses the structural model of a regression
equation for calculating the effect size,

(2)

where Y is the dependent variable, a is a constant (intercept), b is an unstandardized
regression coefficient, group is a dichotomous independent variable, and e is the error—the
difference between the observed Y and the Y that is predicted by the regression model (a +
bGroup).

Variable codes differing by one unit (e.g., −1/2 and 1/2 but not −1 and 1) can be ascribed to
participants in the experimental and control groups (the group variable) for use in the
regression of Y on group. The b then equals the difference between the group means and the
standard deviation of e is the pooled within-group standard deviation (SD). Thus, for the
randomized two-groups design,

(3)

in a GLMM formulation, where SD is the standard deviation of the raw outcome scores
within groups (i.e., the square root of the MSE in regression and ANOVA, where MSE is
the error term in between-subjects designs).

Independent-Groups Pretest-Posttest Design
The simplest longitudinal experimental design is an extension of the two-independent-
groups design that adds a baseline assessment (or pretest) for both the intervention and the
control groups (Morris, 2008). The effect size conveys the difference in change scores
between the two groups (Becker, 1988; Feingold, 2009; Morris & DeShon, 2002),

(4)

where MCHANGE-T is the mean of the change score (difference between pretest and posttest
means) for the treatment group, MCHANGE-C is the mean of the change scores for the control
group, SDPRE-T is the pretest SD for the treatment group, and SDPRE-C is the pretest SD for
the control group (for a worked example, see Feingold, 2009).

Given randomization at study onset, SDPRE-T and SDPRE-C are both estimates of the same
parameter and can be replaced by the pooled standard deviation, SD, in Equation 4 (Morris,
2008). In the case of groups not formed by random assignment, Equation 4 should only be
used when there is homogeneity of variance between the two groups. Such homogeneity of
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variance is assumed by the statistical model and Equation 4 could yield dubious effect sizes
when the assumption is violated.

From a GLMM framework, the d can be calculated with an expansion of Equation 2 to add a
term for the pretest variable,

(5)

where b1 is the coefficient for a continuous pretest score and b2 is the coefficient for a
dichotomous treatment variable. Thus, b2 is the difference between the groups at end of
treatment adjusted for the mean difference at onset of study. Because random assignment
ensures that the correlation between pretest and group is expected to be zero, the expected
value of b2 is not changed by the inclusion of a pretest covariate in the model. However, the
standard deviation of e from a model that does not include the pretest (i.e., Equation 2)
should be used as the denominator when using Equation 5 to calculate the numerator. When
a pretest (or any other covariate) is included in a regression, the standard deviation of e is
not the standard deviation of the outcome but of a residualized outcome.

Three or More Independent Groups
Researchers often use more than two groups (conditions) in their studies. A priori
comparisons or contrasts among means are often used when participants are randomly
assigned to more than two groups and effect sizes are more meaningful for such planned
comparisons than for omnibus comparisons (Rosenthal, Rosnow, & Rubin, 2000).

In a randomized clinical trial with three groups, for example, one contrast might compare
the means of two different treatments and a second contrast could compare the mean of the
participants receiving any treatment with the mean of the control group. Because contrasts
are essentially comparisons between two weighted means, a d can be calculated for each
planned comparison in a given analysis. When the contrast compares two groups (e.g., two
different treatment conditions), the effect size can be calculated using Equation 1, and the
within-group standard deviation is typically pooled from all groups in the study. When a
comparison is conducted that incorporates means from more than two groups, the effect size
can be computed by averaging means for two or more groups for at least one term in the
numerator. In the preceding example, the effect size for the contrast that compares the
average of the two treatment groups (TA and TB) with that of the control group from a
traditional ANOVA framework would be,

(6)

From the GLMM framework, however, the effect size for each contrast would be obtained
by modification of the regression model for two groups (Equation 2) to include variables for
the two contrasts, i.e.,

(7)

If, for example, Group1 is the code for the contrast comparing the two treatment groups, the
groups could be assigned values of −1/2 for TA, 0 for the control condition, and 1/2 for TB.
Then b1 in Equation 7 would equal the difference between the means of the two treatment
conditions. The effect size for this comparison would be calculated with Equation 3, with b1
substituted for b. If Group2 is the variable for the contrast between treated and untreated
participants, the groups would be assigned values of 1/3 for TA, −2/3 for the control
condition, and 1/3 for TB. Then b2 would be the difference between the mean of the control
group and the average of the means of the two treatment groups. (The difference between

Feingold Page 6

Rev Gen Psychol. Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the contrast weights for the groups compared must differ by one unit so that b equals the
difference in means between groups compared by the contrast.) The d for this contrast would
also be calculated with Equation 2 but with b2 substituted for b.

Repeated Measures with Three or More Time Points for Linear Model
The extension of the independent-groups pretest-posttest design to handle three or more
levels of the repeated measures (time) factor is a split-plot ANOVA with a contrast that
compares linear growth on the dependent variable between the intervention and control
groups. Although there has been little discussion in the psychological or methodological
literature of an effect size for this interaction contrast in ANOVA, Feingold (2009) recently
described an effect size for a test of the corresponding hypothesis in GMA, which
generalizes to the effect size conceptualization for its classical counterpart because both
types of analyses are variants of GLMM.

In ANOVA (and regresson), the difference between the means of the two groups at the end
of the study can be estimated from the model by calculating the difference in the rate of
change between groups per unit of time through modeling of the group means as a function
of group and time and then multiplying that value by study duration. This model-derived
product is divided by the pooled within-group SD of the outcome measure (Y) to produce an
effect size in the same d metric used in the completely randomized and independent-groups
pretest-posttest designs.

For example, in an experiment that assesses the treatment and control groups at baseline and
then weekly for each of the following three weeks, the means for the control group might be
2, 3, 4, and 5 at baseline, week 1, week 2 and week 3, respectively, indicating a steady
improvement in the absence of treatment. The corresponding means for the intervention
group might show greater growth, such as 2, 4, 6, and 8. If time (expressed in weeks) is
defined as a mean-centered variable with values of , say, −3/2, −1/2, 1/2, and 3/2 and the
four repeated measures means are regressed separately on the four times for each of the two
groups, the resulting bs are 1.0 and 2.0 for the treatment and control conditions, respectively.
Thus, the control group gained 1 point per week on the dependent measure and the
intervention group gained 2 points per week over the course of the trial. The difference
between these regression coefficients is 1.0, which could also be obtained from the b for a
Group × Time interaction in a single multiple regression that used all 8 cell means (i.e., with
the condition means from the two groups combined) as Y values and the 3 codes for the
main and interactive effects of group and time as predictor variables,

(8)

where Y is a mean of one of two groups at each of four times, group is the condition coding
(−1/2 for control and 1/2 for treatment), time is the time coding, Group*Time is the Group ×
Time cross-products, and e is zero (because the linear trend of the means is perfect for both
conditions in the illustrative data). Then the effect size would be calculated using b3 from
Equation 8 in Equation 9,

(9)

When the number of weeks is 3 (as with 3 posttest scores in a study with weekly
assessments) and the within-groups standard deviation is, say, 10, d = (1)(3)/10 = .30.

GMA researchers working within a multilevel/HLM framework often use the structural
model associated with this analytic question in its linear mixed models formulation (e.g.,
Raudenbush & Bryk, 2002), where the coefficients for the fixed effects are identical to those
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for OYS regression (Equation 8). However, in HLM, the e term at the end of Equation 8 is
partitioned into three sources for (a) within-subjects (level-1) variation, (b) level-2 variation
in random intercepts among subjects, and (c) level-2 variation in random slopes among
subjects. The errors (random effects), and the differences between them in OLS linear
regression and GMA models, can be ignored in effect size calculations because only the
fixed effects (regression coefficients) are used in those calculations. (Thus, in the following
presentation of GMA equations, e will be used to refer to the sum of these three sources of
errors.) Therefore, the effect size for the treatment effect from a GMA can be calculated
with Equation 9 (Feingold, 2009). (For readers more familiar with the 2-level formulation of
HLM, the coefficient for effect of group on slope is the same as the Group × Time
interaction in both the linear mixed model framework for HLM and in the Equation 8 in
OLS regression).

Repeated Measures with Three or More Time Points for a Non-Linear Model
If the outcome trajectory is linear for each group, the effect size reflecting the difference
between the means of the two groups at end of the study also conveys the difference
between them at every point during the study. For example, if the effect size for an 8-week
trial is .80 and the trajectories of d are linear, the effect sizes are .20, .40, .60, and .80 at
weeks 2, 4, 6, and 8 weeks, respectively. However, the treatment group may improve rapidly
relative to controls early in the study but the differential improvement rate may vanish over
the course of the trial. Then, for example, the effect sizes for a study of the same duration
with the same end-of-study mean difference might be 1.20, .90, .80, and .80 at weeks 2, 4, 6,
and 8, respectively. Alternatively, it might take time for the treatment to “kick in.” Then the
corresponding effect sizes might be .10, .20, .40, and .80 over the same period. Note that the
difference between the groups at week 8 is identical in the three examples but there are
important differences in trajectories of effect sizes ascribable to non-linearity.

Because an ANOVA with polynomial trends (equivalent to a multiple regression analysis)
examines growth rates, model-based estimates of the means at each time for each group can
be derived from a regression analysis that treats the observed means as the dependent
variable. Thus, an effect size may be calculated for each time by calculating the difference
between the model-estimated means of the groups at that time and dividing it by the
standard deviation. Thus, effect sizes can be calculated for ANOVA by modeling the group
means from both groups with linear regression as a function of treatment (a dichotomous
variable), time (linear trend coefficients) and the Group × Time interaction (Equation 9). A
non-linear model requires at least two additional coefficients, one for a quadratic trend of
time (e.g., with contrast weights of 1/2, −1/2, −1/2, and 1/2) and one for the interaction of
the quadratic trend with group, i.e.,

(10)

where Y is the mean of one of the groups at one of the four times, Linear represents linear
change in time, and Quadratic represents corresponding contrasts for non-linear change.
Both linear and non-linear change may vary across group.

In a 3-week study, for example, the means may be 5, 6, 7, and 8 at baseline, week 1, week 2,
and week 3 for the control group and 5, 8, 10, and 11 for the treatment group, both
respectively (SD = 10). The model-based mean for each group at each time can be
calculated from the regression equation given in Equation 10 using the observed means and
variable codings to obtain the coefficients. (In the current example, these model-based
means are the same for each group as the respective observed means because the linear and
quadratic trends coefficients together perfectly explain the variability among the repeated
measures.)
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Non-linearity of the growth in the treatment effect observed in both repeated-measures
ANOVA and GMA can be examined using this quadratic regression model, from which a
score can be predicted for each group at each time. The model-estimated mean difference
between the groups at each time can then be calculated separately for each and divided by
SD to yield the d for the treatment effect at that time, and plots of these ds against time
would fit a straight line only for a correctly specified linear ANOVA/regression/GMA
model.

Continuous Outcomes with Moderation of Intervention Effect
Two Independent Groups with Observed Subject Factor Moderation

The rationale for matching of individuals to interventions is that treatment efficacy may be
moderated by subject characteristics (Babor & Del Boca, 2003). For example, one sex
benefiting more from the intervention than the other.

In a 2 (Group) × 2 (Sex) design, the d for the main effect of treatment (group) would
traditionally be calculated from the difference in the respective marginal means (i.e.,
averaged over gender) divided by the pooled within-group SD from the four Group × Sex
subsamples. The d for the interaction effect (expressing the magnitude of the moderation of
the treatment factor by sex) would be obtained from the difference between the diagonal
means calculated from the 2 × 2 matrix of cell means, which would be divided by SD. If the
interaction is statistically significant, the main effect of the treatment should be disregarded
and the simple effect ds calculated for the effects of the intervention as a function of gender
by using the within-gender mean differences as numerators in the calculations of those ds.

In the alternative GLMM framework approach, two regression coefficients would be added
to Equation 2, one for the main effect of sex and a second for the interaction of treatment
and sex,

(11)

where treatment group and sex are each coded −1/2 and 1/2 for the two respective levels and
the coding for the interaction (Group*Sex) is the cross-products of the codes for the two
factors. For the main effect of treatment, d = b1/SD. If b3 is significant, d would then be
calculated separately for each sex (simple effect ds) using the following pair of equations:

and

(12)

where dM is the treatment effect size for men and dW is the treatment effect size for women.

Two Independent Groups with Latent Class Moderation
Cross-sectional statistical models that agglomerate similar participants--such as cluster
analysis, latent class analysis (LCA), and latent profile analysis--are useful for incorporating
effects associated with unobserved heterogeneity among participants in the sample (Collins
& Lanza, 2010; Muthén & Muthén, 2010; Steinley & Brusco, 2011). As with observed
groups, latent cluster membership may moderate the effect of the randomized factor. For
example, cluster analysis has found that there are two classes of alcoholics, whose members
may well respond differently to treatment (Feingold, Ball, Kranzler, & Rounsaville, 1996).
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Thus, the analysis would need to examine the interaction between cluster membership and
the treatment factor on the outcome in an appropriate solution following a class enumeration
analysis (see Collins & Lanza, 2010) to determine the number of latent classes that should
be extracted. If the Group × Class interaction is statistically significant, the regression of
outcome on group can be allowed to vary across classes. Thus, a separate coefficient for the
intervention effect could be generated for each class, which can be used to calculate the
simple effect ds using Equation 3.

Repeated Measures with Observed Subject Factor Moderation
If an observed categorical subject factor, such a gender, moderates the difference in slopes
between the treatment and control groups, there is a three-way interaction of the measured
factor, the treatment factor, and the polynomial change factor. A term for the three-way
interaction is included in Equation 13, which combines the cross-sectional model for subject
factor moderation (Equation 11) with the longitudinal model for group differences in
trajectories (Equation 8), i.e.,

(13)

If the three-way interaction is significant, simple effect ds for treatment can be obtained
from Equation 13 using the codes of 0 and 1 in the model to generate within-gender
coefficients. This is conceptually equivalent to conducting a separate GMA for men and
women and using Equation 9 and calculating a d for treatment for each sex using the pooled
within-group SD in the computation of both ds.

Repeated Measures with Latent Class Moderation
As with LCA for cross-sectional analysis, a class enumeration analysis must be conducted to
determine the number of classes that should be extracted in the GMM. The effect of Group
on slope should be allowed to vary across classes if there is a Group × Class interaction.
Thus, a separate coefficient for the difference between slopes can be obtained for each class.
The within-class effect sizes can be calculated with Equation 9. If the interaction is not
significant, the regression coefficient for the Group × Time interaction can be constrained to
be the same across classes and the effect size for intervention efficacy calculated from that
averaged coefficient.

Cluster Randomized Designs
Two Independent Groups

In some experiments and randomized clinical trials, groups or dyads of individuals (e.g.,
clinics, therapy groups, or sibling pairs) are randomly assigned to conditions and everyone
in the group (called a cluster) either receives or does not receive the treatment. The lack of
independence among subjects within clusters requires use of a cluster-randomized design for
significance testing and CI calculations but not for effect size estimations because clustering
affects standard errors of the parameters but not their estimates (Hedges, 2007, 2009). Thus,
the mean difference between groups in a cluster-randomized design is the same as if
individuals rather than clusters had been assigned to conditions in a fully randomized study.

However, there are two types of standard deviations that may be used in the effect size
calculations for results from a cluster-randomized design. For determining treatment
magnitude within clusters (e.g., clinics), the within-group standard deviation should be
based on variation pooled within clusters nested within groups. However, to calculate an
effect size for the population from which the total sample is drawn, the within-groups
standard deviation should be used (with clustering among subjects ignored). The use of the

Feingold Page 10

Rev Gen Psychol. Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



latter standard deviation yields a zero-order effect size whereas the use of the former yields a
partial effect size in which cluster is controlled, and theory rather than statistics should
dictate the choice between them. (For a full explication of issues related to effect sizes for
cluster-randomized designs, including the selection of the appropriate standard deviation,
see Hedges, 2007, 2009).

Repeated Measures Designs
A cluster-randomized design may include repeated measures collected over the course of
study that can be examined by GMA. The data then take on a hierarchical structure in which
the repeated measures are nested within individuals who are nested within clusters, which
can be examined with a 3-Level HLM model (Raudenbush & Bryk, 2002). In a cluster-
randomized repeated-measures design, the intervention is administered to Level-3 units
(clusters) in a 3-Level model rather than to Level-2 units (the individuals) in a 2-Level HLM
model that is appropriate when individuals are randomly assigned to conditions. At Level 2
of the former, slopes are estimated for each cluster based on the trajectories of individuals in
that cluster, and each cluster is assigned a code for its treatment category (e.g., −1/2 =
control, 1/2 = treatment). At Level 3, the slopes for the clusters are modeled as a function of
the condition to which they were assigned.

The coefficient associated with the effect of treatment on the differences in cluster slopes at
level 3 reflects the same difference in growth rate between the experimental and control
subjects as b3 in the 2-level design used when individuals are assigned to conditions. Thus,
the effect size can be calculated with Equation 9 using the Group × Time coefficient (i.e.,
b3) from Level 3 of the model.

In addition, the 3-Level GMA model is used when participants are randomly assigned to
conditions within a cluster (e.g., community). However, in such cases, the effect sizes is
based on the Group × Time regression coefficient at Level 2 rather than at Level 3 but
calculated in the same way using the Level 2 Group × Time coefficient. Moreover, the
previously noted concerns about use of the correct standard deviation apply equally to
cluster-randomized repeated-measures designs.

Binary Outcomes
Two Independent Groups

Although a standardized mean difference is an appropriate effect size only in analysis with
continuous outcomes, experimental and clinical research often examines binary responses.
For instance, students enrolled in a substance abuse prevention program may or may not
remain abstinent from drugs. When the outcome is dichotomous, the structural model shifts
from a linear regression to a binary logistic regression formulation that models probabilities
rather than scores (Hosmer & Lemeshow, 2000). The effect size is then based on the
difference between the two groups in proportions, from which probabilities of subjects
falling into each category (e.g., staying abstinent) can be estimated.

In probability theory, the odds of an event occurring is the probability that the event occurs
divided by the probability that the event does not occur (Agresti, 2002). The odds of an
event (e.g., attaining a goal) can be calculated separately for each group using the observed
proportions and the ratio of the odds between the two groups is the OR. For example, if 50%
of treated individuals and 80% of controls used drugs within 6-months after the end of a
prevention trial, the odds of a treatment recipient relapsing are .50/.50 = 1.00; for a control
participant, the odds are .80/.20 = 4. The OR for relapse for controls relative to treatment
recipients is 4. The OR is a commonly used effect size in meta-analysis of group differences
in binary outcomes (Borenstein, et al., 2009; Haddock, Rindskopf, & Shadish, 1998).
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The structure of the logistic regression model is similar to that of the linear regression model
but there are two important differences. First, the logistic regression model does not contain
the error term (e) found in Equation 2 because the variances of proportions, unlike of means,
are known exactly and do not have to be estimated as separate parameters. Second, the
outcome (Y) is not a raw score but a transformed probability value known as a logit, which
is the log of the odds of the event occurrence that is modeled in logistic regression (Agresti,
2002). Thus, the b from the logistic equivalent of linear regression is not a difference
between groups in score means but in logits. The b must be exponentiated (i.e., transformed
using eb) to yield the associated OR, although the conversion is performed by default in
logistic regression programs. For binary outcomes in two groups, the OR associated with the
b for the treatment effect can be obtained directly from a logistic regression program or
calculated from the frequencies in the 2 × 2 contingency table.

Growth Modeling Analysis
Effect sizes can be calculated for binary outcomes in GMA almost exactly as with
continuous ones. However, with binary outcomes, GMA--like logistic regression--models
logits instead of raw scores (Raudenbush & Bryk, 2002). The regression coefficient for the
Group × Time interaction would thus represent the difference between the two groups in
changes over time in logit units, which must be multiplied by study duration to yield the
model-derived estimates for the differences between the groups in means of the logits at the
end of the study and then exponentiated to an OR for interpretation.

Selection of the Standard Deviation
The proposed GLMM framework for effect size assessments focuses on the calculation of
the regression coefficients that equal an observed or model-estimated mean difference
between two independent groups at end of a study. However, the mean difference must then
be divided by the appropriate standard deviation to yield a meaningful standardized mean
difference, d. Thus, the examples presented implicitly assumed that such standard deviations
were used with the regression coefficients to obtain interpretable values of d. With the
exception of the cluster randomized design, the selection and calculation of the appropriate
standard deviation was not addressed, except to note that the standard deviation of the
outcomes rather than of difference scores should be used to ensure comparability of effect
sizes across different experimental designs—and to allow for Cohen’s (1998) suggestions of
the values for d that constitute small, medium, and large effects to be used across those
designs.

The standard deviation chosen for use as the denominator effect size calculations in should
be driven by practical and theoretically meaningful considerations applicable to the study.
For example, in a short-term (e.g., 12-week) randomized trial of an intervention
administered to adults, the standard deviation of the outcome for untreated patients is likely
to be constant across assessment waves. In such a case, the baseline standard deviation of all
participants could be used (Feingold, 2009), with no need to consider treatment conditions
because random assignment ensure that both groups are expected to be equal at the onset of
the study. The advantage of the baseline standard deviation is that it can calculated from all
subjects (whereas attrition may occur at later waves) and it cannot be influenced by
treatment effects (as could be the case with estimates of variability based on multilevel
models or by using the within-group standard deviation of observed scores at end of study).

Now consider a possible multi-year prevention study designed to forestall alcohol abuse in
adolescents. At the start of the study, when the participants are very young, drinking levels
may be very low, resulting in relatively little variability. By the end of the study, when the
participants are late adolescents, quantity of alcohol consumed and variation in consumption
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would be expected to be much higher. The standard deviation of the dependent variable at
the end of study would then be more, as use of the smaller baseline standard deviation would
result in inflated effect sizes.

Finally, the effects of other subject-level covariates in the models should be considered in
the selection of the standard deviation used to calculate the effect size. Take the case of a
design consisting of four groups formed by crossing treatment and gender (and where the
numerator in the effect size calculation is obtained with Equation 11). If there is a sex
difference on the dependent measure, the standard deviation will be greater when the effects
of gender are ignored than if the standard deviation is averaged within both gender group,
and effect sizes will be larger when using the latter as the denominator. (For further
discussion of issues and controversies regarding the standard deviation that should be used
in the denominator of the effect size calculation, see Glass, McGaw, & Smith, 1981;
Hedges, 2007, 2009).

Issues of Statistical Power in GMA
There are two effect sizes for group differences that can be calculated from repeated-
measures analyses (both classical and GMA)--one that uses the standard deviation of the
outcome as the denominator (as discussed herein) and the other that uses the standard
deviation of change scores (Feingold, 2009; Morris & DeShon, 2002). Power analysis for
GMA uses the latter effect size (Feingold, 2009; Muthén & Muthén, 2002; Raudenbush &
Liu, 2001), which was not discussed in this article because it is influenced by the
correlations among the repeated measures obtained at different time.

Implications for Meta-Analysis
In addition to their value in primary research, effect sizes have been widely used as
ingredients in meta-analyses that combine and compare the findings of group differences
across studies (Borenstein, et al, 2009; Cooper, 2010; Shadish & Haddock, 2009). Because
the ds calculated from the GLMM regression framework are all standardized differences
between the observed or model-estimated means of two groups (or contrasts comparing sets
of two groups), the effect sizes obtained using this approach can be combined irrespective of
the design used in the study from which they were calculated (see Feingold, 2009, for more
details about using the GMA d in meta-analysis). Most important, because linear growth
models indicate the treatment effects increase with length of study, duration should be
controlled in a meta-analysis, either by grouping studies by their length and performing a
separate synthesis for shorter and longer studies, or by combining all studies and including
duration as a continuous moderator of effect sizes in the analyses (e.g., Hettema &
Hendricks, 2010; Jensen, Cushing, Aylward, Craig, Sorell, & Steele, 2011).

Effect Size Assessments in Non-Experimental Research
Although many meta-analyses have synthesized findings from experiments (including
randomized clinical trials), meta-analysis has also been used to examine differences between
extant groups (e.g., gender, risk status). For example, meta-analytic investigations have
reviewed differences between men and women in cognitive abilities (e.g., Hyde, 2005),
personality (e.g., Feingold, 1994), and social behavior (e.g., Eagly, 1995). Although most
primary studies of gender differences have been cross-sectional, sex has also been used as a
binary time-invariant covariate in GMA (e.g., Huttenlocher, Haight, Bryk, & Seltzer, 1991;
Leahey & Guo, 2001).
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Randomization Considerations
An important distinction between experimental and non-experimental research is that
randomization to conditions is not a characteristic of the latter. In randomized studies, the
expected value of the difference between two groups at study onset is zero, making identical
the null hypotheses that (1) the groups are equivalent in slopes and (2) the groups have the
same means at the end of the study. In contrast, parallel linear trajectories between, say, men
and women would coexist with sex differences in means at the end of the study if there were
differences between the sexes at its start. Thus, the examinations of group differences in
initial status and slopes are both important when the groups are not assumed to be equivalent
at the onset of a study. Indeed, when the group factor is not based on randomization, the
primary goal of the investigation may be to examine the association of group membership
with the person-specific (random) intercepts to explain individual differences in personality
or behavior (for an example, see Feingold, Kerr, & Capaldi, 2008). However, to calculate
mean differences at end of study between extant groups (which may be due to differences in
initial status, growth, or both) from GMA, the coefficient for the effect of group on initial
status and the slope should both be used to estimate the end-of-study mean for each group.
The difference between these estimated means should be divided by the outcome standard
deviation to compare the groups at the end of the study without controlling for baseline
differences (Feingold, 2009).

In addition, when randomization is used to form groups, the group factor is uncorrelated
with baseline characteristics of subjects, such as SES. Thus, the expected value of the
regression coefficient (and the mean difference it equals) for that factor is not changed by
the inclusion of one or more baseline variables in the regression equation. Therefore,
adjusted mean differences (i.e., mean differences after other variables are controlled)
estimate the same parameter as the observed mean differences, and the inclusion of such
subjects variable covariates in the model can be ignored when calculating the effect size for
the randomized factor. However, this is not true for analysis using naturally-occurring
groups. For example, if ethnicity is correlated with SES, the inclusion of SES in a regression
model would change (and most likely reduce) the coefficient for ethnicity because of shared
variance between the two variables. Thus, it would generally be inadvisable to use such a
partial effect size in a meta-analysis of racial differences (e.g., Roberts, Cash, Feingold, &
Johnson, 2006).

Continuous Covariates
Another difference between experimental and non-experimental research is that the latter is
more likely to include predictors that are continuous (e.g., age) rather than categorical (e.g.,
condition), for which the effect size is often the correlation coefficient (r). Correlations also
can be used in meta-analysis (Schmidt, Lee, & Oh, 2009). In GMA, a continuous non-
manipulated level-2 predictor (a time-invariant covariate) can be related to both the random
intercept and random slope of the outcome variable in a multilevel model. Although the
GLMM framework can subsume associations in which the independent variable is
continuous, the interpretation is more complex because the regression coefficient is no
longer a mean difference but a difference in rate of change of the outcome--or of intercepts
and slopes in GMA--as a function of rate of change on the continuous covariate. Effect sizes
involving a continuous predictor are less likely to be expressed in the d metric than in a
metric based on proportion of variance explained, particularly for effects in mediation
analysis (e.g., Preacher & Kelley, 2011).
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Discussion
An equation with a single regression coefficient is sufficient for some effect size
calculations in cross-sectional (i.e., between-subjects) data. However, in longitudinal
analysis, the structural model always include coefficients for both time and the Group ×
Time interaction, with the latter being the coefficient for the effect of group on slope in
multilevel analysis that represents the difference in rate of change per unit of time (e.g.,
week) between the two groups. The product of this b and length of study is a model-derived
estimate of the difference between the baseline-adjusted means of the two groups at the end
of the study, which can be divided by the outcome measure’s SD to estimate the same effect
size parameter estimated in a between-subjects study. Elaborations of the regression model
are required when, among other situations, there are more than two groups, trajectories are
non-linear, or the experimental factor is moderated by observed categorical variables or
latent classes. This article introduces a GLMM framework that unifies effect sizes for
comparisons between two groups, or contrasts among multiple groups, in a common d or
OR metric across a wide gamut of cross-sectional and longitudinal designs.

Moreover, the concepts discussed in this paper apply to all types of GMA, as well as to
classical repeated measures analyses (ANOVA/multiple regression analysis), for which
effect size equations have also been lacking. Note that recent simulation studies have shown
that the OR is biased in small sample sizes (Nemes, Jonasson, Genell, & Steineck, 2009),
although this is unlikely to be a concern when the OR is derived from GMA, as such
analysis requires large samples for parameter estimation. Although it is possible to convert
ORs to equivalent ds (e.g, Chinn, 2000; Haddock, Rindskopf, & Shadish, 1998; Sánchez-
Meca, Marín-Martínez, & Chacón-Moscoso, 2003), such transformations are only
recommended when conducting a meta-analysis of studies that vary in the distributions of
their outcome variables.

The conceptual model uses the structure from simple linear regression to calculate an effect
size from familiar statistics: (a) the regression coefficient, (b) study duration (for
longitudinal designs), and (c) the standard deviation of the dependent measure (see Table 2
for overview of regression equations used in the framework). The effect size in a between-
subjects analysis is computed by coding the two groups with values differing by one unit so
that the regression coefficient is the mean difference between them, which is then divided by
the pooled within-group standard deviation (or whatever type of standard deviation is
preferred by the investigator) of continuous outcomes. In longitudinal analysis (repeated
measures ANOVA, multiple regression, and GMA), the regression coefficient for the group
difference in rate of change must be multiplied by study duration and that product is divided
by the standard deviation of the outcome measure. Although both equations generate d, the
key difference is that in multiple regression analysis and ANOVA the group difference at
end of the study is based on observed or estimated baseline-adjusted means of study
completers, whereas in GMA it is based on adjusted means predicted by a GMA model that
uses data from all participants.
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Table 1

Comparison of GLM, GLMS, and GLMM models

Model Estimation Effects Dependent Variable Distribution Sample Statistical Analyses

GLM OLS Fixed Continuous ANOVA, Multiple regression analysia

GLMS ML Fixed Continuous, Categorical, Count Logistic regression, LCGA

GLMM ML Fixed, Random Continuous, Categorical, Count GMA/HLM, GMM

Note. GLM = General Linear Model, OLS = Ordinary Least Squares, ANOVA = Analysis of Variance, GLMS = General Linear Models, ML =
Maximum Likelihood, LCGA = Latent Class Growth Analysis, GLMM = Generalized Linear Mixed Models, GMA = Growth Modeling Analysis,
HLM = Hierarchical Linear Models, GMM = Growth Mixture Modeling.
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Table 2

Summary of regression equations derived from GLMM framework for calculations of GMA d from different
research designs

Equation Design Characteristics

Y = a + bGroup + e (2) 2 groups, 1 time point (no pretest)

Y = a + b1Pretest + b2Group + e (5) 2 groups, 2 time points (pretest and posttest)

Y = a + b1Group1 + b2Group2 + e (7) 3 or more groups, 1 time point, orthogonal a priori contrasts

Y = a + b1Group + b2Time + b3Group*Time + e (8) 2 groups, 3 or more time points, linear model

Y = a + b1Group + b2Linear + b3Linear*Group + b4Quadratic + b5

Quadratic*Group + e (10)
2 groups, 3 or more time points, non-linear model

Y = a + b1Group + b2Sex + b3Group*Sex + e (11) 2 groups, 1 time point, subject moderator (e.g., sex)

Y = a + b1Group + b2Sex + b3Time +b4Group*Sex + b5Group*Time +
b6Time*Sex + b7Group*Sex*Time + e (13)

2 groups, 3 or more time points, subject moderator

Note. Equation numbers are in parentheses following equations.
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