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Abstract
We present a novel Bayesian adaptive comparative effectiveness trial comparing three treatments
for status epilepticus that uses adaptive randomization with early stopping, yielding an efficient
trial in which a higher proportion of patients are likely to be randomized to the most effective
treatment arm. In addition to randomizing a higher proportion of patients to the superior treatment
arm, it typically uses fewer total patients and offers higher power than an analogous trial with
fixed randomization when identifying a superior treatment.

Background
Regulatory clinical trials are frequently long, expensive, and fail to find a statistically
significant difference between treatments.[1] Comparative effectiveness trials, those
comparing commercially available products, can be even more costly and even less likely to
produce statistically significant results, because one is typically searching for a very small
effect size in a setting with greater variability. The smaller effect size is because the
difference between two effective therapies is likely smaller than between an effective
therapy and a placebo. Variability is often greater if the trial is conducted in a pragmatic
setting, a trial with more representative ‘real-world’ inclusion/exclusion criteria, as is
encouraged for maximum generalizability.[2, 3] This combination requires a much higher
sample size for adequate power, producing a longer and/or (usually and) more expensive
trial.

When comparing multiple commercially available and perhaps FDA- or EMEA-approved
products or treatment strategies against one another via CER trial, Bayesian adaptive trials
may offer strong benefit for their ability to calculate the probability that each treatment is the
best or worst. Here we describe the design of a multi-arm Bayesian adaptive comparative
effective trial in refractory status epilepticus that compares three commonly used drugs. The
Established Status Epilepticus Treatment Trial (ESETT) is a Phase 3 comparative
effectiveness trial in patients with established status epilepticus who have failed
benzodiazepines.
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The goal of this paper is to illustrate via a detailed example of an actual trial design, how
Bayesian adaptive designs are well-suited to comparative effective trials. We discuss the
ESETT trial and how its Bayesian adaptive design is specifically tailored to answer the key
clinical question of which treatment to choose by describing the design features, an example
of its execution, and its characteristics as compared to a more traditional design. The design
illustrated here typically offers a lower expected sample size with higher power than a
standard fixed-allocation 3-arm trial while also having a high probability of randomizing a
higher proportion of patients to the most effective therapy.

Design
This trial was designed as one of five trials emanating from the Adaptive Designs
Accelerating Promising Trials into Treatments (ADAPT-IT) project, a collaborative effort
supported by both the NIH and FDA to explore how adaptive clinical trial design might
improve the evaluation of drugs and medical devices. [4]

The primary objective of ESETT is to identify the most effective and/or the least effective
treatment among three commonly used second-line therapies for status epilepticus within an
emergency department setting. There are three treatment arms: fosphenytoin (fPHT),
levetiracetam (LVT), and valproic acid (VPA). We define a positive response to treatment as
achieving the primary endpoint of clinical cessation of status epilepticus within 20 minutes
of the start of study drug infusion, without recurrent seizures, life-threatening hypotension,
or cardiac arrhythmia within one hour.

A maximum sample size of 720 unique patients will provide high (90%) power to identify a
single arm as best if it has a response rate at least 15% greater than the others. The primary
analysis is an intent-to-treat analysis, and will include all patients as they were randomized
regardless of the treatment actually received or missing outcome. Re-enrollment of the same
subject is expected to occur 5% of the time (and only the data associated with the first
enrollment will be analyzed). Given the possibility of re-enrollers, treatment crossovers, and
missing data, the maximum sample size was inflated from 720 up to 795. Thus, the actual
trial will enroll a minimum of 400 and a maximum of 795 patients. We expect the primary
analysis to include approximately 720 eligible patients.

The trial has predefined adaptations in which randomization probabilities are updated to
increase the proportion of patients randomized to superior treatments and to increase study
power when a most effective therapy exists.[5, 6] The trial also includes interim analyses for
stopping early for success or futility if it becomes evident that differences between drugs are
unlikely to be identified.

Statistical Model
Each of the three treatment arms is modeled independently. We assume the probability of
response, θT, has a uniform Beta prior distribution

This is the standard reference prior when estimating a proportion, is conjugate to the
binomial distribution, and assigns equal prior probability to all possibilities of the unknown
response rates. [7] It is equivalent to starting with two-patients worth of information, one a
treatment success and one a treatment failure.
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At each interim analysis the number of observed responses on each treatment, XT, among
the currently enrolled patients on that treatment, NT, follows a binomial distribution;
therefore the posterior distribution for each response rate is

The treatment with the highest true (but unknown) response rate is labeled tmax, while the
treatment with the lowest response rate is labeled tmin. During the trial we will not know
which treatment is tmax and which is tmin, though we can calculate probabilities that each of
the three treatments is tmax and tmin.

The probability that treatment T is the most effective treatment is expressed as Pr(T = tmax)
= Pr(θT > θX and θT > θY), where X and Y represent the two treatments other than
treatment T.

The probability that each treatment arm offers the highest response rate can be shown (using
LVT as an example) as

Likewise, the probability that treatment T is the least effective treatment, Pr(T = tmin) =
Pr(θT < θX and θT < θY), where X and Y represent the two treatments that are not treatment
T.

Primary Efficacy Analysis
At the conclusion of the trial, we will report the response rate for each treatment group with
95% credible intervals as well as the pairwise differences in response rates with 95%
credible intervals. We will also report the probability that each therapy offers the best and
worst response rate, Pr(T = tmax) and Pr(T = tmin).

Currently all three drugs are commonly used for status epilepticus. Ordering the drugs by
effectiveness is the primary goal. Therefore identifying either a treatment as superior so it
can be more broadly used or identifying a treatment as inferior so its use can be limited will
be clinically beneficial. Therefore, this trial will be considered a success if it identifies the
most effective treatment or least effective treatment with high probability

for a treatment T.

Adaptive Allocation
Initially 100 patients will be allocated to each arm. After the initial 300 patients, adaptive
randomization will begin. Adaptive randomization will focus on identifying the treatment
arm offering the highest response rate, labeled tmax, using information weighting.
Information is a measure of the expected reduction in variance from adding an additional
patient to treatment arm T and is defined for treatment arm, T, as
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It is calculated for all three treatment arms, and the values are rescaled to produce

randomization probabilities  that sum to 1. Therefore the randomization
probability to arm T is proportional to the probability the arm offers the highest response
rate, Pr(T=tmax), and the variance of the response rate estimate (Var(θt)) and inversely
proportional to the sample size (Nt). The result is that better treatments are favored but if at
an interim analysis two arms are equally effective, the arm with fewer patients randomized
to it will have a larger randomization probability for the next set of patients.

If the adaptive randomization probability for an arm is less than 5%, this arm is suspended
and the remaining arms receive proportionally increased probability. Adaptive
randomization probabilities will be updated after every 100 patients are enrolled.

Allocation to the treatment arms will be stratified by age group (2–16 years, 16–65 years,
and greater than 65 years). Simple blocking within age group is not possible with adaptive
randomization probabilities. To ensure similar randomization probabilities across the three
age groups while incorporating adaptive randomization, we will use a “Step Forward”
centralized randomization procedure developed for emergency treatment trials, as described
by Zhao et al.[8]

The timing of analyses, starting at 300 patients and repeating every 100 patients enrolled,
was chosen after comparing numerous alternative design options via simulation as well as
considering the logistical challenges of more frequent randomization updates.

Interim Monitoring for Success
Interim monitoring for success will begin after 400 patients have been enrolled and will be
repeated after every additional 100 patients are enrolled. Early success stopping is based on
identifying a superior treatment. This trial will stop early for success if we have identified
the maximum effective treatment with at least 97.5% probability, that is if any arm T ∈
{fPHT, LVT, VPA} offers

Interim Monitoring for Futility
Interim monitoring for futility will begin after 400 patients have been enrolled and will be
repeated after every additional 100 patients are enrolled. Each arm will be monitored
independently and terminated if there is a clinically unacceptable response rate. If the
probability a treatment offers at least a 25% response rate is less than 5%,

that arm will be terminated. If all arms have a clinically unacceptable response rate, the trial
will be stopped for futility.

The second futility stopping criterion applies if the trial is unlikely to achieve its primary
objective, i.e., to identify the most effective and/or the least effective treatment. This trial

Connor et al. Page 4

J Clin Epidemiol. Author manuscript; available in PMC 2014 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



will stop early for futility if the predictive probability of identifying either the most effective
(tmax) or the least effective treatment (tmin) at the maximum sample size is less than 5%. [9]

Example Trial
Table 1 shows example interim analyses for a hypothetical trial that stops early for success.
This is data from one of the thousands of simulated trials that inform the trial operating
characteristics.

At the first interim analysis, when 300 patients are enrolled, the response rates are 51% for
fPHT, 55% for LVT, and 64% for VPA. There is an 88% chance that VPA truly offers the
highest response rate and a 70% chance fPHT has the lowest response rate. The
randomization probabilities for the next 100 patients are calculated to be 12%, 22%, and
66% for fPHT, LVT, and VPA, respectively. Out of the next 100 patients enrolled, 11, 26,
and 63 patients are randomized to fPHT, LVT, and VPA, respectively.

At the 400-patient interim analysis, the response rates are 51%, 59%, and 64% for fPHT,
LVT, and VPA. The observed benefit of VPA over LVT has decreased from 9% to 5% but
is based on more data. Because the probability that VPA has the highest response rate
decreased slightly from 88% to 83%, the randomization probability to LVT increases further
for the next 100 patients. The predictive probability of trial success (the probability of
identifying a most or least effective treatment at the maximum sample size) is 0.50, well
above the 5% threshold to stop for futility. Therefore the trial continues to the next interim
analysis after 500 patients are enrolled.

VPA has the best response rate in the next 100 patients. The probability that VPA offers the
highest response rate is 94%, which is high but does not meet the 97.5% required to stop
early for success. The trial continues enrollment.

Of the next 100 patients, we randomize 69% to VPA, 23% to LVT, and 8% to fPHT. At the
600-patient interim analysis VPA has a 99.2% chance of having the highest response rate.
This exceeds the 97.5% criterion, and the trial is stopped early, having identified VPA as the
most effective treatment. In addition, fPHT has an 87% chance of being the least effective
treatment.

Operating Characteristics
Closed form solutions for trial operating characteristics such as power, Type I error, sample
size distribution, and proportion of patients expected to be randomized to each arm do not
exist. Therefore we calculate these key trial characteristics via simulation. We simulate data
from using known ‘true’ response rates for each therapy and execute trials incorporating the
adaptations described. For each trial we track the total sample size and number randomized
to each therapy, which drug was identified as the best or worst, etc. Repeating this process
1000 times per scenario we can estimate the trial’s operating characteristics.

During the design stage we compared these operating characteristics among competing
designs (e.g. more frequent interim looks, fixed randomization, starting at 200 patients vs.
300 patients).

To evaluate how the design performs, we simulated the trial considering different response
scenarios. Operating characteristics are based on 1,000 simulations per scenario. We
explored six scenarios that represent a broad range of potential treatment effects. Three
scenarios include when the three treatments are equivalent, but at varying levels of response:
all 50%, 25%, or 10%. Other scenarios explore when one arm is 15% better than the other
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two, when two arms are equally better (15%) than the third, and one in which the response
rates decrease across the arms: 65%, 57.5%, and 50%. The simulation results are presented
assuming a maximum sample size of 720 unique patients.

Table 2 shows the probabilities of trial success for each of the six response rate scenarios:
identifying a best treatment (early, at the maximum sample size, and overall), the worst
treatment, and either the best or worst.

The false positive rate for this trial is the probability of declaring an arm to be either most or
least effective when in truth there is no difference between the arms. This is illustrated in the
three “Null” scenarios, in which all treatment arms have the same response rate. The
probability of identifying a maximum effective treatment is 0.013, 0.017 and 0.006 for equal
treatment effects of 0.50, 0.25, and 0.10, and the probability of identifying a least effective
treatment is 0.018, 0.030, and <0.001 for the same three scenarios. Thus, the false positive
rate in the all 0.50 response scenario is 0.031. In the “All Bad” and “All Really Bad”
scenarios, the false positive rates are 0.044 and 0.006, respectively. In the “Two Good”
scenario, two of the treatment arms have the same response rate, and the probability of
identifying one of these as the tmax is 0.12. Thus, the false positive rate in this scenario is
0.12. However, the clinical consequences of a Type I error in CER may be less than in
placebo-controlled trials, because an effective therapy will still be provided to patients. If
two treatments are truly similar, but one is erroneously ruled superior, patients still receive
an effective therapy. This form of Type I error may be less consequential than a situation
where a treatment is erroneously determined to be better than a placebo and patients pay for
and receive an ineffective therapy while also being exposed to its adverse events and costs.

Alternatively, the power (the true positive rate) of this trial is the probability of identifying
either the most or the least effective treatment when there truly are differences in the
response rates. In the “One Good” scenario, the probability of identifying a maximum
effective treatment is 89%. In the “One Middle One Good” scenario, the probability of
identifying either a maximum or a least effective treatment is 68%.

Table 3 shows the mean sample size and the mean allocation to each of the three treatment
arms for each of the response rate scenarios. The most effective treatment arm(s) is shown in
bold-italics. Adaptive allocation leads to a higher proportion of patients on the most
effective treatment arm(s). When two arms are tied for most effective any patients
randomized to either of these arms are included in the percent randomized to most effective.

Table 4 shows, for each arm, the probability that it will be identified as the maximum
effective treatment (tmax) and the probability that each arm will be identified as the
maximum effective treatment with at least 97.5% probability (i.e., reaches the success
criteria). The arm(s) with the highest true response rate is shown in bold-italics. In the “One
Good” scenario, the arm with the highest true response rate has the highest response rate
99.5% of the time and fulfills the success criteria (Pr(VPA=tmax) ≥ 0.975) 89% of the time.
In the “Two Good” scenario, two arms have the same response rate. Thus, the probability of
being tmax is split between these two arms, and each receives approximately 50% probability
of being tmax. In the “One Middle One Good” scenario, the arm with the highest response
rate is identified as the tmax with 95% of the time, and this arm achieves the success criteria:
to be clearly identified as the best 50% of the time.

Comparison to a Fixed Randomization
Table 5 compares the design described here to a similar trial with fixed randomization.
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The fixed trials hold a sample size advantage in the Null and All Bad cases, where all three
treatments offer the same treatment effect. Here trials with adaptive randomization enrolled
an average of 8–15 more patients.

When treatment effect differences do exist, Table 5 demonstrates that power is maintained,
generally with a lower total sample size, while a higher proportion of patients are
randomized to the superior treatment. When one treatment offers a 65% response rate versus
50% in the other two groups, adaptive randomization offers higher power (90% vs. 88%)
and lower mean sample size (483 vs. 497), all while randomizing a higher proportion of
patients to the better treatment (48% vs. 33%). The ‘One Middle, One Good’ case further
shows similar power, smaller sample size, and a higher proportion of patients randomized to
the superior treatment compared to a trial with fixed randomization.

Power to identify either a best or worst treatment is lower in the ‘Two Good’ case, because
fixed randomization is better at identifying the worst treatment when one treatment is truly
worse than then other two. In the adaptive randomization case, fewer patients (16% vs. 33%)
are randomized to the worst treatment, leading to lower power: a 79% chance of identifying
the worst with fixed randomization decreases to a 67% chance with adaptive randomization.
This was a key point of discussion during the design stage. The clinical team was asked the
importance of increasing the probability of identifying the worst treatment, realizing that
increasing the probability meant randomizing more patients to a knowingly inferior
treatment and decreasing the probability of identifying a superior treatment if one exists. It
was decided that it was better to increase power to identify the best therapy and increase the
proportion of patients on the better therapies with the tradeoff of decreasing power to
identify the worst therapy.

Discussion
This Bayesian adaptive trial design for comparative effectiveness research more closely
mimics the goal of continuous quality improvement than would a traditional fixed design
and combines that behavior with a prospectively defined protocol that enables us to calculate
operating characteristics such as Type I error rate and power.

Most importantly in a case where one treatment is superior to the other two (e.g. second
scenario in Table 5) the trial design presented here offers higher power (90% vs. 88%) with
a lower expected sample size than a standard, fixed-randomization rate trial (483 vs. 497),
all while randomizing a far greater proportion of patients to the superior treatment (48% vs.
33%). In situations where the three treatments are equal, this design tends to have a slightly
larger (8–15 patients) expected sample size than if we had used fixed randomization.
Furthermore Type I errors are small: when all three treatments are equally effective the
probability of erroneously declaring one the best is less than 0.02 and the probability of
erroneously declaring one the worst is also less than 0.03.

Another key point is that when randomization probabilities drop to less than 5%,
randomization to that arm is suspended, but the arm is not dropped and may reenter at
subsequent interim analyses. Situations in which the most effect arms were even temporarily
dropped were extremely rare in the simulation study.

In this trial the main challenges to adaptive randomization are logistical. The trial is
conducted in emergency departments with a waiver of informed consent. To speed treatment
to patients, we forego any voice- or internet-based randomization process. Instead, three
boxes containing IV study drug are placed in each site, one for each age stratum, and
caregivers are instructed to grab the top box, labeled “Use Next”, for use. At each allocation
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update, sites will be instructed how to reorder boxes (each box will have a unique code)
based on the centralized randomization scheme.

Design characteristics were chosen via a tradeoff of logistical practicality and the operating
characteristics they produce. For example, updating randomization probabilities more often
(e.g., every week or every 20 patients) may slightly improve operating characteristics, but
given that boxes will have to be reordered at the time of updates to the allocation, we
believed every 100 patients (or approximately every 6 months) would not be overly
burdensome to clinical sites. We also believe that minimizing reordering of drugs would
decrease the probability of human error.

By writing tailored simulation software (in R) we studied the design over a range of variants
which led to choosing optimal design features. For example we discovered the lag between
beginning adaptive randomization after 300 patients and the possibility of early stopping
after 400 patients helps to decrease the Type I error rate compared to starting both at 300
patients. When all three treatments are truly equal, but at the 300-patient analysis one
treatment is doing much better due to random variation, this design increases the
randomization probability to the best-performing treatment in the next stage. If Pr(T=tmax) =
0.975, a situation where the trial may stop if early stopping were allowed at 300 patients,
instead approximately 82 of the next 100 patients will be randomized to that drug. During
that time we are likely to see the effect size regress to its true mean and not meet the early
stopping threshold at the 400-patient interim analysis. However, if the effect were real, the
vast majority of patients are randomized to the best therapy while we confirm it is superior.

The design required custom written R [10] code (available from the authors) rather than
using off-the-shelf sample size software. We and others [11, 12] advocate using simulation
for trial design even in more standard trials, e.g. group sequential designs, as it allows for
the illustration of example trials to physician-collaborators, institutional review boards, and
data monitoring committees, as well as for the designers to better understand how each
adaptive component affects the overall design properties.

The Bayesian paradigm may offer another key advantage in CER. Effect size differences
may be small, leading to non-statistically significant differences in effect sizes. Though a p-
value cannot be interpreted as a measure of effect size, a clinician still needs to decide which
treatment to use. In a frequentist trial, the clinician is left to compare point estimates of the
non-significantly different therapies. Bayesian posterior probabilities, even if one is not
dramatically high, can offer insight to clinicians on the likelihood that they are using the best
therapy.

Trial designs should be situation dependent and tailored to the primary clinical objectives.
One key consideration in implementing adaptive randomization, in particular, is the time
elapsed from when a patient is randomized until he reaches his final endpoints. Here it is a
matter of hours or days, so it is straightforward to use accumulating data to influence future
randomization probabilities or to stop the trial early for success or futility. In situations with
rapid accrual and/or long-term endpoints, such response adaptive randomization may not be
not feasible.

Adaptive randomization is oftentimes criticized because drift in the probability of response
due to changing patient populations over time may lead to bias in parameter estimates. Cook
showed, however, that these effects are generally very small [13]. When adaptive
randomization is being used, we would caution against dramatic changes in inclusion/
exclusion criteria that may lead to changes in overall response rates, or adding additional
high volume sites that may be quite different than existing sites.
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Finally, an adaptive trial requires a system to manage study drug inventory at the site (e.g.,
reordering of study drug IV bags), which is tied to the randomization of subjects and keeps
the clinical sites blinded and the central pharmacy unblinded. When choosing to implement
an adaptive design, one needs high confidence that such interactions are likely to produce a
trial run according to protocol. Here we plan to use two existing trial networks that have
strong and successful experience conducting high-quality trials: the Neurological
Emergencies Treatment Trials (NETT) Network with 17 preexisting study sites, Clinical
Coordination center (at the University of Michigan), and Statistical and Data Management
center (at Medical University of South Carolina) [14, 15] and the Pediatric Emergency Care
Applied Research Network (PECARN) for pediatric patients. [16, 17]

Summary
We illustrate that Bayesian adaptive trial designs are particularly well suited to comparative
effectiveness trials. Randomization probabilities may be updated during the course of the
trial to improve patient outcomes while, in a more than 2-arm study, increasing study power.
Furthermore, early stopping may be incorporated so that clinically important results can be
shared with the broader community as soon as they are established and confirmed within the
prospective trial setting.
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Table 3

Average sample size based upon 1,000 simulations per response rate scenario (Total) and average patients per
treatment arm. Average randomization rates are shown in parentheses. Bold/italics indicate the most effective
treatment arm(s).

Scenario Response Rates Total fPHT LEV VPA

Null
0.50 – 0.50 – 0.50

507 169
(33%)

169
(33%)

168
(33%)

One Good
0.50 – 0.50 – 0.65

483 126
(26%)

127
(26%)

230
(48%)

Two Good
0.50 – 0.65 – 0.65

679 115
(17%)

282
(42%)

282
(42%)

One Middle One Good
0.50 – 0.575 – 0.65

586 122
(21%)

189
(32%)

275
(47%)

All Bad
0.25 – 0.25 – 0.25

524 173
(33%)

172
(33%)

179
(34%)

All Really Bad
0.10 – 0.10 – 0.10

400 133
(33%)

133
(33%)

134
(33%)

J Clin Epidemiol. Author manuscript; available in PMC 2014 August 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Connor et al. Page 14

Ta
bl

e 
4

T
he

 a
ve

ra
ge

 P
r(

T
=t

m
ax

) 
fo

r 
ea

ch
 T

 ∈
 {

fP
H

T
, L

V
T

, V
PA

} 
ba

se
d 

on
 1

,0
00

 s
im

ul
at

io
ns

 p
er

 s
ce

na
ri

o 
an

d 
th

e 
pr

op
or

tio
n 

of
 tr

ia
ls

 in
 w

hi
ch

 P
r(

T
=

tm
ax

) 
≥

0.
97

5,
 w

hi
ch

 in
di

ca
te

s 
th

at
 a

 b
es

t t
he

ra
py

 h
as

 b
ee

n 
cl

ea
rl

y 
id

en
tif

ie
d.

A
ve

ra
ge

 t m
ax

P
ro

po
rt

io
n 

P
r(

t m
ax

) 
> 

0.
97

5

Sc
en

ar
io

fP
H

T
L

E
V

V
P

A
fP

H
T

L
E

V
V

P
A

N
ul

l
0.

50
 –

 0
.5

0 
– 

0.
50

0.
34

0.
34

0.
32

0.
00

4
0.

00
5

0.
00

4

O
ne

 G
oo

d
0.

50
 –

 0
.5

0 
– 

0.
65

0.
00

1
0.

00
4

0.
99

5
0.

00
0.

00
0.

89

T
w

o 
G

oo
d

0.
50

 –
 0

.6
5 

– 
0.

65
0.

00
7

0.
48

0.
51

0.
00

0.
06

0.
05

O
ne

 M
id

dl
e 

O
ne

 G
oo

d
0.

50
 –

 0
.5

75
 –

 0
.6

5
0.

00
3

0.
04

0.
95

0.
00

0.
00

2
0.

50

A
ll 

B
ad

0.
25

 –
 0

.2
5 

– 
0.

25
0.

30
0.

34
0.

36
0.

00
3

00
09

0.
00

5

A
ll 

R
ea

lly
 B

ad
0.

10
 –

 0
.1

0 
– 

0.
10

0.
30

0.
35

0.
34

0.
00

2
0.

00
1

0.
00

3

J Clin Epidemiol. Author manuscript; available in PMC 2014 August 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Connor et al. Page 15

Ta
bl

e 
5

C
om

pa
ri

ng
 th

e 
de

si
gn

 w
ith

 a
da

pt
iv

e 
ra

nd
om

iz
at

io
n 

to
 a

 tr
ia

l w
ith

 f
ix

ed
 r

an
do

m
iz

at
io

n 
vi

a 
po

w
er

, m
ea

n 
sa

m
pl

e 
si

ze
, a

nd
 th

e 
pr

op
or

tio
n 

of
 p

at
ie

nt
s

ra
nd

om
iz

ed
 to

 th
e 

th
er

ap
y 

w
ith

 th
e 

hi
gh

es
t r

es
po

ns
e 

ra
te

. T
he

 s
am

e 
ea

rl
y 

st
op

pi
ng

 r
ul

es
 a

re
 u

se
d 

in
 b

ot
h.

 A
ll 

va
lu

es
 b

as
ed

 u
po

n 
1,

00
0 

si
m

ul
at

io
ns

 p
er

sc
en

ar
io

.

Sc
en

ar
io

A
da

pt
iv

e 
R

an
do

m
iz

at
io

n
F

ix
ed

 R
an

do
m

iz
at

io
n

P
ow

er
M

ea
n 

N
%

 t
o 

B
es

t
P

ow
er

M
ea

n 
N

%
 t

o 
B

es
t

N
ul

l
0.

50
 –

 0
.5

0 
– 

0.
50

0.
03

1
50

7
N

/A
0.

02
9

49
9

N
/A

O
ne

 G
oo

d
0.

50
 –

 0
.5

0 
– 

0.
65

0.
90

48
3

48
0.

88
49

7
33

T
w

o 
G

oo
d

0.
50

 –
 0

.6
5 

– 
0.

65
0.

76
67

9
84

0.
86

68
7

67

O
ne

 M
id

dl
e 

O
ne

 G
oo

d
0.

50
 –

 0
.5

75
 –

 0
.6

5
0.

68
58

6
47

0.
69

59
9

33

A
ll 

B
ad

0.
25

 –
 0

.2
5 

– 
0.

25
0.

04
4

52
4

N
/A

0.
03

0
50

9
N

/A

A
ll 

R
ea

lly
 B

ad
0.

10
 –

 0
.1

0 
– 

0.
10

0.
00

6
40

0
N

/A
0.

02
8

40
0

N
/A

%
 to

 B
es

t =
 A

ve
ra

ge
 p

ro
po

rt
io

n 
of

 p
at

ie
nt

s 
ra

nd
om

iz
ed

 to
 th

e 
m

os
t e

ff
ec

tiv
e 

th
er

ap
y.

Po
w

er
 =

 p
ro

ba
bi

lit
y 

of
 id

en
tif

yi
ng

 a
 tr

ea
tm

en
t a

s 
be

st
 o

r 
w

or
st

 a
t t

he
 0

.9
75

 le
ve

l.

J Clin Epidemiol. Author manuscript; available in PMC 2014 August 01.


