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Abstract
Horizontal cells are lateral interneurons that participate in visual processing in the outer retina but
the cellular mechanisms underlying transmitter release from these cells are not fully understood.
In non-mammalian horizontal cells, GABA release has been shown to occur by a non-vesicular
mechanism. However, recent evidence in mammalian horizontal cells favors a vesicular
mechanism as they lack plasmalemmal GABA transporters and some soluble NSF attachment
protein receptor (SNARE) core proteins have been identified in rodent horizontal cells. Moreover,
immunoreactivity for GABA and the molecular machinery to synthesize GABA have been found
in guinea pig horizontal cells, suggesting that if components of the SNARE complex are expressed
they could contribute to the vesicular release of GABA. In this study we investigated whether
these vesicular and synaptic proteins are expressed by guinea pig horizontal cells using
immunohistochemistry with well-characterized antibodies to evaluate their cellular distribution.
Components of synaptic vesicles including vesicular GABA transporter, synapsin I and synaptic
vesicle protein 2A were localized to horizontal cell processes and endings, along with the SNARE
core complex proteins, syntaxin-1a, syntaxin-4 and synaptosomal-associated protein 25
(SNAP-25). Complexin I/II, a cytosolic protein that stabilizes the activated SNARE fusion core,
strongly immunostained horizontal cell soma and processes. In addition, the vesicular Ca2+-
sensor, synaptotagmin-2, which is essential for Ca2+-mediated vesicular release, was also
localized to horizontal cell processes and somata. These morphological findings from guinea pig
horizontal cells suggest that mammalian horizontal cells have the capacity to utilize a regulated
Ca2+-dependent vesicular pathway to release neurotransmitter, and that this mechanism may be
shared among many mammalian species.
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Introduction
Horizontal cells play an important, although not fully understood, role in visual information
processing by interacting with photoreceptors and bipolar cells in the outer plexiform layer
(OPL). There are two types of horizontal cells in the mammalian retina that separately serve
the cone and rod pathways. The dendrites of B-type horizontal cells contact cones and their
axon terminal system contacts rods, whereas A-type horizontal cells contact cones
exclusively as they have no axon terminals (for review see Peichl et al., 1998); both types
are immunostained by antibodies to calbindin (Uesugi et al., 1992; Peichl & González-
Soriano, 1994; Raven & Reese, 2002; Hirano et al., 2007). Physiological evidence
demonstrates that horizontal cells contribute to center-surround properties, at least in part,
through feedback onto photoreceptors in some species (Baylor et al., 1971; O’Bryan, 1973;
Burkhardt, 1977; Verweij et al., 2003; Babai & Thoreson, 2009) and feedforward onto
bipolar cells in other species (Dowling & Werblin, 1969; Yang & Wu, 1991; Billups &
Attwell, 2002; Zhang & Wu, 2009). Small, clear-core vesicles in horizontal cell tips that
invaginate the synaptic triad have been demonstrated at the ultrastructural level (Dowling et
al., 1966; Linberg & Fisher, 1988). The localization of the vesicular GABA transporter
(VGAT) to horizontal cell endings in mammalian retinas (Haverkamp et al., 2000; Cueva et
al., 2002; Jellali et al., 2002; Guo et al., 2009b) supports the view that horizontal cells can
concentrate GABA into vesicles, as VGAT mediates the uptake and storage of GABA and
glycine in neurons (Burger et al., 1991; Liu & Edwards, 1997; McIntire et al., 1997;
Chaudhry et al., 1998; Gasnier, 2004). Mammalian horizontal cells have also been found to
express L-type (Ueda et al., 1992; Löhrke & Hofmann, 1994; Rivera et al., 2001) and N-
type (Schubert et al., 2006; Witkovsky et al., 2006) calcium channels, suggesting the
possibility of a Ca2+-dependent vesicular release mechanism. Immunocytochemical studies
demonstrate that GABAA or GABAC receptors or both (Vardi et al., 1992, 1994; Greferath
et al., 1993, 1995; Grigorenko & Yeh, 1994; Enz et al., 1996; Wässle et al., 1998) are
expressed in mammalian photoreceptors, bipolar cells and horizontal cells, suggesting that
they may be potential targets of GABA released from horizontal cells.

Although a vesicular mechanism pertaining to the release of GABA from horizontal cells
has not been established unequivocally, some protein components of the neuronal exocytotic
machinery are expressed in mammalian horizontal cells. In central neurons, GABA release
relies on Ca2+-dependent vesicular mechanisms (Olsen & Tobin, 1990; Macdonald & Olsen,
1994; Poncer et al., 1997). Moreover, new observations in guinea pig horizontal cells report
the lack of plasmalemmal GABA transporter expression (Guo et al., 2009b) but the presence
of GABA and the biosynthetic machinery to synthesize GABA (Guo et al., 2009a). Studies
in some mammalian horizontal cells have identified soluble NSF attachment protein receptor
(SNARE) proteins that are classically associated with synaptic vesicles and exocytosis,
including synaptosomal-associated protein (SNAP-25) (Catsicas et al., 1992; Ullrich &
Südhof, 1994; Grabs et al., 1996; von Kriegstein et al., 1999; Greenlee et al., 2001),
syntaxin-1 (Nag & Wadhwa, 2001; Hirano et al., 2005), syntaxin-4 (Sherry et al., 2006;
Hirano et al., 2007) and complexin I/II (Hirano et al., 2005). However, there have not been
any studies evaluating these proteins comprehensively in a single animal model.

The aim of the present study was to address the hypothesis that guinea pig horizontal cells
could release GABA through a Ca2+-dependent vesicular mechanism. The guinea pig is an
emerging animal model for retina research and has been used to study the cellular
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organization and function of the retina, including ganglion cells (Demb et al., 1999),
amacrine cells (Oh et al., 1999; Fujieda et al., 2000; Kao & Sterling, 2006) and Müller cells
(Malgorzata Goczalik et al., 2005; Rillich et al., 2009), and is unique because it exhibits
robust expression of proteins related to GABA neurotransmission (Guo et al., 2009a). This
is the first study to systematically evaluate vesicular and synaptic-related proteins in this
species, which is necessary to validate the guinea pig for future studies evaluating retinal
anatomy and synaptic function. Our findings in a mammalian species other than rodents
provide a basis for understanding common mechanisms underlying transmitter release from
mammalian horizontal cells.

Materials and methods
Animals

Adult Hartley guinea pigs (CRL 051) of either sex were purchased from Charles River
Laboratories (Wilmington, MA, USA). All experiments were performed in accordance with
the guidelines for the welfare of experimental animals issued by the UCLA Animal
Research Committee and the U.S. Public Health Service Policy on the Humane Care and
Use of Laboratory Animals. Guinea pigs used for retinal tissue collection were killed by
isoflurane inhalation anesthesia (Novaplus, Lake Forest, IL, USA) and decapitated.

Tissue preparation
Guinea pig eyes were enucleated, the cornea, lens and vitreous were removed, and the
eyecups were immersion fixed in 4% (w/v) paraformaldehyde in 0.1 M phosphate buffer
(PB) (pH 7.4) for 15–30 min at 4°C. The fixed eyecups were subsequently transferred to a
30% sucrose solution overnight at 4°C for tissue cryoprotection. The eyecups were then
briefly washed in 0.1 M PB, embedded in OCT compound (Sakura Finetek Inc., Torrance,
CA, USA) and rapidly frozen with dry ice. Cryostat sections of 10–12 μm were made
perpendicular to the vitreal surface and retinal sections were collected onto gelatin-coated
slides. Sections were then air dried and stored at −20°C.

Immunohistochemistry
Immunohistochemical labeling was performed using an indirect immunofluorescence
method (Hirano et al., 2005, 2007). Retinal frozen sections were thawed for 15 min at 37°C
on a tissue warming tray, then rinsed three times with 0.1 M PB (pH 7.4) for 10 min per
rinse. Retinal sections were then incubated in a blocking solution of 10% normal goat
serum, 1% bovine serum albumin and 0.5% Triton X-100 in 0.1 M PB for 1 h at room
temperature (22°C). The blocking solution was removed and the primary antibody solution
was immediately added to the sections. The sections were incubated with the primary
antibody solution for 12–16 h at 4°C in a humidified chamber. Primary antibody solution
contained 3% normal goat serum, 1% bovine serum albumin, 0.05% sodium azide and 0.5%
Triton X-100 in 0.1 M PB, pH 7.4. Retinal sections were rinsed three times for 10 min per
rinse with 0.1 M PB to remove excess primary antibody and then incubated in secondary
antibodies conjugated with Alexa 568 or Alexa 488 (1 : 500; Invitrogen, Carlsbad, CA,
USA) for 1 h at room temperature in 0.1 M PB containing 0.5% Triton X-100. For labeling
of cone photoreceptors, sections were incubated in fluorescein isothiocyanate-conjugated
peanut agglutinin (1 : 500, Vector Labs, Burlingame, CA, USA) for 1 h, after primary
antibody labeling. To remove the secondary antibody solution, sections were washed three
times in 0.1 M PB for 10 min per rinse, air-dried and mounted using Aqua Poly/Mount
(Polysciences, Inc., Warrington, PA, USA).
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Antibodies
The optimal working dilution for each antibody was determined experimentally. Mouse
monoclonal antibody against calbindin (1 : 2500; Sigma-Aldrich, St Louis, MO, USA;
C9848 clone CB-955) and rabbit polyclonal antibody against calbindin (1 : 10 000; Swant,
Bellinzona, Switzerland; CB38) were used as markers of type A and B horizontal cells in
mammalian retina (Uesugi et al., 1992; Peichl & González-Soriano, 1994; Raven & Reese,
2002; Hirano et al., 2007). Antibodies used to identify synaptic vesicles were as follows:
mouse monoclonal antibody against VGAT cytoplasmic domain (1 : 200; Synaptic Systems,
Göttingen, Germany; 131 011 clone 117G4) to identify GABA-containing vesicles; mouse
monoclonal antibody to synapsin I (1 : 100; Millipore, Billerica, MA, USA; MAB10137
clone 3C5) to identify conventional synapses; mouse monoclonal antibody to adult zebrafish
hindbrain protein (Trevarrow et al., 1990), which recognizes synaptotagmin-2 in mouse [1 :
200; Zebrafish International Resource Center, Eugene, OR, USA; Znp-1 (Fox & Sanes,
2007)]; and rabbit polyclonal antibody to synaptic vesicle protein 2 (SV2)A (1 : 500;
Synaptic Systems, 119 002) to identify synaptic vesicles. SNARE complex and SNARE-
related proteins were identified with the following antibodies: rabbit polyclonal antibodies
against complexin I/II [1 : 15 000; Synaptic Systems; 122 102, which recognizes both
complexin I and II (Reim et al., 2001)]; rabbit monoclonal antibody to SNAP-25 (1 : 60 000;
Sigma-Aldrich; S9684); mouse monoclonal antibody to syntaxin-1a (HPC-1) (1 : 1000;
Sigma-Aldrich; S0664) and rabbit polyclonal antibody to syntaxin-4 (1 : 1000; Millipore;
AB5330). Bipolar cells were identified with a rabbit polyclonal antibody to protein kinase C
α (1 : 30 000; Sigma-Aldrich; P4334). Protein kinase C α is a widely used marker of retinal
bipolar cells (Negishi et al., 1988; Young et al., 1988; Greferath et al., 1990; Haverkamp et
al., 2000; Ghosh et al., 2001). The characterization and evidence for the appropriate use of
antibodies are summarized in Table 1; additional information about the antibodies used can
be found in the Appendix S1 of the Supporting information.

Confocal microscopy
Retinal sections were examined and analyzed with an LSM 510 META laser scanning
microscope (Zeiss, Thornwood, NY, USA) equipped with an argon laser for 488 nm
excitation and two helium/neon lasers for 543 and 633 nm excitation, respectively, using a
C-Apochromat 40 × 1.2 n.a. water objective. During acquisition of signals from double-
labeled specimens, scans with each laser were performed sequentially to prevent spectral
bleed-through. Specific band-pass filters were used to achieve proper separation of signals
(single labeling, 488/505LP; double labeling, 488/505–530 and 543/560LP). To increase the
signal-to-noise ratio, images were averaged online (e.g. n = 4) and the scan speed and
photomultiplier detector gain were decreased. Digital images were acquired at a
magnification zoom of 1.5 × and a resolution of 2048 × 2048 pixels. Confocal images were
acquired at an optical thickness between 0.5 and 0.7 μm and approximately 1.0 Airy Units.
The tortuous coursing of horizontal cell processes and spray of horizontal cell endings
necessitated stacks through the OPL for clearer, more complete images of the localization of
signals; however, images of individual scans of a single optical slice are available in
supporting Figs S1–S8. For projections, 6–10 optical sections were acquired with a total
thickness ranging from 2.5 to 6.3 μm and compressed for viewing. Digital confocal images
were saved as Zeiss .LSM files and final publication quality images were exported in
the .TIFF format at 300 dpi using LSM 510 META software version 4.2 (Zeiss). Images
were adjusted for contrast and brightness, labeled and formatted using Photoshop CS3
(Adobe Systems, Inc., San Jose, CA, USA), and saved at 300 dpi at their final
magnification.
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Results
Vesicular GABA transporter expression in the outer retina

The VGAT immunoreactivity has been localized to horizontal cell processes and terminals
in mouse, rat, monkey and human retinas (Haverkamp et al., 2000; Cueva et al., 2002; Jellali
et al., 2002; Guo et al., 2009b). To determine if VGAT was also present in guinea pig
horizontal cells, double labeling of guinea pig retinal sections with VGAT and calbindin
D-28kD (CaBP) antibodies was performed. A- and B-type horizontal cells were identified
by immunoreactivity for CaBP, which is an immunohistochemical marker of horizontal cell
bodies, dendrites and axons in guinea pig retinas (Peichl & González-Soriano, 1994). CaBP
densely labeled horizontal cell somata and processes but horizontal cell endings were
generally labeled with less intensity. However, VGAT prominently labeled multiple,
laterally running horizontal cell processes, as well as the horizontal cell endings in the OPL
(Fig. 1). Individual VGAT-labeled puncta were in clusters near the proximal ONL,
indicative of horizontal cell endings. These findings confirmed the presence of VGAT in
horizontal cell processes and endings and also established VGAT as a useful marker of
horizontal cell endings in guinea pig retina.

Synaptic vesicle proteins are expressed in mammalian horizontal cells
Synaptic vesicle protein 2A co-localizes with vesicular GABA transporter—
The SV2 is a ubiquitous integral membrane protein of synaptic vesicles that participates in
Ca2+-stimulated exocytosis and is present on all synaptic and secretory vesicles (Buckley &
Kelly, 1985). There are three known isoforms of this protein, SV2A, SV2B and SV2C
(Bajjalieh et al., 1994; Janz & Südhof, 1999), each of which may have synapse-specific
functions. A previous study has shown differential expression of these isoforms in the
mouse retina, with SV2A broadly expressed at conventional synapses and prevalent in cone
terminals and developing horizontal cells in the OPL (Wang et al., 2003). To assess whether
SV2A is present in guinea pig horizontal cell processes or putative horizontal cell release
sites, double-labeling experiments with VGAT and SV2A antibodies were performed. These
experiments revealed co-localized immunoreactivity in horizontal cell endings in the OPL
producing a punctate pattern (Fig. 2, arrow), with numerous labeled puncta identifying
horizontal cell endings. SV2A labeling of photoreceptor terminals was also seen, which
showed no co-localization with VGAT.

Synaptotagmin-2 localizes to horizontal cell processes and endings—
Synaptotagmin-2 is an important synaptic protein that has been shown to function as a
trigger for fast, Ca2+-mediated vesicular exocytosis in central and neuromuscular synapses
(Pang et al., 2006) and is required for synaptic exocytosis. Because synaptotagmin has been
shown to be required for tightly regulated and synchronous synaptic exocytosis, which is
characteristic of neurotransmission, we examined the expression of this protein in guinea pig
horizontal cells. We used the Znp-1 monoclonal mouse antibody, which has been shown to
recognize synaptotamin-2 through western blot and immunoprecipitation analysis (Fox &
Sanes, 2007). In guinea pig retina, synaptotagmin-2 and CaBP immunostaining were co-
localized to horizontal cell processes and the endings emerging from these processes (Fig.
3). These findings parallel the results of a previous report demonstrating a differential
distribution of synaptotagmin-1 and synaptotagmin-2 in mouse retinas, with
synaptotagmin-2 as the prevailing isoform present in mouse horizontal cells (Fox & Sanes,
2007).

Synapsin I labels horizontal cells in a punctate pattern—Synapsin I is a synaptic
vesicle-associated membrane protein (VAMP) that has been shown to be absent in ribbon
synapses but is a marker of conventional synapses (Mandell et al., 1990). The expression of
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synapsin I in horizontal cells was examined because they are thought to mediate trafficking
of synaptic vesicles to their target membrane through interactions with the cell cytoskeleton
(Hirokawa et al., 1989; Bennett et al., 1991). Double-labeling experiments with synapsin I
and CaBP antibodies showed co-localization at the horizontal cell processes and endings
(Fig. 4A–C). Synapsin I antibodies also labeled several cell bodies in the inner nuclear layer.
Double-labeling experiments with synapsin I and protein kinase C α (a rod bipolar cell
marker) antibodies (Fig. 4D–F) revealed that synapsin I also labels rod dendrites, as has
been reported in the rabbit retina (Hirano et al., 2005).

SNARE proteins, the mediators of vesicular fusion, in mammalian horizontal cells
Central to the regulation of vesicular fusion are the SNARE proteins as they not only
provide the energy to drive bilayer fusion but they also confer a degree of specificity to the
fusion process (Jahn & Scheller, 2006). The synaptic proteins syntaxin, SNAP-25 and
synaptobrevin or VAMP form the essential protein core complex for catalyzing synaptic
vesicle fusion in the conventional model of exocytosis (Weber et al., 1998) and are probably
necessary to carry out vesicular transmitter release in horizontal cells. Our
immunohistochemical studies have evaluated the expression of SNARE proteins in the
guinea pig retina by focusing on syntaxin-1a, syntaxin-4, SNAP-25 and complexin I/II.

Syntaxin-1a labels horizontal cell endings in the outer plexiform layer—There
are multiple syntaxin isoforms, at least four to date (isoforms 1–4), which participate in
vesicle fusion by targeting the plasma membrane (Chen & Scheller, 2001; Brandie et al.,
2008; Aran et al., 2009). Syntaxin-1a is an integral membrane protein classically involved in
Ca2+-regulated secretion in neurons and neuroendocrine cells (for reviews see Jahn &
Südhof, 1999; Jahn & Scheller, 2006; Lang & Jahn, 2008). In the retina, syntaxin-1a is
restricted to conventional synapses and is notably absent in photoreceptor and ribbon
synapses (Brandstätter et al., 1996a; Hirano et al., 2005; Sherry et al., 2006; Curtis et al.,
2008). To examine the distribution of this protein in the guinea pig retina, we performed
double-labeling experiments with syntaxin-1a and CaBP antibodies, which showed
immunolabeling of amacrine cells as well as within horizontal cell processes and endings
(Fig. 5). These results agree with previous reports in rat (Barnstable et al., 1985; Inoue et al.,
1992; Morgans et al., 1996) and rabbit (Hirano et al., 2005) retina.

Syntaxin-4 co-localizes with vesicular GABA transporter in horizontal cells—A
recent study has demonstrated robust syntaxin-4 immunoreactivity in horizontal cell
processes and tips in mouse, rat and rabbit retinas (Hirano et al., 2007). To examine the
distribution of syntaxin-4 in guinea pig retina, double-labeling experiments with syntaxin-4
and VGAT antibodies were performed, which confirmed a similar staining pattern between
these antibodies (Fig. 6A–C). Co-localization of VGAT and syntaxin-4 occurred along
horizontal cell processes and endings, whereas the cell bodies were only faintly labeled.
Similar to what has been observed in other mammalian species (Hirano et al., 2007),
syntaxin-4 densities were seen at regular intervals along the OPL, which correspond to
clusters of horizontal cell endings abutting the cone pedicle, which were labeled with peanut
agglutinin (Fig. 6D–F). The arrow in Fig. 6D points to a horizontal cell terminating at a rod
spherule, which is more distal to horizontal cells than cone pedicles, demarcated in Fig. 6E
by an asterisk.

SNAP-25 strongly labels horizontal cell processes and endings—SNAP-25, a
critical component of the neural SNARE complex that facilitates membrane fusion between
synaptic vesicles and the presynaptic plasma membrane, has been reported in multiple
retinal cell types, including horizontal cells (Catsicas et al., 1992). Recently, it was shown
that SNAP-25 not only subserves cholinergic and glutamatergic neurotransmission but is
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also critical for evoked GABA release and is expressed by mature GABAergic neurons
(Tafoya et al., 2006). We tested whether horizontal cells in guinea pig retina express
SNAP-25 with double-labeling experiments with both CaBP and SNAP-25 antibodies. In
guinea pig, immunoreactivity using the SNAP-25 anti-rabbit antibody was robust in
horizontal cell endings, identified by co-labeling with CaBP antibody (Fig. 7).
Immunostaining was very weak or absent in horizontal cell somata (arrow) but the
horizontal cell terminals and lateral processes along the OPL beneath photoreceptor
terminals were intensely labeled. SNAP-25 also labeled the bipolar cell bodies (asterisk),
dendrites and axons, and has been reported to occur in other retinal cell types (Galli et al.,
1995; Brandstätter et al., 1996a; von Kriegstein et al., 1999; Morgans & Brandstätter, 2000;
von Kriegstein & Schmitz, 2003).

Complexin I/II labels horizontal cell soma, processes and endings—Fast Ca2+-
triggered fusion requires a host of proteins, including complexins. These are soluble SNARE
complex-binding proteins that have been shown to have an essential role in synaptic fusion
by regulating a late step in Ca2+-dependent neurotransmitter release (Reim et al., 2001; Tang
et al., 2006). They control the force transfer from SNARE complexes to membranes in
fusion (Maximov et al., 2009) by serving as ‘grappling proteins’ to hold the SNARE
complex into an activated but frozen state (Rizo & Rosenmund, 2008; Südhof & Rothman,
2009). Given that these are essential proteins involved in Ca2+-dependent vesicular fusion,
we tested whether they are expressed in guinea pig horizontal cells. Double-labeling
experiments with complexin I/II and CaBP showed that complexin I/II immunoreactivity
was localized to all parts of the guinea pig horizontal cells, including the soma, processes
and endings (Fig. 8). These results agree with earlier findings in mouse and rabbit retina,
which revealed complexin I/II immunoreactivity in the entire horizontal cell, including the
endings, at both the light and electron microscopy level (Hirano et al., 2005; Reim et al.,
2005). Amacrine cells are also labeled with the complexin I/II antibody (Fig. 8, asterisk).

Discussion
This study provides novel insights and morphological evidence for the mechanism of
transmitter release from horizontal cells. It has been shown previously that both GABA and
the biosynthetic machinery to synthesize GABA are present in guinea pig horizontal cells
(Guo et al., 2009a). This study extends these findings to reveal key protein components
involved in Ca2+-dependent and SNARE protein-dependent exocytosis. Most notably, the
expression of VGAT, synaptotagmin-2, SNAP-25 and syntaxin-1a and syntaxin-4 at
horizontal cell tips and processes argues strongly in favor of a regulated exocytotic vesicular
pathway for GABA release from guinea pig horizontal cells. However, the nature and
trafficking course of the vesicles storing and releasing GABA in guinea pig horizontal cells
are currently unknown. Furthermore, the existence of Ca2+-regulated vesicular exocytosis in
mammalian horizontal cells is still debated. Based on our findings, GABA probably utilizes
a vesicular-regulated secretory pathway in mammalian horizontal cells.

Synaptic vesicle proteins in mammalian horizontal cells
Generally, synaptic vesicle fusion with the plasma membrane involves the SNARE proteins
syntaxin-1a, SNAP-25 and VAMP-1 for transmitter release (Südhof & Jahn, 1991; Südhof,
2004; Takamori et al., 2006) but there are many examples of heterogeneity in SNARE core
complex combinations within the central nervous system. For instance, astroglial precursor
cells, oligodendrocytes and microglia, which undergo vesicular release of glutamate and
aspartate, express SNAP-23, an analog of SNAP-25, VAMP-3 and syntaxin-1a (Parpura et
al., 1995; Hepp et al., 1999; Maienschein et al., 1999; Montana et al., 2004). In this instance,
the interaction of SNAP-23, VAMP-3 and syntaxin-1a forms the core SNARE complex,
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mediating general membrane insertion mechanisms including secretion, phagocytosis and
myelinogenesis (Hepp et al., 1999; Ni et al., 2007). Within the retina, ribbon synapses in
photoreceptors express syntaxin-3 (Ullrich & Südhof, 1994; Morgans et al., 1996; Sherry et
al., 2006; Curtis et al., 2008), VAMP-1 and VAMP-2 (Sherry et al., 2003; Morgans et al.,
2009), and SNAP-25 (Ullrich & Südhof, 1994; Brandstätter et al., 1996b; Greenlee et al.,
2001; Mazelova et al., 2009). The syntaxins also show heterogeneity in the retina, with
syntaxin-1 and syntaxin-2 in conventional amacrine cell synapses in a non-overlapping
fashion, syntaxin-3b in glutamatergic ribbon synapses of photoreceptors and bipolar cells,
and syntaxin-4 in horizontal cells (Sherry et al., 2006; Hirano et al., 2007; Curtis et al.,
2008). Thus, although the paradigm of SNARE-mediated fusion may be universal, the
substrates mediating this action may involve greater isoform variability, which may be the
case for proteins involved in SNARE-mediated vesicular release from mammalian
horizontal cells.

Mechanism of transmitter release in mammalian horizontal cells
Studies in non-mammalian retinas have argued for GABA uptake and release occurring via a
Na+-dependent and Ca2+-independent transport process in these horizontal cells due to the
presence of a plasmalemmal GABA transporter (Schwartz, 1982, 1987; Yazulla et al., 1985;
Ayoub & Lam, 1987; O’Malley & Masland, 1989; Connaughton et al., 2008; Nelson et al.,
2008). In non-mammalian retinas GABA is synthesized and accumulates in cone-driven
horizontal cells (Yazulla & Brecha, 1981; Zucker et al., 1984; Yazulla et al., 1989; Marc,
1992; Connaughton et al., 1999), and is released when horizontal cells are depolarized
(Ayoub & Lam, 1984; Yang & Wu, 1989, 1993; Kamermans & Werblin, 1992). Evidence
for mammalian plasmalemmal transmitter release is absent in mammals, which prompted
the hypothesis that mammalian horizontal cells might utilize an alternative mechanism of
transmitter release. High-affinity transport of GABA or GABA analogs has not been
reported in any adult mammalian horizontal cells (Goodchild & Neal, 1973; Ehinger, 1977;
Agardh & Ehinger, 1982, 1983; Agardh et al., 1986; Brecha & Weigmann, 1994) and
studies in the developing and adult mouse retina found that GABA transporter (GAT-1 and
GAT-3) transcripts and proteins were limited to Müller cell processes (Brecha & Weigmann,
1994; Durkin et al., 1995; Honda et al., 1995; Johnson et al., 1996; Hu et al., 1999; Casini et
al., 2006; Guo et al., 2009b). However, L-glutamic acid decarboxylase, the synthesizing
enzyme for GABA, is known to be present in horizontal cells particularly in early
development (Schnitzer & Rusoff, 1984). Glutamate, the synthetic precursor of GABA, and
the glutamate transporter, excitatory amino acid carrier 1, have been localized to the somata
of rat and cat horizontal cells (Rauen et al., 1996; Fyk-Kolodziej et al., 2004). The non-
synaptic location of this transporter has been implicated in the synthesis and release of
GABA in the hippocampus (Coco et al., 1997; Sepkuty et al., 2002), supporting the notion
that horizontal cells may also utilize excitatory amino acid carrier 1 to accumulate glutamate
for the subsequent synthesis of GABA.

Ultrastructural studies demonstrate the presence of small, spherical, clear-core agranular
vesicles classically associated with synaptic vesicles containing fast neurotransmitters such
as glutamate and GABA (for review see De Camilli & Jahn, 1990; Torrealba & Carrasco,
2004) within rabbit, mouse, rat, cat, monkey and human horizontal cells (Dowling &
Boycott, 1966; Linberg & Fisher, 1988; Spiwoks-Becker et al., 2001). Reports of vesicles
clustered at membrane specializations in horizontal cell processes (Dowling et al., 1966;
Raviola & Gilula, 1975; Linberg & Fisher, 1988) adjacent to photoreceptor terminals are
small in number and the vesicles do not aggregate preferentially at the cell membrane
(Dowling & Boycott, 1966; Spiwoks-Becker et al., 2001). Although a previous study by
Loeliger & Rees (2005) speculated that only one type of horizontal cell contains GABA in
the adult guinea pig retina, GABA release probably occurs from both A- and B-type
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horizontal cells in the guinea pig, as all calbindin-immunoreactive horizontal cell bodies
were shown to contain GABA as well as glutamic acid decarboxylase 65 (GAD65)
immunoreactivity (Guo et al., 2009a).

Although these findings support the hypothesis that horizontal cells release GABA in the
outer retina, they do not exclude the possibility that there may be other sources of GABA.
Interplexiform cells, which have been reported in all vertebrate retinas (Boycott et al., 1975;
Savy et al., 1991; Nguyen-Legros et al., 1997), are a subtype of amacrine cells whose
processes ramify in both plexiform layers and to the inner nuclear layer and contain
dopamine (Dowling & Ehinger, 1975), GABA (Nakamura et al., 1980; Witkovsky et al.,
2008), L-glutamic acid decarboxylase and VGAT (Witkovsky et al., 2008) in varicosities
along the interplexiform cell processes. GABAergic interplexiform cells co-localized with
SV2A, indicating that GABA may also be released from these cells at a conventional
synapse (Witkovsky et al., 2008). A second possible source of GABA in the outer retina is
the indoleamine-accumulating type 3 cells (Sandell & Masland, 1989) located at the outer
edge of the inner nuclear layer (Sandell & Masland, 1989; Massey et al., 1992). These cells
arborize widely in the OPL and specifically take up 3H-GABA (Sandell & Masland, 1989)
or the GABA analog 3H-muscimol (Massey et al., 1992). However, these cells are likely to
have a minor influence on GABA levels in the OPL overall as they are concentrated in the
ventral retina and they only ramify in some retinal regions, making it more probable that
these cells represent developmental anomalies (Sandell & Masland, 1989). In guinea pigs,
horizontal cells are probably the predominant cellular source of GABA in the outer retina
(Guo et al., 2009a) as tyrosine hydroxylase-immunoreactive interplexiform cell processes
are not present in the inner nuclear layer or OPL of guinea pig retina (Oh et al., 1999;
Fujieda et al., 2000; Loeliger & Rees, 2005). Furthermore, there was no evidence of tyrosine
hydroxylase-immunolabeled amacrine cell processes in the guinea pig ramifying in the OPL
(Oh et al., 1999).

Several studies support the notion that all cells in the photoreceptor triad are end targets of
GABA released from horizontal cells. Mammalian horizontal cells exhibit GABA-induced
currents (Feigenspan & Weiler, 2004), consistent with GABAA receptor expression on
horizontal cells (Greferath et al., 1994, 1995; Blanco et al., 1996). These findings suggest
that GABA acts as an auto-receptor. GABAA,C receptors have also been detected on bipolar
cell dendrites (Greferath et al., 1994; Enz et al., 1996; Vardi et al., 1998; Pattnaik et al.,
2000; Delgado et al., 2009), which provides evidence in support of horizontal cells
mediating feedforward action onto bipolar cells. ON-bipolar cells require that GABAergic
input be depolarizing to provide them with the corrective horizontal cell input analogous to
that received by OFF-bipolar cells. Indeed, Duebel et al. (2006) reports that ON-bipolar cells
employ a somatodendritic [Cl-](i) gradient to invert GABAergic horizontal cell input,
thereby depolarizing ON-bipolar cells with a high dendritic [Cl-](i). There are several studies
showing the presence of GABAA,C receptor immunoreactivity at photoreceptor terminals
(Greferath et al., 1995; Picaud et al., 1998; Haverkamp & Wässle, 2000; Pattnaik et al.,
2000). However, GABA’s action at photoreceptor terminals remains controversial. GABA-
evoked currents are reported for mouse and pig cones (Picaud et al., 1998; Pattnaik et al.,
2000) but the predominant finding is a lack of GABA-evoked currents in mammalian cones
(Verweij et al., 2003).

There are still many questions that must be answered regarding the mechanism underlying
transmitter release from horizontal cells. The results of this study argue for regulated
vesicular-mediated exocytosis as the underlying mechanism of release and suggest that the
guinea pig retina is uniquely suited for functional studies of mammalian horizontal cells.
Understanding the mechanism of release will contribute to understanding how these cells
function and communicate within the OPL.
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Fig. 1.
VGAT immunoreactivity is localized to horizontal cell processes and endings in the OPL. A
vertical section of guinea pig retina was double labeled with antibodies to CaBP and VGAT.
(A) VGAT immunostaining revealed horizontal cell processes and terminals and a punctate-
like pattern of labeling in the OPL. Horizontal cell somata were also faintly labeled. (B)
CaBP immunoreactivity was strong throughout the horizontal cell somata, processes and
terminals. (C) Merged images reveal the co-localization of VGAT and CaBP to horizontal
cells, especially in the processes and endings. Insets reveal a digital magnification of the
boxed region, showing the bulb-like endings emerging from laterally coursing horizontal
cell processes. Confocal images were scanned at 0.5 μm intervals and a total of 10 optical
images were obtained and compressed for viewing. Scale bar: 10 μm.
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Fig. 2.
SV2A, a synaptic vesicle protein, labels horizontal cell terminals. A vertical section of
guinea pig retina was double labeled with antibodies to SV2A and VGAT. (A) SV2A
immunolabeling was localized to horizontal cell endings in the OPL, as well as
photoreceptor terminals. (B) VGAT antibodies labeled horizontal cell terminals in the outer
retina. (C) Merged images reveal the co-localization of SV2A labeling with that of VGAT.
Arrows point to co-localized puncta along the OPL. Confocal images were scanned at 0.5
μm intervals and a total of eight optical images were obtained and compressed for viewing.
Scale bar: 10 μm.
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Fig. 3.
Synaptotagmin-2, a sensor for Ca2+-triggered vesicular release, localizes to horizontal cell
processes and their terminals. A vertical section of guinea pig retina was double labeled with
antibodies to synaptotagmin-2 and CaBP. (A) Synaptotagmin-2 antibodies labeled the
processes in the OPL, with more intensely labeled dots throughout OPL. (B) CaBP
immunostaining is in horizontal cell somata, processes and horizontal cell endings. (C)
Merged images show co-localization of synaptotagmin-2 and CaBP immunostaining in
horizontal cell processes and endings. The inset reveals a digital magnification of the boxed
region indicating horizontal cell processes extending from the OPL. Confocal images were
scanned at 0.7 μm intervals and a total of 10 optical images were obtained and compressed
for viewing. Scale bar: 10 μm.
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Fig. 4.
(A–C) Synapsin I, a marker of conventional synapses, is present in horizontal cells. A
vertical section of guinea pig retina was double labeled with antibodies to synapsin I and
CaBP. (A) Synapsin I immunolabeling was present throughout the OPL, with labeled puncta
just above the OPL. Synapsin I also labels bipolar cell bodies just below the OPL. (B) CaBP
immunoreactivity is strongest in the cell bodies, but also along the horizontal cell processes
and their endings. (C) Merged images reveal the co-localization of synapsin I and CaBP
immunoreactivity in the horizontal cell fine processes and endings emerging from the main
processes. Confocal images were scanned at 0.5 μm, and a total of 11 optical images were
obtained and compressed for viewing. Scale bar: 20 μm. (D–F) Synapsin I is also localized
to rod bipolar cell dendrites. A vertical section of guinea pig retina was double labeled with
antibodies to synapsin I and PKCα. (D) Synapsin I immunolabeling is present throughout
the OPL with labeling of the bipolar cell somata as well. There are also punctate-like areas
of more intense immunostaining throughout the OPL. (E) Protein kinase Cα (PKCα), a
marker of rod-bipolar cells labels bipolar cell soma and the dendritic tree. (F) Merged
images reveal co-localization between synapsin I labeling and PKCα at the rod bipolar
dendrites. Confocal images were scanned at 0.8 μm intervals, and a total of 10 optical
images were obtained and compressed for viewing. Scale bar: 10 μm.
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Fig. 5.
Syntaxin-1a, a SNARE core protein, localizes to amacrine cells and horizontal cell processes
and endings. (A) Syntaxin-1a immunolabeling labels horizontal cell processes and endings
in the OPL, as well as amacrine cells in the inner nuclear layer (INL). The horizontal cell
somata are more faintly labeled. Labeled amacrine cells can be seen in the INL at the bottom
of the image. (B) CaBP immunoreactivity is present in horizontal cell somata, their
processes and terminal endings. (C) Merged images reveal the co-localization of syntaxin-1a
and CaBP immunoreactivity in the OPL to the laterally running horizontal cell processes, as
well as the finer endings that emerge from them. Confocal images were scanned at 0.6 μm
intervals and a total of nine optical images were obtained and compressed for viewing.
Insets reveal digital magnification of the boxed region, highlighting the horizontal cell
process and endings. Scale bar: 20 μm.
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Fig. 6.
Syntaxin-4, a SNARE complex protein, localizes to horizontal cell processes and endings.
(A–C) A vertical section of guinea pig retina was double labeled with antibodies to
syntaxin-4 and VGAT. (A) Syntaxin-4 immunolabeling was robust along the OPL with a
punctate pattern. There were also regions of more intense staining in the OPL that were
located along horizontal cell processes and near the soma. (B) VGAT immunolabeling was
localized to the laterally running processes of horizontal cells, as well as the finer processes
and endings emerging from them. (C) Merged images reveal the co-localization of
syntaxin-4-labeled puncta and VGAT-labeled endings of horizontal cells. The insets are a
digital magnification of the boxed region, which demonstrates staining of the delicate
processes and endings of horizontal cells by both syntaxin-4 and VGAT antibodies.
Confocal images were scanned at 0.5 μm intervals and a total of 10 optical images were
obtained and compressed for viewing. Scale bar: 20 μm. (D–F) Syntaxin-4 does not label
cone photoreceptor terminals. (D) Dense spots of syntaxin-4 immunoreactivity occur at
regular intervals along the OPL. (E) Cone pedicles, labeled with peanut-agglutinin (PNA),
produce a similar punctate pattern of densities along the OPL. (F) Merged images reveal that
the syntaxin-4-immunoreactive clusters correspond to horizontal cell endings grouped
together just underneath cone pedicles. The arrow points to a horizontal cell ending that
continues up past the cone pedicle (indicated by the asterisk) to terminate at a rod spherule,
which is more distal to horizontal cells than cone pedicles. Confocal images were scanned at
0.5 μm intervals and a total of eight optical images were obtained and compressed for
viewing. Scale bar: 10 μm.
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Fig. 7.
SNAP-25, a SNARE complex protein, is expressed in horizontal cell processes and endings.
A vertical section of guinea pig retina was double labeled with anti-SNAP-25 and anti-CaBP
antibodies. (A) SNAP-25 is expressed in the OPL at the fine processes and endings
emerging from the laterally distributed processes throughout. There was also faint labeling
of cell soma within the inner nuclear layer underneath the OPL. (B) CaBP is expressed in
horizontal cell somata, processes and endings. (C) Merged images show the co-localization
of SNAP-25 and CaBP to horizontal cell terminals. Although SNAP-25 faintly labeled a
horizontal cell body, as indicated by co-localization with CaBP (arrow), it also weakly
labeled nearby bipolar cell bodies (asterisk). The insets are a digital magnification of the
boxed region. Confocal images were scanned at 0.7 μm intervals and a total of 10 optical
images were obtained and compressed for viewing. Scale bar: 20 μm.
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Fig. 8.
Complexin I/II, a cytosolic SNARE-associated protein, labels horizontal cell soma,
processes and endings. A vertical section of guinea pig retina was double labeled with
complexin I/II and CaBP antibodies. (A) Complexin I/II immunolabeling is very robust in
horizontal cell somata and the larger laterally running processes, as well as the finer
processes and endings emerging from them. A labeled amacrine cell is indicated by the
asterisk. (B) CaBP expression is also robust in horizontal cell bodies, processes and
terminals. (C) Merged images reveal the co-localization of complexin I/II to all parts of the
horizontal cells, including the distal processes and endings. Insets are digital magnification
images of the boxed region, highlighting several horizontal cell terminals and the
localization of complexin I/II to the endings. Confocal images were scanned at 0.7 μm
intervals and a total of 10 optical images were obtained and compressed for viewing. Scale
bar: 20 μm.

Lee and Brecha Page 26

Eur J Neurosci. Author manuscript; available in PMC 2013 August 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Lee and Brecha Page 27

Ta
bl

e 
1

Pr
im

ar
y 

an
tib

od
ie

s

A
nt

ib
od

y
H

os
t

Im
m

un
og

en
So

ur
ce

D
ilu

ti
on

R
ef

er
en

ce

C
aB

P
R

ab
bi

t
R

ec
om

bi
na

nt
 r

at
 c

al
bi

nd
in

 D
-2

8k
 (

C
B

)
Sw

an
t, 

B
el

lin
zo

na
,

Sw
itz

er
la

nd
 C

B
38

1 
: 1

0 
00

0
H

av
er

ka
m

p 
&

 W
äs

sl
e 

(2
00

0)
,

St
re

tto
i e

t a
l. 

(2
00

2)
, L

oe
lig

er
 &

R
ee

s 
(2

00
5)

, D
am

ia
ni

 e
t a

l.
(2

00
8)

, G
ai

lla
rd

 e
t a

l. 
(2

00
8)

M
ou

se
B

ov
in

e 
ki

dn
ey

 c
al

bi
nd

in
-D

Si
gm

a-
A

ld
ri

ch
, S

t L
ou

is
,

M
O

, U
SA

, C
98

58
, c

lo
ne

C
B

-9
55

1 
: 2

50
0

R
en

te
ri

a 
et

 a
l. 

(2
00

5)
, D

en
g 

et
 a

l.
(2

00
6)

, L
ee

 e
t a

l. 
(2

00
6)

, G
ar

gi
ni

et
 a

l. 
(2

00
7)

, H
ir

an
o 

et
 a

l. 
(2

00
7)

,
D

am
ia

ni
 e

t a
l. 

(2
00

8)
, E

tta
ic

he
 e

t
al

. (
20

09
),

 K
yh

n 
et

 a
l. 

(2
00

9)

C
om

pl
ex

in
 I

/I
I

R
ab

bi
t

Sy
nt

he
tic

 p
ep

tid
e 

E
E

E
R

K
A

K
H

A
R

M
E

A
E

R
E

K
V

R
Q

Q
IR

D
K

Y
G

L
K

K
K

E
E

K
E

A
E

(a
a 

45
–8

1 
in

 c
om

pl
ex

in
 I

I)
 c

ou
pl

ed
 to

 k
ey

-h
ol

e 
lim

pe
t h

em
oc

ya
ni

n 
vi

a 
an

 a
dd

ed
N

-t
er

m
in

al
 c

ys
te

in
e 

re
si

du
e

Sy
na

pt
ic

 S
ys

te
m

s,
G

öt
tin

ge
n,

 G
er

m
an

y,
 1

22
10

2

1 
: 1

5 
00

0
R

ei
m

 e
t a

l. 
(2

00
1)

, H
ir

an
o 

et
 a

l.
(2

00
5)

, X
ue

 e
t a

l. 
(2

00
8)

PK
C
α

R
ab

bi
t

Sy
nt

he
tic

 p
ep

tid
e 

co
rr

es
po

nd
in

g 
to

 a
a 

65
9–

67
2 

fr
om

 th
e 

C
-t

er
m

in
al

 v
ar

ia
bl

e
(V

5)
 r

eg
io

n 
of

 r
at

 P
K

C
α

Si
gm

a-
A

ld
ri

ch
, P

43
34

1 
: 3

0 
00

0
W

an
g 

et
 a

l. 
(2

00
1)

, E
ls

ha
to

ry
 e

t
al

. (
20

07
)

SN
A

P-
25

R
ab

bi
t

Sy
nt

he
tic

 p
ep

tid
e 

co
rr

es
po

nd
in

g 
to

 th
e 

N
-t

er
m

in
al

 o
f 

hu
m

an
 S

N
A

P-
25

(s
yn

ap
to

so
m

e-
as

so
ci

at
ed

 p
ro

te
in

-2
5)

 a
a 

9–
29

 w
ith

 C
-t

er
m

in
al

ly
 a

dd
ed

 ly
si

ne
co

nj
ug

at
ed

 to
 K

L
H

Si
gm

a-
A

ld
ri

ch
, S

96
84

1 
: 6

0 
00

0
Fr

as
so

ni
 e

t a
l. 

(2
00

5)
, S

zk
la

rc
zy

k
et

 a
l. 

(2
00

7)

SV
2A

R
ab

bi
t

Sy
nt

he
tic

 p
ep

tid
e 

E
E

G
FR

D
R

A
A

FI
R

G
A

K
D

 (
aa

 2
–1

7 
in

 h
um

an
) 

co
up

le
d 

to
 k

ey
-

ho
le

 li
m

pe
t h

em
oc

ya
ni

n 
vi

a 
an

 a
dd

ed
 N

-t
er

m
in

al
 c

ys
te

in
e 

re
si

du
e

Sy
na

pt
ic

 S
ys

te
m

s,
 1

19
 0

02
1 

: 5
00

Ja
nz

 e
t a

l. 
(1

99
9)

, J
an

z 
&

 S
üd

ho
f

(1
99

9)
, v

on
 K

ri
eg

st
ei

n 
&

 S
ch

m
itz

(2
00

3)
, W

an
g 

et
 a

l. 
(2

00
3)

,
W

itk
ov

sk
y 

et
 a

l. 
(2

00
8)

Sy
na

ps
in

 I
M

ou
se

R
ec

om
bi

na
nt

 h
um

an
 s

yn
ap

si
n 

1
M

ill
ip

or
e,

 B
ill

er
ic

a,
 M

A
,

U
SA

, M
A

B
10

13
7 

cl
on

e
3C

5

1 
: 1

00
D

e 
C

am
ill

i e
t a

l. 
(1

98
3)

, M
an

de
ll

et
 a

l. 
(1

99
0,

 1
99

2)
, S

m
ith

 e
t a

l.
(1

99
3)

, H
ir

an
o 

et
 a

l. 
(2

00
5)

Sy
nt

ax
in

-1
a

M
ou

se
Sy

na
pt

os
om

al
 p

la
sm

a-
m

em
br

an
e 

fr
ac

tio
n 

fr
om

 a
du

lt 
ra

t h
ip

po
ca

m
pu

s
Si

gm
a-

A
ld

ri
ch

, S
06

64
1 

: 1
00

0
B

ar
ns

ta
bl

e 
et

 a
l. 

(1
98

5)
, I

no
ue

 e
t

al
. (

19
92

),
 M

or
ga

ns
 e

t a
l. 

(1
99

6)
,

H
ir

an
o 

et
 a

l. 
(2

00
5)

Sy
nt

ax
in

-4
R

ab
bi

t
H

ig
hl

y 
pu

ri
fi

ed
 c

or
re

sp
on

di
ng

 to
 r

es
id

ue
s 

2–
23

 o
f 

ra
t o

r 
m

ou
se

 s
yn

ta
xi

n-
4

(a
cc

es
si

on
 Q

08
85

0)
M

ill
ip

or
e,

 A
B

53
30

1 
: 1

00
0

G
ou

ra
ud

 e
t a

l. 
(2

00
2)

, S
pu

rl
in

 e
t

al
. (

20
04

),
 S

he
rr

y 
et

 a
l. 

(2
00

6)
,

Sp
ur

lin
 &

 T
hu

rm
on

d 
(2

00
6)

,
H

ir
an

o 
et

 a
l. 

(2
00

7)

V
G

A
T

M
ou

se
Sy

nt
he

tic
 p

ep
tid

e 
A

E
PP

V
E

G
D

IH
Y

Q
R

 (
aa

 7
5–

87
 in

 r
at

) 
co

up
le

d 
to

 k
ey

-h
ol

e
lim

pe
t h

em
oc

ya
ni

n 
vi

a 
an

 a
dd

ed
 N

-t
er

m
in

al
 c

ys
te

in
e

Sy
na

pt
ic

 S
ys

te
m

s,
 1

31
 0

11
,

cl
on

e 
11

7G
4

1 
: 2

00
M

cI
nt

ir
e 

et
 a

l. 
(1

99
7)

, S
ag

né
 e

t a
l.

(1
99

7)
, J

el
la

li 
et

 a
l. 

(2
00

2)
,

Jo
hn

so
n 

et
 a

l. 
(2

00
3)

, G
uo

 e
t a

l.
(2

00
9)

Z
np

-1
 (

sy
na

pt
ot

ag
m

in
-2

)
M

ou
se

1–
5-

da
y 

ze
br

af
is

h 
em

br
yo

Z
eb

ra
fi

sh
 I

nt
er

na
tio

na
l

R
es

ou
rc

e 
C

en
te

r,
 E

ug
en

e,
O

R
, U

SA

1 
: 2

00
Fo

x 
&

 S
an

es
 (

20
07

),
 W

äs
sl

e 
et

 a
l.

(2
00

9)

aa
, a

m
in

o 
ac

id
s;

 K
L

H
, k

ey
ho

le
 li

m
pe

t h
em

oc
ya

ni
n;

 P
K

C
α,

 p
ro

te
in

 k
in

as
e 

C
 α

.

Eur J Neurosci. Author manuscript; available in PMC 2013 August 14.


