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Abstract

Background: Schistosomiasis, a parasitic disease that affects over 200 million people, can lead to significant morbidity and
mortality; distribution of single dose preventative chemotherapy significantly reduces disease burden. Implementation of
control programs is dictated by disease prevalence rates, which are determined by costly and labor intensive screening of
stool samples. Because ecological and human factors are known to contribute to the focal distribution of schistosomiasis,
we sought to determine if specific environmental and geographic factors could be used to accurately predict Schistosoma
mansoni prevalence in Nyanza Province, Kenya.

Methodology/Principal Findings: A spatial mixed model was fit to assess associations with S. mansoni prevalence in
schools. Data on S. mansoni prevalence and GPS location of the school were obtained from 457 primary schools.
Environmental and geographic data layers were obtained from publicly available sources. Spatial models were constructed
using ArcGIS 10 and R 2.13.0. Lower S.mansoni prevalence was associated with further distance (km) to Lake Victoria, higher
day land surface temperature (LST), and higher monthly rainfall totals. Altitude, night LST, human influence index,
normalized difference vegetation index, soil pH, soil texture, soil bulk density, soil water capacity, population, and land use
variables were not significantly associated with S. mansoni prevalence.

Conclusions: Our model suggests that there are specific environmental and geographic factors that influence S. mansoni
prevalence rates in Nyanza Province, Kenya. Validation and use of schistosomiasis prevalence maps will allow control
programs to plan and prioritize efficient control campaigns to decrease schistosomiasis burden.
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Introduction

Over 200 million people are infected with schistosomiasis, with

approximately 85% of the burden of disease occurring in Africa

[1,2]. Schistosoma mansoni, one of the five schistosome species known

to infect humans, can lead to significant morbidity, including

anemia, malnutrition, and liver damage, and mortality. Preven-

tative chemoprophylaxis, through mass distribution of praziquan-

tel, is highly effective in decreasing disease burden. In endemic

areas, neglected tropical disease (NTD) control programs rely on

schistosomiasis prevalence rates to determine the target population

and duration and frequency of preventative chemoprophylaxis

distribution schedules [3]. Currently, the Kato-Katz technique, a

procedure that requires microscopic examination of stool speci-

mens and is both time and labor intensive, is the most widely used

method to identify S. mansoni infection and the primary source of

data for calculating infection prevalence [4,5]. As the price of

praziquantel has recently decreased and drug companies are

increasing the quantity of drug donations, the bulk of costs

incurred by schistosomiasis control program remain diagnosis and

mapping of areas to determine prevalence of infection [6]. The

development of a lower cost and more resource efficient method to

accurately predict schistosomiasis prevalence would alleviate some

of the financial constraints of NTD control programs.

In order for people to be at risk for S. mansoni infection, they

must live in or visit an area where the environment is conducive

for disease transmission. Disease transmission occurs in ecosystems

that support both the snails that serve as the obligate intermediate

host for the parasite and the parasite itself. Humans become

infected through contaminated freshwater when free-swimming

cercariae, which are released from the snail host, penetrate the

skin; humans must have contact with contaminated freshwater in

order to acquire Schistosoma infection [7]. Water bodies in which

snail habitats flourish and people are exposed to the water

correlate with areas of high human schistosomiasis prevalence [8].

The complex requirements for disease transmission contribute

to the focal nature of schistosomiasis. Previous studies have

examined environmental variables that affect snail habitation and
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parasite transmissibility such as soil pH, land surface temperature,

and annual rainfall [9,10]. Data regarding these geographical and

climatic variables are continuously collected through satellite

sensory systems and are freely accessible to the general public.

Geographic, environmental, and climatic data have been used

previously by researchers and NTD programs to create schisto-

somiasis prevalence maps based on known macroecological

principles and parameters of snail and parasite survival. The

development of such maps, utilizing geospatial modeling, has been

used to predict disease prevalence rates for schistosomiasis

throughout Africa [1].

Lake Victoria, which borders Nyanza Province, located in

western Kenya, is the largest tropical lake in the world and is a

known habitat of the freshwater snail genus Biomphalaria which

serve as intermediate hosts for S. mansoni infection [11]. The lake is

the main water source for people residing in Nyanza Province and

is frequently used for bathing, washing, and fishing. As poor water

and sanitation conditions exist throughout the area, people often

defecate or urinate near or in the lake as they work or play. The

ecologic features present in western Kenya create a permissive

environment for both snail host reproduction and propagation of

the schistosomiasis parasite to occur. The combination of a

favorable snail habitat and frequent human contact with Lake

Victoria places people who reside in the area at risk for S. mansoni

infection. We sought to design a mixed model to assess the

association between S. mansoni prevalence rates in schools and

various environmental and geographical factors near Lake

Victoria in western Kenya.

Methods

Ethics Statement
This study was reviewed and designated as non-research by the

Institutional Review Boards at the Scientific and Ethical Review

Committees of the Kenya Medical Research Institute (Kisumu,

Kenya) and the Centers for Disease Control and Prevention. All

data used in this study was data that had been previously collected

for the Schistosomiasis Consortium for Operational Research and

Evaluation (SCORE) project; written consent was obtained by

participants and or their guardians on the behalf of children

participants for their information to be stored in a database and

used for research. All personal identifiers were removed prior to

the receipt of the data used in this study. Institutional Review

Board approval was granted for the use of the data prior to the

start of the study.

Study Site
This study was conducted in western Kenya in Nyanza

Province, which borders the eastern edge of Lake Victoria.

Schools from the following seven districts were included in the

study: Bondo, Kisumu, Nyando, Rachuonyo, Homa Bay, Suba,

and Siaya. No mass drug administration of chemoprophylaxis

treatment for schistosomiasis had been initiated in the Province

prior to the start of the study.

Disease Prevalence Data
S. mansoni prevalence data were collected through the SCORE

project, a large multi-country study dedicated to research to guide

schistosomiasis control and elimination programs [12]. School-

level prevalence data were collected from 457 primary schools

located in Nyanza Province from September through December

2010. School children, ages 10–18 years, were included in the

study. S. mansoni prevalence was calculated by examining two slides

from a single stool specimen from each participant using the Kato-

Katz method to identify schistosome eggs [13]. Each stool sampled

was qualitatively read for schistosome eggs and recorded as

positive or negative. If a child had at least one schistosome egg on

either slide, he or she was counted as positive. To calculate the

schistosomiasis prevalence for each school, the number of positive

children was divided by the total number of children tested.

School Geospatial Data
For each primary school, school name and geographic

coordinates, including latitude, longitude, and altitude, were

electronically captured during site visits using handheld global

positioning system (GPS) units (Trimble Navigation Ltd, Califor-

nia, USA). For schools for which GPS coordinates were not

collected or incompletely recorded, geographic coordinates were

obtained by manually searching for the school name using the

United States Geological Survey’s Earth Explorer (http://

edcsns17.cr.usgs.gov/EarthExplorer/).

Geographic and Environmental Data
Geographic, population, climatic, and environmental data were

obtained from various publicly accessible remote sensing data

sources. Basic topographical land maps of Nyanza Province were

accessed through the Kenya Medical Research Institute located in

Kisumu. Data for soil parameters, including soil bulk density (g/

cm3), total soil water capacity (cm/m), pH, and texture class (fine,

medium, or course) were obtained from the International Soil

Reference and Information Centre (ISRIC) World Soil Informa-

tion website and were derived from the Soil Terrain Database for

Kenya (KENSOTER) at a scale of 1:1M [14]. Average monthly

rainfall data (mm) was obtained from the U.S. Agency for

International Development (USAID) Famine Early Warning

Systems Network (FEWS NET) at 8 km resolution [15]. Human

influence index (HII), was extracted from the Socioeconomic and

Data and Applications Center (SEDAC) database at 1 km

resolution [16]. HII calculates changes in the environment due

to anthropometric activities. The 8 variables used to calculate HII

include population density, railroads, major roads, navigable

rivers, coastlines, nighttime stable lights values, urban polygons,

and land cover categories. HII is based on a scale from 0 to 64,

with 64 representing the maximum human influence. Normalized

difference vegetation index (NDVI) (a proxy for vegetation), land

use, and day and night land surface temperature (LST) (uC) data

came from the Land Processes Distributed Active Archive Center

[17]. Land use categories included agricultural, bush land,

plantation, swamp and town. Population distribution data for

2010 were downloaded from the Oak Ridge National Laboratory

Geographic Information Science and Technology website [18].

Distance to Lake Victoria (km) was measured as a straight line

between the school and the shoreline using ArcGIS version 10.0

(Environmental Systems Research Institute, California, USA

2011).

Spatial analysis was conducted in ArcGIS version 10.0. Vector

data attributes were linked to primary schools via spatial joins, and

for raster data, cell values were attributed to primary schools by

extraction. When distance calculations were necessary, vector

layers were projected to UTM (Universal Transverse Mercator)

zone 36S, which corresponds to the location of Kenya; distances

were computed in meters. All other data were analyzed in the

WGS84 (World Geodetic System) coordinate system.

Rainfall, LST, and NDVI were aggregated over the study

period. When a school location possessed a missing value in the

rainfall layer, it was assumed zero rain had accumulated during

that period. Rainfall was then summed over the twelve decadal

(120 days) comprising the study period and converted to a monthly

Geospatial Modeling for S. mansoni Prevalence
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average. LST values of zero or less were treated as missing values.

All available values were then averaged and converted from

Kelvin to Celsius. For one school, all NDVI values were less than

zero and were recorded to the nearest pixel with all values greater

than zero. Non-missing NDVI values for each school were

averaged. All conversions and scaling modifications were com-

pleted in accordance with the Land Processes Distributed Active

Archive Center data download guidelines [17]. As the majority of

land in Nyanza Province is agricultural, the land use variable was

condensed into 2 variables, agricultural and non-agricultural land

use (which included bush land, plantation, swamp, and town

categories) for data analysis.

All study predictors with continuous or count distributions,

excluding HII, were categorized into quartiles to avoid overly

restrictive linear assumptions. The majority of school locations in

this study possessed HII values of 18 or 22; logical groupings for

the HII were 18, 22 and greater than 26.

Statistical Analysis
All statistical tests were two-sided and use a 5% level of

significance. R version 2.13.0 (R Core Development Team 2011)

was used for all analyses [19].

Semivariograms were created to assess the level of spatial

clustering in S. mansoni rates. After relevant covariates were

included, semivariances were consistent across distance and

direction suggesting that an isotropic model was sufficient.

Univariable, quasi-Poisson regression models were run to

explore associations between S. mansoni rates and all potential

predictors and account for any overdispersion in the data [20].

The outcome in each model is the number of S. mansoni infected

children with the number of children sampled included as an

offset. In non-spatial models, an automated variable selection

procedure using the Bayesian Information Criterion was employed

to arrive at a final, multivariable model [21,22]. This same model

was also found to have the lowest quasi-AIC (qAIC) from the

MuMIn package [23]. Variables that did not improve model fit

were excluded from the final multivariable model. We found an

improvement in qAIC of 870.95 for the multivariable model

compared to the model with only an intercept and the offset.

Using the same variables as the multivariable model, a generalized

linear mixed model employing an exponential correlation function

was fit using the glmmPQL function with location specific random

effects to control for spatial correlation in the multivariable model

[24]. After using a quasi-likelihood approach to account for

overdispersion the spatial component had a negligible effect on the

standard errors. Hence, the non-spatial multivariable and spatial

multivariable models were largely similar.

Results

The mean S. mansoni prevalence for the 457 primary schools in

Nyanza Province included in our study was 17% (range 0–

100%).The mean number of children tested per school was 42

(range 15–71 students). Children infected with S. mansoni were

found in 426 of the 457 visited schools. Figure 1 shows S. mansoni

prevalence rates and location for each school; schools closest to the

border of Lake Victoria had the highest prevalence rates. Maps

(Figure 2) were constructed for the following 10 variables: soil pH,

soil texture, soil bulk density, total soil water capacity, land use,

HII, NDVI, monthly rainfall, day LST, and night LST.

Table 1 gives the prevalence ratios (PR) and 95% confidence

intervals (CI) using univariable and multivariate non-spatial

logistic regression and multivariate spatial logistic regression.

Spatial modeling results show a significant decrease in S. mansoni

prevalence with increased distance of the school from Lake

Victoria. Day LST and monthly rainfall were also significantly

associated with S. mansoni prevalence. Increasing day LST from

30.382uC to over 34.310uC was correlated with a decrease in S.

mansoni prevalence. Higher monthly rainfall totals were associated

with lower S. mansoni prevalence rates. All three variables, distance

to Lake Victoria, day LST, and monthly rainfall had significant

associations with S. mansoni in both in the univariable and

multivariable models. The remaining analyzed variables, including

altitude, soil pH, soil texture, soil bulk density, total soil water

capacity, population, land use, HII, NDVI, and night LST, did

not improve the multivariate model’s fit to the data and therefore

were excluded from the final model. Based on the data from the

final model, a map was created to show the predicted S. mansoni

prevalence in Nyanza province (Figure 3).

Discussion

Determining S. mansoni prevalence in areas where disease

transmission occurs is the core starting point for schistosomiasis

control programs; all subsequent planning and implementation

strategies are based off these initial prevalence values. Utilizing

environmental, climatic, and geographic data to identify locations

that have the highest likelihood of schistosomiasis transmission can

help schistosomiasis programs focus their control efforts on

populations living in high risk areas. Previous studies that have

generated S. mansoni spatial risk maps on both the continental and

country level have acknowledged limitations in attempting to use

these maps to initiate disease control measures in specific

geographic locations [25]. One concern is that these large maps

do not accurately capture environmental differences between

various ecologic zones making prevalence prediction less precise.

Areas such as Lake Victoria, which have unique and diverse

ecologic components, are especially difficult to fit into large scale

geostatistical models; researchers who recently constructed a

statistical model to predict S. hematobium prevalence for all of

Tanzania found that their model performed poorly in areas near

Lake Victoria and attributed this difference to the unique

environment around the lakeshore [26]. To our knowledge, this

is the first study to use geospatial models to identify environmental

variables which specifically affect the S. mansoni prevalence rate in

Nyanza Province, Kenya. Although similar modeling has been

completed previously in Kenya, our work was able to identify

prevalence differences on a smaller scale which were previously

undetected by geospatial modeling that was performed on a larger

scale [27]. This may have important implications for control

programs as S. mansoni prevalences in specific areas may be

incorrectly estimated by large scale mapping models leading to

areas potentially being over or undertreated with mass drug

distribution.

Our spatial model found that three variables, distance to Lake

Victoria, average rainfall, and day LST were significantly

associated with S. mansoni prevalence. The strongest predictor of

higher S. mansoni prevalence rates was distance to Lake Victoria;

the closer a primary school was to Lake Victoria, the higher the S.

mansoni prevalence rate in the students tested for the infection. This

finding is not surprising as children who live closer to the lake are

more likely to have contact with water on a regular basis [28].

Research has demonstrated that using a 5 km ceiling from the

lakeshore to local areas schools would accurately classify S. mansoni

prevalence in 90% of the schools and that schools with .50%

prevalence were located within 1.5 km of the lakeshore. A separate

study showed that schools at distances greater than 5 km had S.

mansoni prevalence was consistently ,15% [29]. The significant

Geospatial Modeling for S. mansoni Prevalence
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association between school distance to Lake Victoria and S.

mansoni prevalence rates highlights the importance accessibility to

potential S. mansoni infested water sources in determining the

likelihood of infection in at risk populations.

In addition to human proximity to fresh water sources, our

study found that environmental factors also directly influence S.

mansoni prevalence rates in humans. Climatic variables, specifically

rainfall and temperature, are known to be associated with

differences in snail population size and infection rates [30]. A

previous study around Lake Victoria in Uganda established that

the S. mansoni prevalence rate was absent in areas receiving

,900 mm of rainfall annually [31]. As the amount of annual

rainfall amount throughout Nyanza Province ranges from

900 mm to upwards of 1600 mm, our study area can be defined

as a hospitable environment for S. mansoni transmission [32].

Although rainfall is linked to increasing S. mansoni prevalence rates,

our study findings indicate that excessive amounts of rainfall are

associated with lower S. mansoni rates. While rainfall promotes the

continuous presence of standing water bodies and contributes to

the growth of vegetation which enable sustainable snail develop-

ment, too much rainfall may create a less hospitable environment

for snail development based on their established macroecological

characteristics. Biomphalaria spp thrive in shallow water (0–7 cm

deep) along the shoreline in areas of low water velocity (optimum

13.3 cm/s, range 12–21) [33]. Large amounts of rainfall may alter

the environment enough to disrupt snail habitats and therefore

affect S. mansoni transmission. Changes in human behavior due to

excessive rainfall may offer another possible explanation for our

findings. In areas of extremely high rainfall, new standing water

pools may be established and people may use these fresh water

areas to carry out bathing or washing activities, decreasing contact

time with Lake Victoria; these newly created water sources are less

likely to be inhabited by snails.

We also found a significant inverse relationship between S.

mansoni prevalence rates and increasing day LST; the higher the

temperature the lower the S. mansoni prevalence. The average day

LST in our study area fell within a fairly narrow temperature

range with the majority of temperature values falling between

approximately 30uC and 34uC. Numerous macroecological studies

have been carried out in an effort to determine the optimal

temperature range for both snail survival and transmission of the

schistosome parasite. Researchers in the 1980s published studies

revealing that B. pfeifferi snails infected with S. mansoni do not

survive outside of a temperature range from 16 to 30uC [33,34].

Another study that examined the number of eggs hatched from B.

pfeifferi living at various temperatures found that the maximum

temperature for egg production occurred between 30 and 35uC
with no eggs hatching above 35uC [35]. It should be noted that

Figure 1. S. mansoni prevalence in selected primary schools in Nyanza Province, Kenya.
doi:10.1371/journal.pone.0071635.g001
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these studies occurred in the laboratory; in the natural environ-

ment temperature variations exist and snails are able to migrate to

areas where more optimal temperatures occur. Applying this

knowledge to our findings, the significant decrease in S. mansoni

prevalence with respect to increasing temperature is a logical

finding as temperatures around 34uC are at or near the upper limit

for snail survival.

Our findings that day LST and rainfall significantly affects S.

mansoni prevalence highlight the need for further studies exploring

the relationship between climatic variables and S. mansoni

transmission. The establishment of seasonal patterns that affect

S. mansoni transmission could have direct implications for

determining the optimal schedule for chemoprophylaxis distribu-

tion. Defining seasonal and climatic patterns could also influence

the timing of efforts aimed at controlling snail populations through

the use of chemical agents. It is important to note that our study

links specific environmental variables with schistosomiasis preva-

lence during a defined time period and does not necessarily

account for the environmental conditions present at the time when

infection was acquired.

As access to the internet is becoming more readily available and

mapping software is improved, the use of geospatial modeling to

predict schistosomiasis prevalence rates is increasingly recognized

as important tool in understanding disease transmission and

identifying at risk populations. There are numerous benefits to

using geospatial modeling to determine S. mansoni prevalence rates.

First, geographic areas where S. mansoni transmission may occur

can be defined based on known biologic and environmental

parameters necessary for both the parasite and the associated snail

vector. Over time, environmental and climate changes can be

reassessed and used either to determine new areas where S. mansoni

may occur or delineate areas where S. mansoni transmission may no

longer occur due to the emergence of inhospitable environments.

Maps can also be quickly reconstructed, without great additional

financial resources, to accurately capture quick population

movements, such as the establishment of a refugee camps, or

new construction projects, which may alter access to water

resources such as dams. As schistosomiasis control programs are

working within the constraints of limited funding to carry out

activities, geospatial modeling could provide them with a cost

efficient method to determine areas where they should focus their

control efforts.

Our study has a number of limitations. First, the data used in

our spatial model is aggregated data and therefore we are unable

to account for individual behaviors which may directly affect

schistosomiasis transmission and prevalence rates. Another limi-

Figure 2. Spatial distribution of environmental and geographic variables for Nyanza Province, Kenya.
doi:10.1371/journal.pone.0071635.g002

Figure 3. Predicted S. mansoni prevalence in Nyanza Province, Kenya.
doi:10.1371/journal.pone.0071635.g003
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tation is the fact that our study occurred in a relatively

homogenous area, which meant that there was little variability

within several of the environmental, geographic, and socioeco-

nomic variables, including altitude and HII, incorporated into our

model. While some of these variables may affect schistosomiasis

transmission, our model may not have detected the effects due to

lack of variability within our study site. Lastly, our S. mansoni

prevalence data rely on the accuracy of Kato-Katz tests performed

on stool samples from the enrolled school children. Although this

test is a widely accepted method for determining S. mansoni

prevalence rates, it is relatively insensitive. Incorrect estimates of

school schistosomiasis prevalence rates would lead to inaccuracies

in our model.

Further studies would help us to gain a clearer understanding of

the interaction between environmental, human, snail vector, and

parasite features in Nyanza Province. Research aimed at

investigating year to year schistosomiasis transmission would

enable us to better define which environmental factors are strongly

Table 1. Results of univariable and multivariable Poisson regression analyses for S.mansoni summarized by prevalence ratios (PR)
and 95% confidence intervals (CI).

Night LST (6C)
#17.410
17.423–18.110
18.115–18.524
.18.524

0.77(0.60,0.98) 0.0382
0.77(0.60,0.98) 0.0355
1.13(0.91,1.41) 0.2803

NDVI2

#0.46570
0.46571–0.51283
0.51328–0.56498
.0.56498

0.90(0.73,1.11) 0.3190
0.65(0.51,0.81) 0.0002
0.52(0.41,0.67) ,0.0001

Human Influence Index
18
22
.26

0.75(0.62,0.91) 0.0034
0.69(0.54,0.87) 0.0023

Rainfall (monthly, mm)
#1.31
1.33 - 2.99
3.00 - 6.10
.6.10

0.80(0.70,0.91) 0.0008
0.56(0.49,0.64) ,0.0001
0.47(0.40,0.56) ,0.0001

0.80(0.70,0.91) 0.0008
0.56(0.49,0.64) ,0.0001
0.47(0.40,0.56) ,0.0001

0.80(0.70,0.91) 0.0008
0.56(0.49,0.64) ,0.0001
0.47(0.40,0.56) ,0.0001

Soil pH
#5.3
5.4–6.3
6.4–6.5
.6.5

2.09(1.65,2.66) ,0.0001
1.60(1.22,2.09) 0.0006
1.80(1.39,2.34) ,0.0001

Soil texture class
Coarse
Fine
Medium Fine
Very Fine

1.68(1.33,2.13) ,0.0001
1.19(0.93,1.53) 0.1738
0.99(0.75,1.31) 0.9698

Soil bulk density (kg/dm3)
#1.21
1.22–1.30
1.33
.1.33

1.09(0.88,1.37) 0.4260
1.38(0.87,2.10) 0.1502
1.91(1.52,2.41) ,0.0110

Soil water capacity (cm/m)
#8
9–12
13–14
.14

0.51(0.40,0.64) ,0.0001
1.06(0.87,1.28) 0.5563
0.68(0.51,0.91) 0.0110

Population, 2010 (people per cell(1 km61 km))
#73
74–226
228–424
.424

0.68(o.54,0.85) 0.0011
0.62(0.49,0.79) ,0.0001
0.75(0.60,0.93) 0.0099

Agricultural land use
No
Yes

0.74(0.50,1.17) 0.1686

Altitude (m)
#1153
1153.3–1180.0
1180.1–1212.11
.1212.1

1.10(0.88,1.36) 0.4117
0.95(0.76,1.19) 0.6523
0.56(0.43,0.72) ,0.0001

1Land surface temperature.
2Normalized difference vegetation index.
doi:10.1371/journal.pone.0071635.t001

Geospatial Modeling for S. mansoni Prevalence

PLOS ONE | www.plosone.org 7 August 2013 | Volume 8 | Issue 8 | e71635



correlated with higher S. mansoni prevalence rates over time.

Because no previous mass treatment for schistosomiasis was

administered in our study area, our model represents the lifetime

aggregation of infection in the study participants and may thereby

underrepresent some of the relevant ecologic factors in the final

statistical model. Complete mapping of snail habitats around the

Kenyan border of Lake Victoria would assist us in defining

conditions that permit snail habitats to thrive and are conducive

for parasite transmission to occur. Incorporating S. hematobium and

soil-transmitted helminthes prevalence data into the model would

help to gain an understanding of how the prevalence of other

parasitic diseases is influenced by environmental and geographic

variables. Validation of our model in other settings is needed to

determine if our results our generalizable in other schistosomiasis

endemic areas.

Our research has demonstrated that specific environmental and

geographic variables, distance to Lake Victoria, day LST, and

monthly rainfall, are significantly associated with S. mansoni

prevalence in Nyanza Province, Kenya. Maps generated from

models that incorporate geographic and environmental data can

provide schistosomiasis control programs with a cost effective tool

to determine areas where they should focus control program

efforts. Implementation of efficient control campaigns will

ultimately lead to a decrease in human morbidity and mortality

due to schistosomiasis.
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