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Abstract

With a few exceptions, vaccines for viruses that cause hemorrhagic fever remain unavailable or
lack well-documented efficacy. In the past decade this has not been due to a lack of the ability to
develop vaccine platforms against highly pathogenic viruses, but rather the lack of will/interest to
invest in platforms that have the potential to become successful vaccines. The two exceptions to
this are vaccines against Dengue virus and Rift Valley Fever virus, which recently have seen
significant progress in putting forward new and improved vaccines, respectively. Experimental
vaccines for filoviruses and Lassa virus do exist but are hindered by a lack of financial interest and
only partially or ill-defined correlates/mechanisms of protection that could be assessed in clinical
trials.

Introduction

Several families of RNA viruses have members that can cause viral hemorrhagic fever
(VHF) in humans: Arenaviruses, Bunyaviruses, Filoviruses, Flaviviruses and possibly a
newly discovered not yet isolated Rhabdovirus [1]. Live-attenuated and inactivated whole
virus vaccines are available for some VHFs and in some cases these vaccines are highly
effective and in widespread use within specific countries. However, regulatory procedures
usually mean they are unavailable outside of the source country as they often cannot meet
the requirements to proceed to either clinical trials or licensing in the majority of western
countries. Globalization, international travel and climate change are increasing the number
of individuals at risk for VHFs, suggesting that at some point the mechanisms for moving
vaccines against VHFs to clinical use are going to have to change.

While most VHFs can be considered neglected tropical diseases, the combined public health
impact of all VHFs combined is substantial. While the total number of lab confirmed VHF
cases is relatively small, there are an estimated 100 million cases of Dengue virus (DENV)
infection per year, with approximately 500,000 infections from all other VHFs combined
(Figure 1). Moreover, more than a third of the world's population lives in areas that are at
risk for VHFs (Figure 2). In the case of tick-transmitted viruses, incidence levels are less
likely to increase quickly; however, the identification of severe fever with thrombocytopenia
syndrome virus (SFTSV) in China in 2009 and its subsequent identification in Japan in 2012
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serves as a reminder that novel viruses continue to emerge [2]. With the expansion of tick
ranges due to climate change further spread of viruses and the emergence of novel viruses is
possible. More concerning is the spread of mosquitos that are capable of transmitting
DENV, yellow fever virus (YFV) and rift valley fever virus (RVFV). Given their already
significant public and animal health impact and their potential for spread, more resources
should be devoted to pushing proven experimental vaccines into clinical trials.

Arenaviruses

Old world arenaviruses (OWA) that result in VHF include Lassa virus (LASV) and Lujo
virus. Lujo virus has recently been identified as a new genetically distinct OWA; however,
no vaccines have been developed to date [3]. LASV remains one of the most neglected of
the tropical viral diseases and next to DENV and YFV has the most significant impact on
human health. LASV is endemic to West Africa with an estimated 300,000 infections per
year and fatality rate of approximately 2% [4]. It is transmitted to humans via its rodent
reservoir Mastomys natalensis through inhalation of contaminated droplets/dust or ingestion
of contaminated food (Table 1) [4]. Currently there are no licensed vaccines for the
prevention of LASV. A single-dose vaccine would be ideal for use in endemic areas as the
infrastructure in these regions is limited [5]. For LASV it is thought that cell-mediated
immunity plays a major role in recovery and protection, thus favoring the development of
live-attenuated vaccines [5].

While inactivated, peptide epitope and alphavirus replicon-based vaccines have been
generated for LASV; the utility of these in nonhuman primate model is lacking [5]. A live-
attenuated vaccine based on recombinant vesicular stomatitis virus (rVSV) expressing the
glycoprotein was protective in cynomolgus macaques; however, the correlates of protection
have not been established [6]. Virus-like particles containing the glycoprotein, nucleoprotein
and Z matrix protein were immunogenic in mice but efficacy data are not available [7].

A LASV/Mopeia virus reassortant (ML29) containing the glycoprotein and nucleoprotein of
LASV and the RNA polymerase and zinc-binding protein of Mopeia virus, a related but
apathogenic arenavirus, was protective in marmosets [8]. In guinea pigs, ML29 provided
protection against challenge from genetically diverse LASV isolates and also provided 80%
protection when administered 48h post-infection [5]. Furthermore, ML29 has recently been
shown not to cause disease in Simian immunodeficiency virus-infected rhesus macaques,
supporting its safety [9]. The YFV vaccine strain 17D has also been genetically manipulated
to express the LASV glycoprotein as a soluble product; and while it protected 80% of guinea
pigs [10] it completely failed to protect marmosets and is genetically unstable [5].

New world arenaviruses (NWA) that result in VHF include the following viruses and their
respective disease: Junin virus (Argentine HF), Machupo virus (Bolivian HF), Guanarito
virus (Venezuelan HF), Sabia virus (Brazilian HF) and Chapare virus (not defined). Each
virus has its own unique rodent reservoir (Table 1). Together they cause thousands of cases
per year with up to a 20% case-fatality rate (Figure 1) [11]. A live-attenuated version of
Junin virus, called Candid#1, is used in Argentina but is not recommended for use in
pregnant women and children [12]. This vaccine represents a good example of a successful
national/local vaccine that has not been approved for use in other countries. Molecular
characterization into the attenuation of Candid#1 has indicated that mutations in
glycoprotein G2 are responsible for its attenuation in mice [13]. An alphavirus replicon
expressing the Junin glycoprotein provided protection following two immunizations in
guinea pigs [14]. Junin virus-like particles (VLPs) containing Z protein were immunogenic
in mice, but have been used to demonstrate efficacy from challenge [15]. Experimental
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vaccines for the other NWA are not available and partial cross-protection with Candid#1 has
only been reported for Machupo virus but need further evaluation [12].

Bunyaviruses

Crimean-Congo Hemorrhagic Fever Virus (CCHFV) is a tick-borne Nairovirus that is
distributed throughout Asia, the Middle East, south-eastern Europe, the Balkans and Africa
(Figure 2). It can be transmitted directly through tick bites (main vector Hyalomma sp.) or
through contact with tissues or blood from infected animal and patients (Table 1). Cattle,
sheep, horses, goats and swine are susceptible to CCHFV as are small wild-life species such
as hedgehogs and hares. Despite its wide distribution, historically CCHFV has caused only
small outbreaks [16]; however, outbreaks have been occurring with increasing frequency
and size in the past decade especially in Turkey (>5000 confirmed cases since 2002), Iran
and the Balkans (Figures 1 & 2) [17].

Currently there is a chloroform/heat inactivated suckling mouse brain derived vaccine. It is
used exclusively in Bulgaria in higher risk individuals where it has resulted in a four-fold
reduction in the number of reported CCHFV cases [18]. This vaccine is not approved in
other countries. Recently, it has been shown that vaccination with the CCHFV glycoproteins
Gn and Gc in either a DNA vaccine [19] or purified from transgenic plants induced antibody
responses in mice [20]; however, due to a lack of an animal model protection could not be
determined. This limitation has recently been overcome with the development of two
immunocompromised adult mouse models (STAT-17~ and IFNAR™).

Old world hantavirus (HFRS/NE)

The old world hantaviruses (Hantaan, Seoul, Puumala and Dobrava viruses) are the
causative agent of hemorrhagic fever with renal syndrome (HFRS). While hantavirus
distribution is considered to be worldwide, HFRS-causing hantaviruses appear to be
restricted to Asia and Eastern Russia, although less severe forms termed nephropathia
epidemica (NE) are found in Europe. China alone has recorded over 1.5 million cases of
HFRS with 46,000 deaths in the last 60 years (Figure 1 & 2) [21]. In contrast to the other
bunyaviruses that cause hemorrhagic fever, these viruses are rodent-borne and transmission
is through aerosol exposure to urine, feces or saliva (Table 1) [22].

There are multiple different inactivated vaccines that are currently in use. A formalin-
inactivated Korean Hantaan virus derived from suckling mouse brain (Hantavax) elicits a
good humoral immune response, but the protective efficacy has not been established despite
wide-spread use [23]. Cell culture derived inactivated Hantaan or Seoul virus vaccines have
been used in Korea, North Korea and China [24]. A formalin-inactivated bivalent vaccine
containing both Hantaan and Seoul viruses derived from Syrian Golden hamster kidney cells
has also been produced and used in China [25]. Hantavax and the bivalent vaccine elicited
positive antibody response in 97% of individuals one month after booster (75% of
individuals have neutralizing response). This response waned over one year to
approximately 40% with a positive antibody response which was returned to near 100%
following a booster [26]. The vaccines used in Korea and China appear to have reduced the
number of HFRS cases since implementation [21,26,27]. DNA vaccines for Hantaan and
Puumala have also been tested in human trials and elicited good antibody responses in
approximately 50% of recipients [28].

Rift Valley Fever virus (RVFV) is a mosquito-borne Phlebovirus that has spread across
most of Africa and into the Arabian Peninsula (Figure 2) [29]. Given the ability of RVFV to
use multiple mosquito vectors (Aedes, Culex, Anopheles sp. and other species), some of
which are present in Europe and North America, and its wide host range (sheep, cattle,

Curr Opin Virol. Author manuscript; available in PMC 2014 June 15.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Falzarano and Feldmann Page 4

goats, water buffalo and humans) further spread out of Africa/Arabia is certainly possible
(Table 1) [30]. Outbreaks have resulted in tens to hundreds of thousands of human cases
(Figure 1) and affected millions of livestock. Ruminant livestock, especially sheep and
cattle, can have up to 70% neonatal mortality and 20-30% adult mortality [29]. Human cases
are typically self-limiting, but 1-2% of cases involve more serious syndromes with a case-
fatality rate of 10-20% in these individuals [29]. Contact with infected animal tissue and
fluids, is thought to be a significant risk factor for severe and fatal human infections.
Therefore, vaccination of livestock appears to be an ideal intervention point for preventing
human disease and reducing the economic impact of RVFV.

Currently, there are no approved vaccines against RVFV for general use in humans,
although the live-attenuated MP-12 vaccine has been used [31]; however, there are multiple
livestock vaccines that are used in endemic regions and during outbreaks [29]. In order to be
able to export animals it is essential to be able to serologically differentiate between infected
and vaccinated animals (DIVA). This has further complicated vaccine development, in
addition to the limitations of currently used vaccines including requirement for multiple
doses, difficulties in manufacturing or post-vaccination abortion and teratogenicity [31].
Multiple live-attenuated vaccines are currently under development for use in livestock. A
derivative of Clone 13 named R566, which contains the S segment of Clone 13 and the M
and L segments of MP-12, has been developed; however, it may have reduced efficacy
compared to Clone 13 [32]. Recombinant strain ZH501, lacking both NSs and NSm, was
also protective, did not appear to be teratogenic and fulfills DIVA [33].

Alphavirus-based vaccines have also been developed using Sindbis and Venezuelan equine
encephalitis virus replicons expressing Gn or Gn/Gc [34-36]. Other attenuated virus vectors
including vaccinia [37] and Newcastle Disease virus [38] expressing Gn/Gc provided
protection in mice and sheep, respectively. Sheep were protected against both Lumpy skin
disease virus and RVFV challenge when vaccinated with an attenuated Lumpy skin disease
virus strain of Capripoxvirus expressing Gn and Gc or RVFV [39,40]. VLPs with [41,42] or
without the nucleocapsid [43] protect mice but require multiple doses. A subunit vaccine
containing purified Gn ectodomain was produced that has been tested in mice and lambs
with success [38]. Vaccine induced neutralizing antibody responses (against Gn/Gc) appear
to be of primary importance for protection against subsequent RVFV challenge [38].

Filoviruses

Ebola virus (EBOV) and Marburg virus (MARV) cause unpredictable outbreaks of
severe VHF in humans and non-human primates in equatorial Africa (Figures 1 & 2)
[44,45]. Transmission is typically due to direct contact with blood, secretions or tissues from
infected patients or animals; although fruit bats are suspected to be the reservoir [44,45].
Case-fatality rates vary by virus species and strain but can be as high as 90% (Table 1)
[44,45]. Multiple experimental vaccine platforms have demonstrated efficacy in the gold-
standard macaque models following homologous challenge. This has included DNA/
recombinant Adenovirus-5 (rAd5) [46], rVSV [47] and recombinant human parainfluenza
virus-3 (rHPIV3) [48] all expressing the glycoprotein. rVSV has also demonstrated efficacy
when used up to 48 hours post-infection [49]. With this success, the focus has shifted
towards delineating the correlates/mechanisms of protection and generating multivalent
vaccines against the most relevant species.

Currently, there are four human pathogenic EBOV and one MARYV species. Generally, there
is no cross-protection between species following vaccination; however, there is cross-
protection within a species. As the individual filovirus species are not geographically
contained, attempts to generate a single vaccine that would be cross-protective against
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multiple species are being developed [50]. A single-injection blended vaccine composed of
multiple rVSV vaccines expressing different filovirus glycoproteins independently,
protected macaques from challenge against any of the species included in the vaccine [49].
A two injection pan-filovirus blended complex adenovirus (CAdVax) expressing multiple
glycoproteins and nucleoproteins was also protective against challenge from the included
viruses [51]. Similarly, a multivalent vaccine candidate (EBO7) expressing the
glycoproteins of two EBOV species in CAdVax provided protection against challenge with
either species [52].

Both a blended DNA vaccine containing glycoproteins from two EBOV species and the
glycoprotein and nucleoprotein form a single species and the rAd5-ZEBOV GP vaccine
were shown to be safe in clinical trials [53]. For the rAd5 vaccine, where T-cell responses
have been reported as the mechanism of protection [54], less than half of individuals elicited
a desirable immune response [55]. Pre-existing immunity has been a concern for the rAd5
and rHPIV3 platforms; however, airway delivery of rAd5 ZEBOV GP can circumvent pre-
existing immunity and confer complete protection in macaques [56]. Despite presumed
safety concerns, the rVSV-based vaccine has been shown to cause not be neurovirulent [57],
nor side effects in immunocompromised simian-human immunodeficiency virus (SHIV)-
infected macaques [49]. Moreover, 67% of SHIV-infected macaques were protected from
subsequent challenge, indicating rVVSV should be safe and could even provide protection in
immunocompromised individuals. For the rAd5, rVSV and rHPIV3 platforms, virus
glycoprotein-specific total 1gG response appears to correlate with protection in survivors
[46-49]. 1gG titers are predictive for survival in the rAd5 platform, despite data showing that
T cell subsets (CD8+) were required for the mechanism of immunity [54,58]. Furthermore,
antibodies were shown to play a critical role in protection for the r\VSV vaccine [59].

Flaviviruses

Among the VHFs, Dengue Virus (DENV) has the single largest impact on public health,
causing an estimated 50-100 million infections per year in over 100 countries with 500,000
people requiring hospitalization resulting in 12,500 deaths for severe dengue (Table 1;
Figures 1 & 2). It is currently estimated that 50% of the world's population is at risk for
infection with DENV. Vaccines for DENV have seen a recent surge in potential intervention
strategies. Multiple vaccines for DENV are currently under investigation but due to the
extensiveness of this effort these are reviewed elsewhere (cross-reference to DENV review).
Live-attenuated DENV has been found to be genetically unstable and frequently causes
dengue-like syndromes, recombinant virus vectors expressing dengue envelope proteins,
purified inactivated viruses, recombinant subunit vaccines, VLPs and DNA vaccines have
all been attempted [60,61].

A live-attenuated tetravalent vaccine that expresses the pre-membrane and envelope genes
of each of the four DENV serotypes [62] within the 17D YFV vaccine has recently been
tested in a clinical trial in healthy Thai children with an overall efficacy of ~30% [63]. This
poor finding was a result of very low efficacy against DENV 2, which was also the prevalent
serotype during the study. Encouragingly, despite the concern over incomplete immune
response against all four serotypes leading to disease enhancement; this was not observed,
even with the incomplete protection against DENV 2. The lack of efficacy against DENV 2
has yet to be explained given that there was a satisfactory immune response to the serotype.
The brings in to question whether a balanced immune response to all four DENV serotypes
as assessed by neutralizing antibodies is a correct assumption for protection.

Kyasanur forest disease virus (KFDV) and Omsk hemorrhagic fever virus (OHFV) are
related to the tick-borne encephalitis (TBE) serocomplex of viruses; however, infection in
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humans tends to be characterized by hemorrhagic syndrome whereas other members of the
TBE complex result in primarily neurological manifestations. There are an estimated
400-500 cases per year of KFDV in India with a case-fatality rate of 1-3% (Figures 1 & 2)
[64]. OHFV occurs in some regions of western Siberia in Russia with case-fatality rates
between 0.4 and 2.5% (Figures 1 & 2) [65]. The probable tick vector for KFDV has been
identified as Hemaphysalis sp.; however, other species have been demonstrated to be
capable of KFDV transmission (Table 1). KFDV was thought to be localized to Karnataka
State, but serosurveys have suggested cases also occur in other areas of India and the
Andaman Islands. Moreover, variants of KFDV have been reported to cause disease in
China, while the closely related Alkhurma hemorrhagic fever virus (AHFV) has also been
reported in Saudi Arabia, Egypt and Sudan. Transmission of OHFV is mainly via
Dermacentor reticulatus, however, humans are mainly infected following contact with
infected muskrats (Ondatra zibethicus) (Table 1). Person-to-person transmission has not
been noted [64,65].

Currently a formalin-inactivated chick embryo fibroblast-derived vaccine against KFDV is
used on a two-dose schedule with boosts at 6-9 months and then every 5 years. The vaccine
appears to be well-tolerated and provides a good level of protection (0.027% vs. 0.86%
incidence) [64]. The TBEV vaccines used in Europe and Russia may provide protection
against KFDV; however, they have not been tested in KFDV regions. Recent data supports
that humans vaccinated with the TBEV vaccine FSME-IMMUN have cross-reactive
neutralizing antibody responses against OHFV, albeit at a lower titer than against related
TBEV viruses [66]. Data from mouse and African green monkeys found that, while the
TBEV vaccine did not prevent OHFV infection, it reduced the viral spread and alterations in
the blood [67], suggesting that this widely used vaccine may be useful against OHFV.
Further studies would be necessary to demonstrate this, but given the safety profile of the
TBEYV vaccine there does not appear to any reason why this vaccine could not be used in the
event of an OHFV outbreak [68].

Yellow fever virus (YFV) is a mosquito-borne flavivirus that is endemic and epidemic in
South America and Sub-Saharan Africa (Table 1; Figure 2). It is a bi-phasic disease that
initially causes flu-like symptoms which can progress to a toxic phase with increased
bleeding tendency, liver damage and jaundice. There are approximately 1500 reported cases
annually with a 20-50% case-fatality rate, but it is estimated that up to 200,000 cases may
occur annually with a 15% case-fatality rate (Figure 1) [69,70]. Highly efficacious, live-
attenuated strains of YFV, known as 17D-204 or 17DD, both of which are produced in eggs,
are currently used worldwide for vaccination. Its use however, is contraindicated in persons
who are immunocompromised, infants under 6 months and persons with allergies to eggs.
The vaccine can cause both neurotropic and viscerotropic disease, which generally occurs
after the first dose. The viscerotropic form of disease has a case-fatality rate of 65% with the
incidence rising with increasing age of the vaccinee [71]. The reported rate of adverse effect
of the 17D vaccine is higher (0.4-0.8/100,000) than for both the smallpox (0.29/100,000)
and the oral polio (0.11/100,000), which are no longer widely used due to safety concerns
[71].

For YFV, the effectiveness of the current vaccine is not in question but the development of
vaccine with a better safety profile is currently the goal. The prME gene which encodes the
membrane and envelope proteins from 17D was inserted into non-replicating modified
vaccinia virus Ankara and the D4R-defective vaccinia virus and subsequently shown to
provide protection in a mouse model of YFV [72]. A B-propiolactone-inactivated whole
YFV vaccine (XRX-001) produced in Vero cells has shown to be efficacious in animal
models and humans [74,75]. Given the large population that requires vaccination against

Curr Opin Virol. Author manuscript; available in PMC 2014 June 15.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Falzarano and Feldmann Page 7

Summary

YFV, transitioning to a safer vaccine, especially in groups that are at higher risk for
complications should be considered.

Given the combined global impact of all VHFs, the lack of urgency to develop vaccines to
these viruses is somewhat surprising. Global travel and expanding vector ranges due to
climate change are driving expansion of the range of some of these viruses. Experimental
vaccine platforms that have extensive evaluation in animal models certainly exist for several
VHFs, but are not close to being used in clinical trials (i.e. LASV, EBOV and MARV).
Current clinical and field trials of DENV and RVFV vaccines are exciting and demonstrate
that when a large economic need is present vaccine trials are possible. A mechanism to
address vaccines that have less of an immediate economic impact needs to be developed.
The success of the Candid#1 as a vaccine for Argentine HF is the example of how a vaccine
of limited utility can be generated with governmental support. As the correlate/mechanisms
of protection become better defined for the different VHF vaccine approaches establishing
clinical trials (especially phase Il and I11) that meet current standards should be easier and
less controversial.
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Figure 1. Estimated global burden of viral hemorrhagic fevers

The number of estimated cases per year of Dengue virus (DENV), Lassa virus (LASV),
Yellow fever virus (YFV), hemorrhagic fever with renal syndrome viruses (HFRSV), New-
world arenaviruses (NWA), Rift Valley fever virus (RVFV), Crimean-Congo hemorrhagic
fever virus (CCHFV), Kyasanur Forest disease virus (KFDV), Omsk hemorrhagic fever
virus (OHFV), Ebola (EBOV) and Marburg virus (MARYV), and Severe fever with
thrombocytopenia syndrome virus (SFTSV).
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Figure 2. Risk zonesfor hemorrhagic fever viruses

Regions with current risk or past occurrence of the following viral hemorrhagic fevers:
Dengue hemorrhagic fever (DHF), Crimean-Congo hemorrhagic fever (CCHF), Omsk
hemorrhagic fever (OHF), Rift Valley hemorrhagic fever (RVF), Yellow fever (YF), Severe
fever with thrombocytopenia syndrome (SFTS), Kyasanur Forest disease (KFD).
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