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Abstract
Susceptibility to addictive behaviors has been related to both increases and decreases in striatal
function. Both profiles have been reported in humans as well as in animal models. Yet, the
mechanisms underlying these opposing effects and the manner in which they relate to the
behavioral development and expression of addiction remain unclear. In the present review of
human studies, we describe a number of factors that could influence whether striatal hyper- or
hypo-function is observed and propose a model that integrates the influence of these opposite
responses on the expression of addiction related behaviors. Central to this model is the role played
by the presence versus absence of addiction related cues and their ability to regulate responding to
abused drugs and other rewards. Striatal function and incentive motivational states are increased in
the presence of these cues and decreased in their absence. Alternations between these states might
account for the progressive narrowing of interests as addictions develop and point to relevant
processes to target in treatment.

Keywords
Basal ganglia; Conditioning; Dopamine; Drug addiction; Drug self-administration; Functional
magnetic resonance imaging; Positron emission tomography; Sensitization; Striatum

1. Introduction
Two frequently contrasted theories propose that the development of addiction related
behaviors reflects the hyper- versus hypo-activation of limbic reward systems. The debate is
not new (e.g., Wikler, 1948, 1973; Vogel et al., 1948). Nor are the positions irreconcilable.
Recent evidence raises the possibility that the expression of hyper- versus hypo-active
incentive motivational states might reflect, in significant part, the presence versus absence of
addiction related cues (Leyton and Vezina, 2012; see also Anagnostaras and Robinson,
1996; Anagnostaras et al., 2002; Stewart and Vezina, 1988, 1991; Vezina and Leyton,
2009). The present review focuses on the evidence for these alternating states in humans, the
possibility that individuals may differ in their susceptibility to them, and the role that
addiction related cues play in their expression. Although considered in the human clinical
setting, many of the ideas discussed here have been tested over the last thirty years in some
detail in preclinical drug sensitization experiments. The processes identified in these studies
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could have particular bearing for our understanding of the role played by addiction related
cues in the generation of subjective and behavioral states in humans. We thus begin with a
brief review of this literature before turning to a systematic treatment of the evidence in
humans.

2. Preclinical studies in laboratory animals
Psychostimulant drugs like amphetamine, cocaine, and nicotine have long been known to
produce their behavioral activating and motivating effects by stimulating the
mesoaccumbens dopamine (DA) system. Many preclinical studies, mostly in rodents, have
studied the effects of repeated exposure to these drugs on biochemistry and behavior. Of the
different consequences of drug exposure assessed, two have emerged that have particular
relevance for our understanding of excessive drug taking: the development of sensitization
to the behavioral stimulant and incentive motivational effects of drugs and the formation of
conditioned associations between these drug effects and various environmental stimuli.
Although separate phenomena, these two consequences of drug exposure are known to
interact as outlined below. It is the nature of this interaction that may be particularly
informative for understanding how addiction related cues can influence the generation of
subjective and behavioral states in humans.

An extensive preclinical literature now indicates that repeated intermittent exposure to
psychostimulant drugs enhances not only the locomotor and brain DA activating effects they
produce but more importantly the amount of work animals will emit to obtain and self-
administer the drug (Mendrek et al., 1998; Vezina, 2004; Vezina et al., 2007). These effects
are persistent (they are observed weeks to months after drug exposure in rodents; Hamamura
et al., 1991; Paulson et al., 1991; Suto et al., 2004; Vezina et al., 2002), there is evidence
that they increase in magnitude with the passage of time (Vanderschuren and Kalivas, 2000;
Vezina, 2007), and they are observed following intermittent exposure (Robinson and
Becker, 1986; Zimmer et al., 2012), a pattern often associated with initial exposure to the
drug and initiation of drug use. Together, these findings support the proposal that
sensitization of mesoaccumbens DA neuron reactivity may underlie the transition from
sporadic experimentation to more frequent drug use and substance related problems
(Robinson and Berridge, 1993, 2003).

An equally longstanding preclinical literature supports the importance of conditioned
associations between stimulant drug effects and environmental contextual stimuli in drug
seeking and self-administration (Stewart et al., 1984). The ability of drug paired stimuli to
elicit conditioned locomotion (Stewart and Eikelboom, 1987) and forebrain DA release
(Aragona et al., 2009; Di Ciano et al., 1998; Duvauchelle et al., 2000; Ito et al., 2000) is well
established. Importantly, environmental stimuli previously paired with a psychostimulant
drug slow extinction of responding for the drug (Tran-Nguyen et al., 1998) and reinstate
drug seeking (de Wit and Stewart, 1981) in a manner that parallels their effects on DA
transmission in the nucleus accumbens and amygdala (Weiss et al., 2000). The ability of
these stimuli to reinstate drug seeking is long-lasting (Ciccocioppo et al., 2004) and becomes
more intense with time (Grimm et al., 2001).

Because repeated systemic drug injections are administered in the presence of multiple
environmental stimuli, the conditions are ripe for the simultaneous development of
sensitization and conditioning of stimulant drug effects and for these two forms of plasticity
to interact. While sensitization is known to develop non-associatively (Singer et al., 2009;
Vezina and Stewart, 1990), there is evidence that its expression can come to be controlled by
environmental stimuli previously paired or unpaired with the drug (Anagnostaras and
Robinson, 1996; Anagnostaras et al., 2002; Stewart and Vezina, 1988, 1991; Vezina and
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Leyton, 2009). Thus, rats previously exposed to the drug in one environment exhibit
sensitized behavioral responses in this environment while rats previously exposed to the
drug elsewhere do not. Indeed, rats that previously received the drug elsewhere show levels
of responding on tests for sensitization that are comparable to those of rats administered the
drug for the first time. This control over the expression of behavioral sensitization may be
mediated, at least for contextual stimuli, by activity in a ventral hippocampus - nucleus
accumbens – ventral pallidum – ventral tegmental area neuronal loop that regulates DA
neuron firing in the latter site (Lodge and Grace, 2008).

Much of the evidence for the ability of environmental stimuli to control the expression of
sensitization comes from experiments measuring locomotion (above references) although
similar effects have been reported for drug-induced nucleus accumbens DA over-flow
(Guillory et al., 2006; Reid et al., 1996). Importantly, such conditioned environmental
stimuli have also been shown to control the expression of enhanced amphetamine self-
administration and drug-induced reinstatement in rats previously exposed to nicotine
(Cortright et al., 2012), again underscoring the critical role these stimuli play in the
expression of enhanced drug self-administration and drug seeking.

The above preclinical findings notwithstanding, there has been some debate as to their
generalizability to the human clinical arena. For example, no change or even reduced rather
than augmented striatal responses to drugs have been reported in a number of influential
studies of psychostimulant exposure conducted in drug self-administering non-human
primates and addicted human subjects (e.g., Bradberry, 2007; Volkow et al., 1997). This has
led to the proposal that increased DA reactivity associated with drug sensitization is of
limited value to the human condition as a mechanism for drug abuse and other forms of
pathology. We assess the merits of this argument below by reviewing the results of a large
number of studies aimed at deciphering the effects of drugs and drug associated cues in
humans. A number of factors emerge that may have potential importance for understanding
how motivated behaviors are generated. Central among these is the presence versus absence
of addiction related cues and their ability to regulate responding to abused drugs and other
rewards. This factor in particular can facilitate the integration of a previously disparate
group of findings in the animal and human literatures alike.

3. Studies in humans: subjective and behavioral states
3.1. Effects of cues

In substance abusers, exposure to stimulant drug associated cues elicits a wide range of
subjective, behavioral and physiological responses (Carter and Tiffany, 1999; Childress et
al., 1988; O’Brien et al., 1990). That these responses are drug-like is consistent with their
ability to elicit incentive motivational states associated with the drug (Stewart et al., 1984;
Robinson and Berridge, 2003)1.

The elicited states include a narrowing of attentional focus toward the rewards and an
increased propensity to pursue and approach them. The critical processes associated with
activity in the striatum need not necessarily be conscious (Fischman, 1989; Tiffany, 1990;
Lamb et al., 1991; Winkielman et al., 2005; Childress et al., 2008; Field et al., 2009;
Perkins, 2009; Berridge, 2012; Waters et al., 2012); conscious craving may be more closely

1Stimuli associated with opiates and ethanol yield a more complex mix of drug-like and drug-opposite effects (Wikler, 1973;
Eikelboom and Stewart, 1982; Stewart et al., 1984; O’Brien et al., 1998; Stewart, 2004). For discussions of how deficit states can
augment incentive motivational states and the salience of appetitive cues, see Toates (1986), Hutcheson et al. (2001), and Berridge
(2012). A role for dysphoric states in the maintenance of stimulant use has also been proposed in opponent process views of drug
taking (Koob and Le Moal, 1997). These states are usually observed soon after prolonged and continuous exposure to drugs but their
subsequent elicitation by conditioned cues has also been proposed to contribute to relapse (Siegel, 1979).
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related to activity in cortical structures (Goldstein et al., 2009; de Lange et al., 2011).
Nonetheless, self-reported craving is a commonly used proxy and ecological momentary
assessments acquired with real-time electronic diaries confirm that exposure to drug cues,
and their elicitation of craving states, commonly occur in the minutes and hours before new
bouts of stimulant drug use (Epstein et al., 2009). Similarly, in laboratory studies, craving
and reward-seeking behavior have been reported to increase following exposure to cues
associated with amphetamine (Culbertson et al., 2010; Tolivar et al., 2010), cocaine
(Childress et al., 1988, 1993), alcohol (George et al., 2001; Bragulat et al., 2008), cigarettes
(Droungas et al., 1995; Carter and Tiffany, 2001; Wray et al., 2011), heroin (Fatseas et al.,
2011; Zhao et al., 2012a), and natural rewards such as food (Jansen, 1998; Kelley and
Berridge, 2002; Mahler and de Wit, 2010) and sex (Conaglen and Evans, 2006; Kim and
Zauberman, in press).

Cues have more potent effects when subjects know that there will soon be an opportunity to
use the drug (Carter and Tiffany, 2001; Dar et al., 2005; Juliano and Brandon, 1998). These,
of course, are the usual circumstances under which the cues appear in the natural
environment. A striking illustration of this phenomenon was recently reported in flight
attendants. Smokers on either short (3–5.5 h) or long flights (8–13 h) developed cigarette
cravings toward the end of the trip. Cravings at the end of the short flight were as strong as
cravings at the end of the long flight and substantially higher than those seen at the shorter
time-point during the long flight (Dar et al., 2010).

Drug related cues can also elicit behavioral effects. These include conditioned place
preferences (Childs and de Wit, 2009, in press) and attentional biases (Cox et al., 2006;
Hogarth et al., 2008; Field et al., 2009; Little et al., 2012), conditioned reinforcement (Foltin
and Haney, 2000), accelerated initiation of drug use (Herman, 1974), as well as increased
drug seeking (Panlilio et al., 2005; Hogarth et al., 2007) and self-administration (Herman,
1974; Droungas et al., 1995; Mucha et al., 1998; Hogarth et al., 2010).

3.2. Effects of drugs
As discussed above, a large animal literature indicates that the repeated administration of
abused drugs can alter their effects. In humans, the best established change observed
following repeated drug exposure has been transient tolerance to the subjective effects of
stimulants (Brauer et al., 1996) and to the depressant effects of opiates and benzodiazepines
(Hug, 1972)2. By comparison, the possibility that drug sensitization might occur in humans
has been considered more controversial. Initial evidence came from observations made in
the U.S. and Japan following the Second World War during episodes of heightened abuse of
amphetamine-like drugs. Retrospective histories from this period suggested that repeated
exposure to high doses of amphetamines (typically 100 mg or more) could lead to psychotic
symptoms, including hallucinations and delusions (Connell, 1958; Ellinwood, 1967; Griffith
et al., 1972; Sato, 1992; Sato et al., 1992). These effects could be reproduced in laboratory
settings (Angrist & Gershon, 1970; Bell, 1973). The time course leading to the first
psychotic episode was found to vary between individuals, an effect possibly related to dose,
frequency of use, the co-abuse of other substances, and the presence of pre-existing
vulnerability traits. Strikingly, periods of substance abuse were followed in some individuals
by a long-lasting susceptibility to the re-emergence of psychotic symptoms after re-exposure
to a much lower dose of the drug (Sato, 1992; Sato et al., 1992).

2Pharmacological tolerance refers to a decrease in a drug’s potency or efficacy (i.e., maximal effect) with repeated exposure.
Conversely, sensitization, also labeled reverse-tolerance, refers to an increase in drug potency or efficacy (sometimes indicated as a
significant response to a previously ineffective dose). Both terms describe empirical observations; in and of themselves they do not
connote mechanism.
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Although intriguing, the above reports did not provide direct experimental evidence that
repeated drug exposure could produce sensitization-like phenomena in humans. This
evidence has been reported only more recently. In six of seven controlled laboratory studies
in which participants received a minimum of 20 mg (p.o.) of d-amphetamine per session,
sensitization of the drug’s energizing effects was observed (Table 1). In the most recent
study, evidence that this effect could come under environmental control was also seen.
Subjects who received two doses of d-amphetamine in the same room reported a sensitized
response to the second dose whereas those who received the second dose in a distinctively
different room showed, if anything, evidence of tolerance (Childs and de Wit, in press).

It is noteworthy that the time courses for sensitization- and tolerance-like phenomena are
different3. Whereas sensitization is a long-lasting, possibly even permanent phenomenon
(Robinson and Becker, 1986; Boileau et al., 2006), tolerance is more transient (Vogel et al.,
1948; Hug, 1972; Brauer et al., 1996). Indeed, a major precipitant of drug overdose and
mortality stems from the ability of drug seeking states to be elicited long after tolerance has
dissipated (Merrall et al., 2010).

3.3. Effects of cues and cues + drugs in different subject populations
In the sections below, we review the effects of drug cues and cues plus drugs. These effects
are examined separately in healthy subjects without addictions, in subjects at risk for
addictions, and in subjects with substance use disorders. Distinguishing between these
populations is necessary as drugs and drug cues elicit different effects in different
individuals. Since the effects of both acute and repeated drug exposure can interact with the
particular characteristics an individual presents, they can provide insights into the factors
that regulate the development and expression of motivated behaviors directed at obtaining
and self-administering drugs of abuse. Indeed, as often noted, only some of the individuals
who experiment with drugs develop a substance use disorder (Tsuang et al., 1998;
Zinkernagel et al., 2001; Anthony, 2002; Agrawal et al., 2012; Kendler et al., 2012). Factors
that have been identified to influence progression to addiction include personality traits
(Ayduk et al., 2000; Conrod et al., 2000; Tarter et al., 2003), early life histories (Hyman et
al., 2006; Enoch et al., 2010), ever-changing socio-cultural norms (Nutt, 2012), individual
differences in drug specific metabolic enzymes (Ferguson and Tyndale, 2011), and
additional heritable factors with unclear mechanisms. An implication of these observations
for the study of addiction and addiction related processes is the need to identify and
characterize effects that might occur preferentially within a subset of individuals (see also
Saunders and Robinson, this issue).

4. Subjects without addictions: striatal activations
4.1. Effects of cues

Exposure to reward related events consistently activates the striatum in healthy humans
(Knutson and Cooper, 2005). This has been studied in greatest detail in relation to monetary
reward. In these studies, numerous types of stimuli are presented. These include (i) familiar
cues that subjects already know are associated with the presence or absence of rewards, (ii)
previously neutral cues that subjects learn about during the study, (iii) cues indicating that a
reward will be presented either after passive waiting or after the emission of an operant
response, and (iv) the reward itself. Each of these features can affect the magnitude of the
striatal response and whether it is observed primarily within the ventral or dorsal striatum
(O’Doherty et al., 2004; Knutson and Cooper, 2005). The focus of the present review is on

3Despite the different time courses for tolerance and sensitization, there can be temporal overlap since each of these adaptations can
occur simultaneously in different systems, as in, for example, those regulating respiration versus those mediating incentive motivation.
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how the magnitude of these striatal responses is influenced by individual and group
differences.

In addition to monetary reward, healthy human subjects have been reported to show striatal
activations following exposure to cues associated with food (Small et al., 2001; Beaver et
al., 2006; Hommer et al., in press; Demos et al., 2012; Tang et al., 2012), sex (Hamann et
al., 2004; Cloutier et al., 2008; Demos et al., 2012), and alcohol (Seo et al., 2011)4. There is
evidence that these fMRI measured cerebral blood flow (CBF) responses may have been
accompanied by an increase in DA release (Box 1). For example, striatal DA release
measured in healthy subjects by positron emission tomography (PET) can correlate with
fMRI measured activations (Schott et al., 2008). More importantly, evidence of DA release
has been observed in healthy human subjects playing video games (Koepp et al., 1998) and
following exposure to cues previously paired with monetary reward (Zald et al., 2004;
Schott et al., 2008; Martin-Soelch et al., 2011; cf, Hakyemez et al., 2008), food (Volkow et
al., 2002; Small et al., 2003), alcohol (Yoder et al., 2009) and amphetamine (Boileau et al.,
2007).

The magnitude of the cue-induced DA response might vary with the expected certainty that
a reward will be obtained. For example, in nonhuman primates, the largest increases in
reward cue-induced DA cell firing are seen under conditions of maximal uncertainty
(Fiorillo et al., 2003). Recent evidence raises the possibility that this effect of uncertainty
can occur in humans as well: patients with Parkinson’s disease exhibit a larger placebo-
induced DA response if they are informed that the chance of receiving L-DOPA medication
is 75% as compared to 100% (Lidstone et al., 2010)5.

4.2. Effects of cues + drugs
As seen in laboratory animals, there is evidence for reciprocal interactions between drugs
and reward related cues with each modulating the response to the other. In healthy human
subjects, this has been observed most clearly in two studies where the dopaminergic effects
of methylphenidate were augmented by the presence of salient appetitive cues (Volkow et
al., 2002, 2004). In the first study, conducted in healthy food-deprived subjects (16–20 h
abstinent), the combination of a low dose of methylphenidate (20 mg, p.o.) and food cues
(visual, olfactory, taste) elicited greater striatal DA release and greater self-reported hunger
than either alone (Volkow et al., 2002). Individual differences in DA release correlated with
self-reported hunger and desire for food. In the second study, methylphenidate (20 mg, p.o.)
elicited measureable striatal DA release only when it was paired with a salient mathematics
task in which subjects could earn a monetary reward. The greater the DA release, the more
interesting subjects reported the task to be (Volkow et al., 2004).

A third study provided the first explicit test of whether repeated drug administration could
lead to DA sensitization in humans (Fig. 1). Healthy subjects were exposed to three doses of
d-amphetamine (0.3 mg/kg, p.o.) on an every other day schedule. Following a two-week
break, a fourth dose was given. The DA response to this fourth dose was significantly
greater than that elicited by the first dose. A fifth dose, given a full year later, yielded an
even larger effect (Boileau et al., 2006). Notably, all doses of d-amphetamine were

4Striatal activations can also occur following monetary losses (Kühn et al., 2011). In this study, participants were 154 14-year old
video gamers. Frequent gamers (>9 h/week) exhibited a larger striatal response to monetary loss as measured by functional magnetic
resonance imaging (fMRI) compared to less frequent gamers. Of note, stimuli indicative of loss are highly salient for gamers. Among
professional gamers, greater striatal activation also predicts faster moves, an effect possibly reflecting an enhanced ability of cues to
engage approach mechanisms (Wan et al., 2011).
5These conditions of uncertain reward delivery simulate a core aspect of gambling. Moreover, in rodents, uncertain reward delivery
can increase a cue’s motivational potency (Robinson and Berridge, 2012) and lead to behavioral sensitization to an amphetamine
challenge (Singer et al., 2012).
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administered in the same environment (the PET apparatus), rendering the results obtained
consistent with environment-specific sensitization. While this study did not determine
whether DA sensitization could also have been expressed if the amphetamine had been
administered elsewhere, two recent studies conducted in non-dependent stimulant drug users
are consistent with the proposal that the presence versus absence of drug associated stimuli
can indeed influence the magnitude of drug-induced DA responses. In the first study,
individual differences in cocaine-induced increases in extracellular DA were predicted by
lifetime histories of stimulant drug use on the street: the greater the past drug use, the greater
the DA response (Cox et al., 2009). In this study, participants prepared, manipulated, and
self-administered the drug in their usual fashion. That is, cocaine associated cues were
clearly present and engaged with. By comparison, in a second very similar study, healthy,
non-dependent stimulant drug users were administered a disguised dose of d-amphetamine.
In this case, individual differences in DA release were negatively correlated with drug use:
the greater the past drug use, the smaller the DA response (Casey et al., 2012). Since similar
effects have been well characterized in studies conducted in laboratory animals
(Anagnostaras and Robinson, 1996; Anagnostaras et al., 2002; Stewart and Vezina, 1988,
1991; Vezina and Leyton, 2009), a tempting though speculative interpretation of these
findings is that the presence versus absence of discrete and contextual drug associated cues
modulated the response to the unconditioned drug stimulus. Thus, the presence of salient
reward related cues might enable enhanced dopaminergic responding to a pharmacological
challenge; the absence of such cues might prevent the expression of enhanced DA
responses.

4.3. Age related differences: implications for development
An emerging literature is drawing attention to differences in striatal responding to reward
related stimuli in adolescents (13–15 years of age) relative to young adults (early 20s). For
example, adolescents have been reported to exhibit larger striatal activation than adults when
presented with a stimulus that signals the opportunity to respond for money (Geier et al.,
2010) and in response to receipt of the reward (Ernst et al., 2005; Galvan et al., 2006).
Moreover, among the adolescents, the greater the striatal response to these cues, the higher
their sensation seeking personality trait scores and self-reported excitement (Bjork et al.,
2008a)6. These age-related responses have been proposed to account for developmental
differences in risk-taking and reward-seeking behaviors (Spear, 2011; Ernst and Fudge,
2009; Somerville et al., 2010). Indeed, there is evidence that these striatal effects have
predictive validity. For example, among healthy undergraduates (n = 58), the larger the
nucleus accumbens response to food cues, the more weight subjects gained at follow-up six
months later; the larger the response to sex cues, the greater the amount of sexual activity
(Demos et al., 2012).

5. Subjects at risk for addictions: striatal activations
Groups of individuals can be categorized according to their risk for addiction. Among the
best established predictors are (i) a dense family history of substance use problems (Dawson
et al., 1992; Merikangas et al., 1998; Stoltenberg et al., 1998), (ii) externalizing behavioral
characteristics and impulsive, sensation seeking personality traits (Krueger, 1999; Kendler et

6There are also conditions when lower striatal responses are observed, although the results reported thus far are complex and the
relevant determining factors remain unclear. For example, lower striatal responses have been observed in adolescents versus adults
evaluating a cue prior to being able to respond to it (Geier et al., 2010). Similarly, while adolescents show larger responses than adults
to rewards (Ernst et al., 2005; Galvan et al., 2006), the gain in striatal response between large versus small rewards ($5 versus 20
cents) has been reported to be less (Bjork et al., 2004). One interpretation is that adolescents exhibit larger striatal responses to
rewards and reward paired cues but smaller responses to more distal cues requiring more elaborate evaluative processes.
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al., 1997, 2003, Tarter et al., 2003), and (iii) subjective and behavioral responses to a drug
challenge (Schuckit, 1980; de Wit and Phillips, 2012).

5.1. Effects of cues
A small literature describes responses to rewards and reward related cues in subjects at risk
for substance use disorders (see Tables 2 and 3). For example, compared to healthy low risk
controls, larger striatal responses have been observed in subjects at familial risk for
alcoholism when performing the Iowa Gambling Task (Acheson et al., 2009) and following
exposure to alcohol odors (Kareken et al., 2004; Oberlin et al., 2012). In comparison, in
studies where unfamiliar or otherwise neutral monetary reward cues were presented, high-
risk populations exhibit smaller striatal responses than healthy controls (Andrews et al.,
2011; Schneider et al., 2012; Yau et al., 2012).

5.2. Effects of cues + drugs
There is evidence that the effects of drugs and drug associated cues can interact in subjects
at risk for addictions. In non-dependent heavy drinking cigarette chippers, for example,
alcohol ingestion was found to increase the striatal response to cigarette cues (King et al.,
2010). Conversely, there is evidence that cues can augment the effects of drugs. In subjects
at elevated risk for addictions, striatal DA responses were augmented relative to low-risk
subjects when the substance was ingested in the usual fashion (Setiawan et al., 2010) but
diminished when the drug was administered in the absence of drug related cues (Casey et al.,
2012). The blunted response reflected both a familial trait and an effect of past drug use: the
greater the lifetime history of drug use, the smaller the DA response (Casey et al., 2012).
The effects of familial trait and past drug use were independent. This was demonstrated in
two ways. First, a control group was included consisting of stimulant drug using subjects
matched on substance use to the high-risk subjects but lacking a family history of drug use
problems. The high risk subjects with a family history of substance use disorders exhibited
lower DA release than either this “low risk” drug using group or stimulant drug naïve
subjects. Second, including drug use histories as a potential confounding variable in the
statistical analyses did not diminish the contribution of family history. That is, both family
and drug use histories produced the same effect but acted as independent contributors.

6. Subjects with substance use disorders: striatal activations
6.1. Effects of cues

Two recent meta-analyses independently concluded that the striatum is consistently
activated by exposure to drug-related cues in subjects meeting diagnostic criteria for
substance use disorders (Chase et al., 2011; Tang et al., 2012). These responses are stable
(Schacht et al., 2011) and elevated, as compared to non-substance abusers. For example,
compared to light social drinkers, dependent drinkers have been reported to exhibit greater
alcohol cue-induced striatal activation (Vollstädt-Klein et al., 2010; Ihssen et al., 2011): the
greater the striatal response, the greater the cue-induced attentional biases (Vollstädt-Klein
et al., 2011) and the more severe the obsessive-compulsive drinking symptoms (Vollstädt-
Klein et al., 2010). Similarly, in a large study of 326 heavy drinkers, the greater the alcohol
cue-induced striatal activation, the greater the severity of alcohol use problems (Claus et al.,
2011)7.

7A recent case study illustrates how increases and decreases in striatal activity can co-vary with drug-seeking behavior and addiction.
A severely alcoholic patient received sessions of transcranial magnetic stimulation (TMS) of the dorsal anterior cingulate cortex.
Regional brain activity and self-reported craving were measured simultaneously. As expected, alcohol cue-induced craving was
associated with increased activity in the nucleus accumbens. Strikingly, TMS decreased both the craving and the cue-induced
activation of the nucleus accumbens, effects that were maintained for three months (De Ridder et al., 2011).
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There is evidence that the above striatal activations may have been accompanied by an
increase in DA release. Changes in PET tracer binding values indicative of striatal DA
release have been observed following exposure to cues associated with cocaine (Volkow et
al., 2006; Wong et al., 2006; Fotros et al., 2012) and heroin (Zijlstra et al., 2008). The
greater the cue-induced DA release, the greater the craving (Volkow et al., 2006; Wong et
al., 2006; Zijlstra et al., 2008; Fotros et al., 2012).

As seen in other populations, there is also evidence in those with substance use disorders
that striatal activations are blunted rather than augmented when addiction related cues are
absent. Compared to control subjects, blunted striatal activations occur in response to
pictures of food in alcoholics (Ihssen et al., 2011) and to unfamiliar or otherwise neutral
monetary reward cues in smokers (Peters et al., 2011) and detoxified alcoholics (Wrase et
al., 2007; Beck et al., 2009; cf Bjork et al., 2008b).

6.2. Effects of cues + drugs
In subjects with substance use disorders, stimulant drug-induced striatal DA responses have
been reported to be markedly reduced when compared to those observed in healthy controls
(Volkow et al., 1997, 2007; Martinez et al., 2005, 2007, 2011, 2012; Wang et al., 2012;
Thompson et al., in press; cf Urban et al., 2012; see Tables 2 and 3). These reductions may
possibly aggravate the clinical picture. The lower the DA response, the greater the stimulant
drug self-administration observed in separate sessions where the drug and its associated cues
were made available (Martinez et al., 2007) and the worse the clinical outcome at follow-up
(Martinez et al., 2011; Wang et al., 2012).

Notably, however, in all of the above studies, DA release was measured in the absence of
drug cues. This raises the possibility that, even in late stage addiction, the reduced DA
responses observed reflect, at least in part, either the absence of drug associated stimuli
necessary to enable the expression of enhanced dopaminergic responding or the presence of
drug unpaired stimuli capable of inhibiting this response (Vezina and Leyton, 2009). We are
aware of only one study that has tested this hypothesis explicitly. In this study, cocaine
dependent subjects were administered amphetamine on test sessions with or without drug
cues present (videos of actors simulating drug use). Compared to the test session conducted
without drug cues, the presence of drug cues actually diminished the DA response further
(Volkow et al., 2008), an effect opposite in direction to what had been predicted by the
authors. This observation nonetheless adds to the evidence that environmental cues can
modulate the pharmacological effects of a stimulant drug challenge. Moreover, as the
authors noted, since the cues did not genuinely predict that drug would become available,
there may have been a reward prediction error associated with diminished DA release
(Schultz et al., 1997; Yoder et al., 2009). This interpretation, though, remains speculative
until more studies explicitly testing the proposition are reported. Other factors that might
lead to decreased drug-evoked DA release in substance dependent populations include
neurotoxic effects of extensive drug use (Little et al., 2003, 2009) and pre-existing risk traits
(Casey et al., 2012). Methodological limitations may also be relevant. As noted by
Narendran and Martinez (2008), reduced dopaminergic responding could also reflect
decreases in D2 or D3 DA receptor affinity, decreases in the ratio of D3 to D2 DA receptors,
or an increase in resting baseline DA levels. Preliminary attempts to address some of these
possibilities, though, suggest that stimulant drug addicts, tested under the same conditions as
in the above studies, have lower rather than higher resting levels of DA (Martinez et al.,
2009) and higher rather than lower D3 DA receptor levels at least in D3 DA receptor rich
brain regions such as the midbrain and globus pallidus (Boileau et al., 2012).

Leyton and Vezina Page 9

Neurosci Biobehav Rev. Author manuscript; available in PMC 2014 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



7. Subjects with non-substance addictions – gambling and binge eating
disorders: striatal activations

Gambling (Frascella et al., 2010; Leeman and Potenza, 2012) and binge eating disorders8

(Davis et al., 2011; Gearhardt et al., 2011) have been proposed to be forms of addiction.
Both groups are at elevated risk for substance use disorders, yet some of the affected
individuals do not use drugs or alcohol extensively. Studies in these populations with non-
substance addictions thus have the potential to shed light on mechanisms relevant to
perturbed reward seeking behaviors in isolation from the effects produced by drugs
themselves.

In fMRI studies, increased striatal activations have been observed in problem gamblers, as
compared to non-gamblers, following exposure to playing cards associated with monetary
reward (van Holst et al., 2012). In contrast, either blunted (Balodis et al., 2012; Miedl et al.,
2012; cf Reuter et al., 2005) or normal striatal responses (de Ruiter et al., 2009) have been
reported following exposure to unfamiliar or otherwise neutral monetary reward cues (see
Tables 2 and 3).

The results of PET [11C]raclopride studies suggest that striatal DA responses follow the
same pattern. For example, increased striatal DA responses have been observed to (i) a
realistic gambling task in patients with severe pathological gambling (Joutsa et al., 2012),
(ii) familiar gambling cues plus L-DOPA in patients with comorbid Parkinson’s disease and
pathological gambling (Steeves et al., 2009), (iii) food stimuli presented to binge eaters
(Wang et al., 2011), (iv) L-DOPA medication given to Parkinson’s patients exhibiting
various impulse control problems (Evans et al., 2006; O’Sullivan et al., 2011), and (v) the
undisguised administration of d-amphetamine pills to gamblers (Payer et al., 2012). By
comparison, blunted striatal DA responses have been observed following stimulant drug
challenges administered without drug cues in patients with bulimia nervosa (Broft et al.,
2012). Of note, the augmented DA responses may aggravate the clinical picture.
Pathological gamblers who show greater striatal DA release have higher clinical severity
scores (Joutsa et al., 2012), greater difficulty restraining from gambling (Payer et al., 2012),
and poorer performance scores on the Iowa Gambling Task (Linnet et al., 2010, 2011).

8. Conclusions: treating the striatum – boost or block?
Addictions are complex, multi-factorial, and heterogeneous in origin and expression. The
factors discussed in the present review will not account for all facets of the disease. At the
neurobiological level alone, addictions involve more brain regions than the striatum and
more neurotransmitters than DA. Nonetheless, the current view describes processes that can
account for much of the variability in the literature. It can also improve our understanding of
the role of addiction related cues in disease etiology, course and outcome.

The studies reviewed above suggest that, in humans, repeated exposure to motivationally
intense stimuli can lead to conditioned and sensitized behavioral and neurobiological
responses. As exposure accrues, these cues can also come to modulate responses to the
rewards themselves. Striatal hyperactivation can occur when rewards and reward related
cues are present. Striatal hypoactivation can occur when reward-paired cues are absent.
Exposure to rewards in the presence of reward associated cues can produce synergistic
effects, a co-occurrence that to date has been more common on the street than in the

8Binge eating disorders share various common features with substance use disorders and pathological gambling. Dysregulated reward
seeking, disturbed impulse-control, and various other addictions are commonly co-morbid. Obesity also has been proposed to be a
form of behavioral addiction, although this idea is more controversial. For a discussion of these issues, see Ziauddeen et al. (2012).
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laboratory. Finally, the results reviewed here suggest that these conditioned processes might
exert their effects not only at early stages of substance use but continue to do so during later
stages of addiction as well.

These cue modulated effects are of more than academic interest. First, the situation-
dependent, conditioned control of incentive motivational systems may account in large part
for increased drive to obtain some rewards and decreased drive to obtain others, features that
are prominent as addictions develop. Second, if the proposed processes continue to have the
same effects once addictions are established, then the model also has implications for
treatment. For example, multiple attempts have been made to block a presumed hyperactive
(sensitized) DA system. Although the strategy has not been exhausted, double-blind,
placebo controlled clinical trials with chronic neuroleptic medications have not proven to be
effective (Grabowski et al., 2000; Kampman et al., 2003; Smelson et al., 2004; Reid et al.,
2005). Alternatively, sharply increasing DA transmission is most likely a relapse precipitant
(de Wit, 1996; Barrett et al., 2006). Each of these strategies in isolation may lack clinical
efficacy because patients with addictions experience alternating periods of increased and
decreased striatal activation (Fig. 2). Promising strategies may be better afforded by
approaches that selectively target enhanced responding to the drug and its control by drug
associated stimuli (Kim et al., 2005; Barrett et al., 2008; Venugopalan et al., 2011; Loweth
et al., 2013) or that retrain the patient to orient toward other cues and rewards, as is achieved
in attentional bias training (Attwood et al., 2008; Fadardi and Cox, 2009; Schoenmakers et
al., 2010; Zhao et al., 2012b) and contingent management therapies (Dutra et al., 2008;
Volpp et al., 2009). Slow release DA indirect agonist preparations have shown modest,
though inconsistent, efficacy in some populations (Castells et al., 2010; Mariani et al.,
2012). Selective DA D3 receptor antagonists and DA modulators are in development, and
might prove helpful (Mugnaini et al., 2012; cf, Dodds et al., 2012).

Finally, recent evidence has raised the possibility that individual differences in susceptibility
to assign incentive value to reward related cues might be a general and heritable trait,
influencing vulnerability to addictions or demarcating a distinct neurobiological risk
pathway (Flagel et al., 2011; Fotros et al., 2012; Mahler and de Wit, 2010; Saunders and
Robinson, this issue). In the latter case, DA targeted treatments might benefit the
hypothesized DA reactive subgroup preferentially. Consistent with the notion that striatal
reactivity reflects a pre-existing trait, individual differences in various reward seeking and
impulsivity traits are predicted by the magnitude of striatal fMRI BOLD (Beaver et al.,
2006; Bjork et al., 2008a) and DA responses (Leyton et al., 2002; Boileau et al., 2003, 2006;
Buckholtz et al., 2010a,b; Treadway et al., 2012). The DA signals appear to have behavioral
significance. Decreasing DA transmission diminishes cocaine cue-induced craving (Berger
et al., 1996; Leyton et al., 2005), attentional biases toward drug cues (Franken et al., 2004;
Munafó et al., 2007; Hitsman et al., 2008), the tendency of reward paired cues to elicit
preferential responding (Leyton et al., 2007), and the willingness to work for drug (Barrett et
al., 2008; Venugopalan et al., 2011) and monetary rewards (Cawley et al., 2010). These
observations are consistent with the view that it is increased rather than decreased DA
transmission that precipitates individual bouts of drug use, an observation recently seen
across levels of substance use and addiction (Venugopalan et al., 2011). Thus, identifying
ways to modulate these DA responses in a therapeutically significant way remains, we
would suggest, an important clinical goal.
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Box 1

During the past few decades, two main tools have been developed to measure activity in
living human brain. In functional magnetic resonance imaging (fMRI) studies, regional
brain activity is assessed by measuring changes in cerebral blood flow (CBF). As with all
living tissues, increased activity requires increased blood flow to supply needed oxygen.
Magnetically captured fMRI signals respond to changes in blood flow by exploiting the
paramagnetic and diamagnetic properties of deoxygenated and oxygenated hemoglobin,
respectively. Temporal resolution ranges from 100 ms to 2 s depending on whether a
single brain slice or the whole brain is sampled. Anatomical resolution ranges from <1 to
3 mm3, depending on the magnet size (Hernandez et al., 2001). This method lacks
neurochemical specificity.

Positron emission tomography (PET) can also be used to measure brain activity, but it is
based on different principles. Subjects are administered a radioactively labeled substance
that can cross the blood brain barrier. The decaying tracer emits positrons that typically
travel 0.2–7 mm before colliding with an electron. The collision produces gamma rays
that travel in diametrically opposite directions leading to their simultaneous activation of
coincidence detectors positioned around the subject’s head. The subsequently processed
signals provide information about magnitude with temporal and spatial properties.
Labeled water permits the measure of CBF. The use of labeled tracers such as
[11C]raclopride (a D2/3 DA receptor antagonist) permits estimation of the availability of
D2/3 DA receptors. When extracellular DA levels are increased, the availability of DA
receptors for [11C]raclopride is reduced. Although temporal (20 to 30 min) and
anatomical (cm3 range) resolution are modest, the method is well validated (Laruelle,
2000; Doudet and Holden, 2003).
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Fig. 1.
Amphetamine-induced DA sensitization in humans. Healthy male subjects received five
doses of d-amphetamine (0.3 mg/kg, p.o.) while laying in a PET scanner. The first three
doses were administered every second day. The fourth dose was given following a two-week
abstinence period. The fifth dose was given one year later. The figure depicts the effects on
striatal DA release, as indexed by changes in [11C]raclopride binding, at dose 1 ((A) n = 10),
dose 4 ((B) n = 10), and dose 5 ((C) n = 7). The higher the color coded t value, the greater
the change in [11C]raclopride binding. As illustrated in (D), linear regression analyses
indicated that successive doses led to progressively larger responses. From Boileau et al.
(2006).
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Fig. 2.
Model of striatal activation in addiction. Patients may experience periods of hyper- and
hypo-activations of the striatum related to the presence versus absence of addiction related
cues. In this model, chronic neuroleptic treatment would be predicted to decrease cue-
induced activations of the striatum, a possibly helpful action, but also to aggravate the low
striatal activity when addiction related cues are absent. Strategies that target the low or high
striatal states without aggravating the other may be more effective.
Adapted from Leyton (2007).
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Table 1

Dose-dependent development of sensitized responding to repeated d-amphetamine in healthy human subjects.

Amphetamine dose No. of doses Sensitization? Reference

5.0 mg, p.o. 5 doses No – mood, drug tablets chosen Johanson and Uhlenhuth (1981)

10.0 mg, p.o. 6 doses No – speech rate, smoking, stimulant effects, liking Kelly et al. (1991)

20.0 mg, p.o. 2 doses No – subjective and psychomotor effects Wachtel and de Wit (1999)

~20 mg, p.o. (0.25 mg/kg) 2 doses Yes – energy, eye-blink, mood, speech rate Strakowski et al. (1996)

~20 mg, p.o. (0.25 mg/kg) 3 doses Yes – energy, eye-blink Strakowski and Sax (1998)

~20 mg, p.o. (0.25 mg/kg) 3 doses Yes – energy, euphoria Strakowski et al. (2001)

~20 mg, p.o. (0.30 mg/kg) 4 doses Yes – energy, eye-blink Boileau et al. (2006)

~20 mg, p.o. (0.30 mg/kg) 4 doses Yes – energy, euphoria O’Daly et al. (2011)

20.0 mg, p.o. 2 doses Yes – stimulation, craving Childs and de Wit (in press)
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Table 2

fMRI BOLD striatal activations observed in human subjects in the presence and absence of reward associated
cues. Subjects were individuals with susceptibilities to, or with current addiction disorders.

Subjects Task/challenge Results Comment Reference

Cues Present

• 30 cocaine dependent
patients in treatment

• 36 healthy controls

Autobiographical scripts of drug
use, stress and neutral experiences

Greater activation to
drug scripts in male
patients; greater
activation to stress in
female patients

Hospitalized patients
receiving treatment
for two weeks

Potenza et
al. (2012)

• 24 heroin dependent
patients in short-term
abstinence (1 month)

• 20 healthy controls

Images of heroin use or neutral
stimuli

Greater activation in
response to heroin
images in patients

In these short-term
abstinent patients, the
longer the abstinence,
the greater the
activation

Li et al.
(2012)

Heroin addicts

• 17, short-term
abstinence (1 month)

• 17 long-term
abstinence (1 year)

Images of heroin use or neutral
stimuli

Heroin images activated
striatum in short-term
abstinent subjects and
deactivated it in long-
term abstinent subjects

Subjects able to
sustain long-term
abstinence might be
able to inhibit
responses to drug
cues

Lou et al.
(2012)

• 15 pathological
gamblers

• 16 healthy controls

Playing cards associated with
monetary reward

Higher activation in
gamblers

van Holst et
al. (2012)

Heavy drinkers

• with (n=17) and

• without (n=13) family
history of alcoholism

Alcohol odor Higher activation in
subjects with higher
antisocial traits No effect
of family history

Modest sample size;
both groups consisted
of heavy drinkers (18
drinks/week) with
moderately high
alcohol use problem
scores

Oberlin et
al. (2012)

• 20 cocaine dependent
patients

• 20 healthy controls

MID Higher activation to
reward notification in
patients; higher response
predicted worse
treatment outcome

Treatment-seeking
patients; the MID can
be demanding,
requiring sustained
attention

Jia et al.
(2011)

• 326 heavy drinkers Alcohol taste cue Positive correlation with
alcohol use problems

No control group Claus et al.
(2011)

• 11 heavy drinkers

• 12 light drinkers

Alcohol images Higher activation in
heavy drinkers

Small sample size Ihssen et al.
(2011)

Heavy drinkers

• with (n=14) and

• without (n=12) family
history of alcoholism

Alcohol odors No group differences Small sample size;
both groups consisted
of heavy drinkers
(17–18 drinks/week)
with moderately high
alcohol use problem
scores

Kareken et
al. (2010)

• 15 subjects with family
history of alcoholism

• 19 healthy controls

Iowa Gambling Task Higher activation in
family history positive
group

Modest sample size Acheson et
al. (2009)

• 15 heroin dependent
patients

• 12 healthy controls

Heroin versus neutral videos Higher activation in
patients to heroin cues;
lower responses to
neutral cues

Modest sample size Yang et al.
(2009)
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Subjects Task/challenge Results Comment Reference

• 12 opiate dependent
patients

• 17 healthy controls

Heroin versus pleasant versus
neutral pictures

Only patients showed
significant response to
heroin cues; only
controls showed
significant response to
pleasant non-drug cues

Modest sample size Zijlstra et
al. (2009)

• 23 alcohol dependent
patients

• 23 healthy controls

MID Higher activation to
reward notification in
patients

Hospitalized patients
receiving treatment

Bjork et al.
(2008b)

• 37 heavy drinkers Alcohol taste cue Positive correlation with
craving and alcohol use
problems

No control group Filbey et al.
(2008)

• 16 detoxified alcohol
dependent subjects

• 16 healthy controls

Alcohol images + MID Alcoholics showed
greater activation to
anticipation of alcohol
cues and lower activation
to non-alcoholic cues

Modest sample size Wrase et al.
(2007)

• 6 detoxified alcohol
dependent patients

• 6 healthy controls

Alcohol images No effect in striatum Small sample size;
hospitalized patients
receiving treatment

Lingford-
Hughes et
al. (2006)

• 12 pathological
gamblers

• 12 healthy controls

Card guessing game with
electronic cards

Lower activation in
gamblers

Small sample size;
cues possibly not
evocative of real
cards

Reuter et al.
(2005)

• 10 alcohol dependent
subjects

• 10 healthy controls

Alcohol sip + images Activation in alcoholics,
not controls; positive
correlation between cue-
induced craving and
accumbens activation in
alcoholics only

Small sample size Myrick et
al. (2004)

• 10 abstinent alcohol
dependent subjects

• 10 healthy controls

Alcohol images Greater activation in
alcoholics; strong
activations predicted
relapse

Small sample size Grüsser et
al. (2004)

• 4 alcohol dependent
subjects

• 4 healthy controls

Alcohol images Higher activation in
alcoholics; strong
activations predicted
rapid relapse

Small sample size Braus et al.
(2001)

• 17 cocaine abusers

• 14 healthy controls

4-min videos of cocaine use, sex;
neutral activity

Higher activity in
cocaine abusers

Lower activity than
controls in response
to sex video

Garavan et
al. (2000)

Cues Absent

• 30 cocaine addicted
subjects

• 28 former cocaine
addicted subjects

• 31 healthy controls

Unfamiliar Domino game in
which subjects gain or lose chips

Lower activation to gains
in former cocaine
addicted versus healthy
and current addicted
subjects; no difference
between control and
current addicted subjects

Hyatt et al.
(2012)

• 14 pathological
gamblers

• 14 healthy controls

MID Lower activation in
gamblers during prospect
and anticipation

Modest sample size Balodis et
al. (2012)

• 31 adolescents with
problem substance use

MID Lower activation in
substance abusers during
anticipation phase

Schneider et
al. (2012)
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Subjects Task/challenge Results Comment Reference

• 266 healthy controls

• 20 children of
alcoholics

• 20 healthy controls

MID Lower activation in
children of alcoholics
during anticipation phase

Only seen in
subgroup that had not
yet developed
problem drinking

Yau et al.
(2012)

• 16 pathological
gamblers

• 16 healthy controls

Delay discounting task Negative correlation with
gambling severity

Between group
effects not reported

Miedl et al.
(2012)

• 43 adolescent smokers

• 43 healthy controls

MID Lower activation in
smokers during
anticipation phase

Same response seen
in subjects who
smoked ≤ 10
cigarettes; thus,
blunted response may
be vulnerability trait

Peters et al.
(2011)

• 30 subjects with family
history of alcoholism

• 19 healthy controls

MID Lower activation in
family history positive
subjects during
anticipation phase;
higher activation during
the prospect phase

Andrews et
al. (2011)

• 14 heavy drinkers

• 14 light drinkers

Intravenous ethanol (BAC=0.08) Lower activation in
heavy drinkers

Modest sample size Gilman et
al. (2012)

Parkinson’s disease patients

• with (n=9)

• without (n=9) impulse-
control disorders

Balloon Analog Risk Task Lower activation in
patients with impulse-
control problems

Modest sample size Rao et al.
(2010)

• 19 problem gamblers

• 19 smokers

• 19 healthy controls

Monetary gain following exposure
to previously neutral cues

No group differences de Ruiter et
al. (2009)

• 19 detoxed alcoholics

• 19 healthy controls

MID Lower activation in
alcoholics during
anticipation phase

In alcoholics, low
striatal activation
predicted high
impulsivity scores

Beck et al.
(2009)

• 13 children of
alcoholics with high
sensation seeking
scores

• 13 healthy adolescents

MID Greater activation in high
sensation seekers during
anticipation phase

Modest sample size Bjork et al.
(2008a)

• 16 detoxified alcohol
dependent subjects

• 16 healthy controls

Alcohol images + MID Alcoholics showed lower
activations to MID
monetary anticipation

High striatal
responses also seen in
response to alcohol
cues

Wrase et al.
(2007)

• 17 cocaine abusers

• 14 healthy controls

4-min videos of cocaine use, sex;
neutral activity

Lower activity than
controls in response to
sex video

Higher activity than
controls in response
to cocaine video

Garavan et
al. (2000)

BAC: blood alcohol concentration. MID: monetary incentive delay task.
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Table 3

PET [11C]raclopride striatal responses observed in human subjects in the presence and absence of reward
associated cues. Subjects were individuals with susceptibilities to, or with current addiction disorders.

Subjects Task/challenge Results Comment Reference

Cues Present

• 12 pathological
gamblers

• 12 healthy controls

Slot machine gambling task Higher DA response in
severe gamblers

High DA response
predicted greater
gambling problem
severity

Joutsa et al.
(2012)

• 13 pathological
gamblers

• 12 healthy controls

Undisguised amphetamine pills Higher DA release in
gamblers

High DA response
predicted more desire
to gamble and greater
difficulty restraining
from gambling

Payer et al.
(2012)

Obese subjects

• with (n=10) or

• without (n=8) binge
eating disorder

Food smell and taste Higher DA release in
binge eaters

Modest sample size;
DA release correlated
with binge eating
problems

Wang et al.
(2011)

Parkinson’s disease patients

• with (n=11) or

• without (n=7)
impulse-control
problems

Various reward related cues
(images of appetizing food, sex,
gambling, drugs etc.)

Higher DA release in
impulsive patients

Modest sample size O’Sullivan et
al. (2011)

• 18 pathological
gamblers

• 16 healthy controls

Iowa Gambling Task High DA release
predicted greater
excitement

No significant effect of
group

Linnet et al.
(2011)

• 16 pathological
gamblers

• 15 healthy controls

Iowa Gambling Task High DA release
predicted poorer
performance

No significant effect of
group

Linnet et al.
(2010)

Heavy drinkers at

• high (n=13) or

• low-risk (n=13) for
alcoholism

Alcohol ingestion Higher DA response in
subjects at high risk

Risk defined by (i)
SHAS scores and (ii)
reward-seeking
personality traits

Setiawan et
al. (2010)

Parkinson’s disease patients

• with (n=7) or

• without (n=7)
pathological
gambling

L-DOPA + gambling task with
cards

Higher DA release in
gamblers

Small sample size Steeves et al.
(2009)

• 20 cocaine
dependent patients

Methylphenidate (0, 20 mg, p.o.)
with or without cocaine videos

Lower DA response
with drug videos

Cues did not predict
receipt of reward;
possible reward
prediction error; no
comparison group

Volkow et al.
(2008)

Parkinson’s disease patients

• with (n=8) or

L-DOPA medication Higher DA release in
substance dependent
patients

Small sample size Evans et al.
(2006)
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Subjects Task/challenge Results Comment Reference

• without (n=8)
substance
dependence

Cues Absent

• 11 patients with
schizophrenia and a
substance use
disorder

• 15 healthy controls

Amphetamine (0, 0.3 mg/kg, iv) Lower DA release in
patients

Thompson et
al. (in press)

• 16 cannabis
dependent patients

• 16 healthy controls

Amphetamine 0, 0.3 mg/kg, iv) No group differences Earlier age of onset of
cannabis use predicted
lower DA response

Urban et al.
(2012)

• 15 patients with
bulimia nervosa

• 14 healthy controls

Methylphenidate (0, 60 mg, po) Lower DA release in
patients

Low DA release
predicted more
frequent binge eating

Broft et al.
(2012)

• 16 heroin dependent
patients

• 16 healthy controls

Methylphenidate (0, 60 mg, po) Lower DA release in
patients

Martinez et
al. (2012)

• 24 cocaine
dependent patients

• 24 healthy controls

Methylphenidate (0, 60 mg, po) Lower DA release in
patients

Low DA release
predicted poor
treatment outcome

Martinez et
al. (2011)

• 16 subjects at high
familial risk for
addictions

• 15 subjects at low
familial risk matched
on drug use

• 17 healthy subjects,

d-amphetamine (0, 0.3 mg/kg, po) Lower DA release in
high-risk subjects

Low DA release
predicted by lifetime
history of drug use

Casey et al.
(2012)

• 24 cocaine
dependent patients

• 24 healthy controls

Methylphenidate (0, 60 mg, po) Lower DA release in
patients

Low DA release
predicted choice of lab
cocaine over money

Martinez et
al. (2007)

• 20 alcohol
dependent patients

• 20 healthy controls

Methylphenidate (0, 0.5 mg/kg, iv) Lower DA release in
patients

Volkow et al.
(2007)

• 15 alcoholic
dependent patients

• 15 healthy controls

Amphetamine (0, 0.3 mg/kg, iv) Lower DA release in
patients

Martinez et
al. (2005)

• 20 cocaine
dependent patients

• 23 healthy controls

Methylphenidate (0, 0.5 mg/kg, iv) Lower DA release in
patients

Volkow et al.
(1997)

DA: dopamine. SHAS: Subjective High Assessment Scale.
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