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Abstract
Background—Prediction of outcome after injury is fraught with uncertainty and statistically
beset by misspecified models. Single-time point regression only gives prediction and inference at
one time, of dubious value for continuous prediction of ongoing bleeding. New statistical,
machine learning techniques such as SuperLearner exist to make superior prediction at iterative
time-points while also evaluating the changing relative importance of each measured variable on
an outcome. This then can provide continuously changing prediction of outcome and evaluation of
which clinical variables likely drive a particular outcome.

Methods—PROMMTT data was evaluated utilizing both naïve (standard stepwise logistic
regression) and SuperLearner techniques to develop a time-dependent prediction of future
mortality, within discrete time intervals. We avoided both under- and over-fitting using cross-
validation to select an optimal combination of predictors among candidate predictors/machine
learning algorithms. SuperLearner was also used to produce interval-specific robust measures of
variable importance measures (VIM resulting in an ordered list of variables, by time-point) that
have the strongest impact on future mortality.

Results—980 patients had complete clinical and outcome data and were included in the analysis.
The prediction of ongoing transfusion with SuperLearner was superior to the naïve approach for
all time intervals (correlations of cross-validated predictions with the outcome were 0.819, 0.789,
0.792 for time intervals 30–90, 90–180, 180–360, >360 minutes. The estimated VIM of mortality
also changed significantly at each time point

Conclusions—The SuperLeaner technique for prediction of outcome from a complex dynamic
multivariate dataset is superior at each time interval to standard models. Additionally, the
SuperLearner VIM at each time point provides insight into the time-specific drivers of future
outcome, patient trajectory and targets for clinical intervention. Thus, this automated approach
mimics clinical practice, changing form and content through time to optimize the accuracy of the
prognosis based on the evolving trajectory of the patient.

Level of Evidence—Prospective, Level II

Keywords
PROMMTT; Trauma; Injury; Statistical Prediction; Causal Inference

Introduction
Trauma is the leading cause of death between the ages of 1 and 441. The vast majority of
these deaths take place quickly and much of the initial resuscitative and decision-making
action takes place in the first minutes to hours after injury2,3. In addition it is clear that as a
patient lives through their initial resuscitation, operative conduct and early ICU care, the
principal drivers of their current physiologic state and future outcome are dynamic. Different
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variables drive care and outcome in the first 30 minutes than at 6, 12 or 24 hours minutes
after injury. At any time however practitioners are often left making care decisions without
knowledge of which parameters are important at that moment. Left with this uncertainty and
awash in constantly evolving multivariate data, practitioners make decisions based on
clinical gestalt, a few favorite variables, and rules of thumb developed from clinical
experience. To aid in prediction, the medical literature is filled with scoring systems and
published associations between these variables (physiology, biomarker, demographic, etc.)
and outcomes of interest4–8. While numerous, these published statistical associations, given
the reported ad hoc methodology, often report misspecified models based on ad hoc
procedures. In addition most of these statistical predictive models do not account for the
rapidly changing dynamics of a severely injured patient and the patient population. An ideal
system would mimic the clinical decision making of an experienced practitioner by
providing dynamic prediction (changing prediction at iterative time points), calculating
diagnostic indicators quickly, while evaluating the dynamic importance of each variable
over time9. This then would mimic the implicit understanding a clinician brings to a patient
where it is clear that the necessary focus of care must change over time. Whereas the
literature is beset with single time point analyses based on ad hoc approaches, there are new
statistical techniques ideal for mimicking the dynamics of an evolving response to trauma
and its treatment.

A primary goal in evidence-based medical decision-making is to design prognosis tools that
take into account a possibly large set of measured characteristics of a patient in order to
predict the most likely medical outcome. An equally important goal is to establish which of
those measured characteristics is decisive in the development of the predicted outcome.
Apart from understanding the underlying biological mechanisms, the joint use of these tools
could help doctors to devise the optimal treatment plan according to the specific
characteristics of the subject, simultaneously taking into account hundreds of variables
collected about each patient. Because of the large number of variables to be taken into
account, these goals would be impossible to achieve without the use of complex statistical
algorithms accompanied by powerful computers able to carry out a large number of
computations in large data sets within clinically-relevant time frames

Here we sought to combine these disparate but complementary goals to multivariate
temporal data from the PRospective Observational Multicenter Major Trauma Transfusion
(PROMMTT) dataset. We hypothesized that utilization of an ensemble machine learning
methodology (SuperLearner10) combined with causal inference statistical techniques11,15

could provide superior prediction of outcomes while also evaluating and reporting the
dynamic relative importance of each measured variable over time using targeted variable
importance measures (VIM).

Methods
Data Collection and Processing

The PROMMTT methodology has been extensively described elsewhere12. Briefly from
July 2009 to October 2010 all trauma patients meeting criteria for highest level trauma
activation at 10 major Level 1 United States Trauma Centers were enrolled into the
PROMMTT study. Patients were excluded if they were pregnant, prisoners or under 16
years old. Patients were additionally excluded if they were transferred from outside
hospitals, had significant resuscitation prior to trauma activation, had >5 minutes of CPR
prior to or within 30 minutes after admission or died within the first 30 minutes after
admission. The Committee on Human Research at the University of California San
Francisco as well as Institutional Review Boards from each of the other 9 centers and the
United States Army Human Research Protections Office approved the protocol.
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Comprehensive demographic, injury and real time resuscitation and transfusion data were
collected by dedicated 24/7 research assistants. For this analysis the primary outcome was
mortality measured in time intervals measured up to 28 days.

Statistical Methods
Formal Data Structure—The general approach is described as the so-called roadmap of
estimation as outlined in van der Laan and Rose (2011)11. We examined the ability to
predict death within three time intervals, t: 1=30 to 90, 2=90 to 180, 3=180 to 360, =4 > 360
minutes, where t=0 is defined as the time interval within 30 minutes after injury. We
adjudicated 4 types of variables from the master dataset, C are indicators for each variable
(W) of whether or not it is measured for a subject, W are the confounders, either
characteristics of the individual at injury, or measures that describe the severity of the injury;
A are variables that in theory could be intervened upon (potential interventions), and Y(t) is
the outcome of interest measured at time t (see Table 1 for definition of variable and their
abbreviations). Data is represented for each time t as independent and identically distributed
(i.i.d) observations of:

In this way we handle missing data such that we can treat the combination of C and W as the
adjustment variables. We thus allow the modeling procedure to enter the missingness
indicators, such that it optimally predicts the outcome. Further, this technique also assumes
data are missing at random in order to consistently estimate the regression13.

Prediction—Our first goal is to determine how well one could predict the outcome (death)
based on the available predictors. Thus, for each time point, we used an ensemble machine
learning procedure called the SuperLearner10 to estimate the prediction model. The
SuperLearner (SL) algorithm uses a cross-validation procedure to combine a user-specified
set of candidate prediction algorithms, and is available as a statistical package22 in the
programming language, R14. In this case, the choice is not just a sensible and automated
procedure (more algorithms used means a more flexible and thus potentially precise
prediction), it is also based on formal statistical theory. This theory tells us (see Oracle
Inequality10,11) that, under assumptions, using cross-validation to select the best performing
algorithm is equivalent to the so-called Oracle Selector (choosing the one based on knowing
the true model), and this is true even if a very large number of selectors are used. Because
our parameters of interest with regards to variable importance discussed below do not
depend on pre-specification of the model, we are free to fit an optimal predictor. We thus
use a library of statistical modeling techniques from very simple, standard methods to ones
that are highly flexible, and aggressively fit the data; specifically, we included simple
logistic or linear regression model depending on whether the outcome is binary or not,
generalized additive models (with different levels of smoothing)23, Bayes generalized linear
models16, lasso17, Random Forest18 and a null (intercept only) model.

For reporting the results of the SL prediction, we calculate the ROC curves based on the
cross-validated prediction. Note, we also compare the performance of SL with a backward
stepwise procedure with a p-value > 0.05 cut-off for removal of a variable.

Variable Importance Measures (VIM)—We next examined variable importance
(contribution to prediction) within each time interval. Based on a SL fit to the data, one
needs VIMs that are interpretable independently of the statistical model used (since the form
of the model is not directly interpretable), and also robust to small changes in the data. The
VIMs we provide are inspired by the causal inference literature, where the goal is to
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estimate potential interventions on a population19 by estimating parameters that are defined
in any statistical (prediction) model.

The most commonly discussed parameter of within the causal inference literature is the so-
called average treatment effect (ATE), or the change in the mean of the predicted values of
the outcome if all observations (patients) are set to a putative treatment (A=1), versus the
converse for all subjects (A=0), keeping the confounders at the observed level. Thus, the
ATE is the average of the differences, over the population distribution of confounders, of
predicted outcomes for a person under the two possible intervention levels. Again, the goal
is to define a parameter related to the importance of the variable in the context of
confounders, but without having to pre-specify a model. We note that for the binary
outcome of death, this average difference can be interpreted as a marginal, adjusted risk
difference in the probability of death comparing universal application of A=1, versus A=0,
among the population that is still alive at beginning of time interval.

The estimate can be represented as a difference in predicted values (from the SL fit) for each
subject setting their intervention of interest to A=1, and A=0, keeping the confounders (W)
and missingness indicators (C) at what was observed. Note that we repeat these estimates for
the selected variables of interest (A) adjusting for the confounders (W,C) at each time point
of interest. Finally, we report an augmentation of the original prediction statistical fit via SL
to make the final estimator to help reduce bias in the estimate of the variable importance that
arises from the fact that the original SL fit was not optimized to estimating the variable
importance, but was chosen to optimize prediction11.

For continuous A, the parameter of interest we estimate is the causal parameter analogue to
the type of parameter returned by simple linear regression. For linear regression models,
with all main terms:

given the other assumptions discussed above, and the untenable assumption that this is the
true model (linear model with only main terms), then β1 can be interpreted as E[Y(A
+1,W,C)−Y(A,W,C)], or the average change in the mean of the outcome in a population if
everyone original level of treatment, A, was incremented by one unit. In this case, we define
a more general parameter:

where δA is chosen to be a meaningful clinical change in the variable of interest. The
resulting plug-in estimate will be analogous to what we discussed for the ATE; we predict
the outcome for each individual based on adding δA to their observed value of A, keeping
their (C,W) at the observed values, which is used to get the predicted difference in their
outcomes. As above, we also report an augmented form of this plug-in estimator optimized
for estimation in a semiparametric model20.

To estimate the sampling variability of the parameter estimates, we report either the robust
inference (based on the influence curve) when reporting the augmented plug-in estimates, or
the nonparametric bootstrap21 for the plug-in estimates, where influence-curve based
inference is not available. We also offer for comparisons either the same estimates based on
parametric models (e.g., linear models with stepwise model selection procedures) as well as
equivalent estimates not adjusting for confounders (unadjusted).
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Results
Prediction

Results of cross-validated prediction of death based on SL are displayed as ROC curves in
Figure 1 comparing the performance with just the confounders (W) to that with both W and
the clinical variables of interest (A). The results suggest a significant gain in precision when
the clinical variables are included AUC; this difference is greatest (AUC of .55 vs .92) for
predicting death at 180–360 minutes via the SL. In this case, there is a relatively modest 5%
gain in prediction performance when the SL is compared to simple stepwise logistic
regression.

Variable Importance
The equivalent variable importance results of the three models fit to predict death
(semiparametric via SL, stepwise regression, and unadjusted) for pre-specified increases in
the predictors reporting either θATE for binary variables, or θ2 for continuous variables, are
shown in Table 2. The importance of variables changes quite dramatically in magnitude and
significance from one time point to another; what is a significant predictor for the earliest
time point can be a relatively unimportant predictor for death, among those living, at later
time points. In addition, whereas the estimates of importance can be also substantively
different than those derived by a naïve method (see results for same parameter estimate
derived from simple model with stepwise regression), suggesting that misspecification of the
model could be contributing significantly to biased estimates of the time-dependent
importance of particular variables.

Discussion
We present here the first application of SL and associated variable importance techniques to
multivariate data prospectively collected in real time from severely injured trauma patients.
While this application represents a first proof of concept study for application of these
computational techniques to noisy patient data, our findings suggest that these models find
very good prediction of the outcomes of death (ROC curves .8 –.92). In addition to overall
prediction of future mortality, these results also allow discrimination of the relative
predictive ability of baseline patient or injury characteristics (which have poor predictive
capability) and those variables for which the semiparametric associations we report suggest
more evidence for important targets of intervention, or at least a subset for which one can
build an accurate prognostic score. This discrimination by itself allows for clinical inference
of how much of a patient’s outcome is based on recorded injury characteristics, which are
not subject to intervention, versus how much can be intervened upon, representing
potentially improved outcomes. This analysis is then extended and augmented by the
variable importance analysis, which provides insight as to the specific drivers of a given
outcome each different time interval. This is particularly important as this represents what
clinicians implicitly know: patients change over time and patients will need different
interventions due to these physiologic changes. Together then these statistical techniques
represent the entire thought process of the clinician; prediction which changes over time,
given the current data available and a focus on variables believed most responsible for a
patient’s prognosis.

To implement this strategy, we rely on procedures that have theoretical justification under a
semiparametric model. Thus, for prediction, we rely on an ensemble learner (a method based
on cross-validation, which can combine both simple regression models as well as more
sophisticated model selection/prediction methods), which is based both on practical
performance, but also statistical theory. As described, this leads to the so-called SL
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approach, and we report the overall performance of this predictor, for time specific hazard of
death. Our results show that we never do worse than much smaller, admittedly simpler
procedures, and in several cases, we have better performance, precisely as predicted by the
Oracle Inequality10,15. In addition, the resulting predictors served as the basis for estimating
the importance of the candidate predictors in their potential to explain variability in the
outcome, what we called estimation of variable importance measures (VIM). Because the
fact that the resulting prediction models derive from a procedure that guarantees (at least in
the limit) that the “best” candidate is chosen, we argue that VIM’s should be relatively
efficient (i.e., lower mean-squared error) compared to those based on arbitrarily chosen
parametric (e.g., simple logistic regression) models. In addition, the parameters defining
VIM’s, which are derived from the causal inference literature, have been chosen to provide
clinically meaningful measures of potential interventions (e.g., the impact on rate of death
for theoretically increasing the use of a particular blood product). As in the prediction, the
methodology used for VIM’s also has proven optimality properties, so that we avoid ad hoc
rationales and also potentially biased inference from such ad hoc procedures, including
overly optimistic measures of fit. . We finally note that this procedure can be used as
validation of more traditional parametric models by including them as competitors (as was
done for this analysis) and if the data show they are a superior fit, then both the prediction
model and the resulting VIM derived from these will match what is returned by our
approach.

We have included such models within our ensemble SL predictor, and compared the results
to one of these more standard results, which sometimes derive very different estimates of the
time-dependent estimates of variable importance; examination of the variable importance
measures for prediction of death in the first 90 minutes reveals that lower initial hematocrit,
platelets, and fibrinogen and sodium are predictive of death. Put into clinical context a 1
point increase in hematocrit decreases the likelihood of death by .03%. Interestingly the
administration of rVIIa which in this cohort is an unusual occurrence was in fact protective
suggesting that either the drug was effective or was associated with aggressive care that
benefited patients. During the second time interval (90 to 180 minutes), lower initial ED
platelet count and fibrinogen levels remained associated with increased mortality while
initial hematocrit is no longer a predictor of future death. Hemostatic interventions including
placement of a tourniquet in the ED, and the administration of rVIIa were protective. For
each additional RBC unit given to this time point the likelihood of mortality increased by
nearly 1% which would be expected as increased transfusion need has been shown to be
associated with worse outcome.

Of greatest interest lies in the changing predictors of outcome in the context of robust
prediction (AUC curves predicting death of >.85). Common physiologic predictors are
sometimes predictive and other times the variable importance implies, for this data, less if
any information. The results support the broader use of such techniques, in that in most
cases, the predictors are in the correct statistical direction and estimates of the impact of
(known) life saving interventions were typically found to be predictive. In addition, these
techniques can produce diagnostic scores that can be used in real time by physicians, where
one concentrates only on those variables practically accessible at critical early moments
after a patients injury, and these scores can change in time given the evolving relationship of
early indicators and their prognostic ability, given the evolution of the patient and the target
population (e.g., attrition by death).

Taken together these examples provide insight about how variable importance can provide
insight into the changing drivers of highly predictable outcomes over time. The next step is
to derive plots of the dose response curves for each variable for each outcome to show the
effect for each increment across the distribution of a variable on an outcome. Because it is
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likely that most of the true dose-response curves have some degree of non-linearity, these
types of summary measures reported for continuous variables obscure the fact that the same
theoretical intervention will have different impacts on different patients at different times
(i.e., patients starting at different levels of the variable of interest). However, the approach
followed here does not assume such a linear (or any) does-response and so at least the
summary measure is not dependent on a pre-specifying an arbitrary (and thus misspecified)
model. In subsequent studies, we will estimate similar parameters as reported here, as well
as the dose-response equivalents, so that we can examine the distribution of how these
potential interventions change as the baseline characteristics of the patients change. This
highlights the great strength of this approach; it can tailor the parameter to the specific
clinical goals of the study (e.g., the impacts of “dynamic” treatments), whereas using
flexible techniques that are capable of optimal bias-variance trade-offs in fitting the
statistical model of the data. If a simpler, more traditional regression model is sufficient to
fit the data, these methods will produce equivalent estimates as these techniques, so that one
does not lose by using a more aggressive, machine learning methodology with subsequent
targeted estimation of parameters with potential clinical relevance.
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Figure 1.
ROC curves showing cross-validated prediction accuracy for SL for the 4 time intervals,
comparing performance using just the confounders (C,W; SL Conf.) with fit using all
clinical variables of interest, confounding variables, and indicators of missingness (A,W,C)
for SuperLearner (SL all) and stepwise regression (SW all)
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Table 1

Variable Descriptions (for confounders, W, and variables of interest, A)

Variables Description Variable Type

ageveriel age W

anticoag history of anti-coagulant W

aspirin history of aspirin W

bdresed initial ed base deficit results A

ctubeed chest tube A

fastresed fast results A

fibrresed initial fibrinogen results (mg/dl) A

gcsed gcs total intial A

glued initia glucose A

hctresed hematrocrit A

hgbresed initial ed hemoglobin results (g/dl) A

hred1 heart rate (hr) (initial ed) A

inrresed initial inr results A

intubed intubation A

iss injury severity score A,W

ndecomed needle decompression A

penetrating penetrating mechanism of injury W

plasmasum cumulative plasma infusions A

pltresed initial platelet results A

pltsum cumulative platelet infusions A

racemra race W

RBCsum cumulative rbc infusions A

rfviiaed recombinant factor viia (rfviia) A

sbped1 systolic blood pressure A

sexel sex W

sked initial serum potassium A

snaed initial serum sodium A

toured tourniquet A

traxred traction-extremity traction/external fixure A
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