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Abstract
We propose a new algorithm, PMS6, for the (l, d)-motif discovery problem in which we are to
find all strings of length l that appear in every string of a given set of strings with at most d
mismatches. The run time ratio PMS5/PMS6, where PMS5 is the fastest previously known
algorithm for motif discovery in large instances, ranges from a high of 2.20 for the (21,8)
challenge instances to a low of 1.69 for the (17,6) challenge instances. Both PMS5 and PMS6
require some amount of preprocessing. The preprocessing time for PMS6 is 34 times faster than
that for PMS5 for (23,9) instances. When preprocessing time is factored in, the run time ratio
PMS5/PMS6 is as high as 2.75 for (13,4) instances and as low as 1.95 for (17,6) instances.

Index Terms
Planted motif search; string algorithms

I. Introduction
Motifs are approximate patterns found in promoter sequences. The discovery of motifs helps
in finding transcription factor-binding sites, which are useful for understanding various gene
functions, drug design, and so on. Many versions of the motif search problem have been
studied extensively. In this paper, we focus on Planted Motif Search (PMS), also known as
(l, d) motif search. PMS takes n strings and two numbers l and d as input. The problem is to
find all strings M of length l (also called an l-mer) that appear in every input sequence1 with
at most d mismatches. More precisely, for an l-mer M, we define its d-neighborhood to be
all l-mers that differ from M in at most d positions. M is a motif for the given set of n strings
iff each of these n strings has a substring that is in the d-neighborhood of M.

As an example, consider three input sequences CATACGT, ACAAGTC and AATCGTG.
Suppose that l = 3 and d = 1. The 3-mer CAT is one of the motifs of the given 3 input
sequences as CAT appears in first sequence at the first position with 0 mismatch, at the
second position in the second sequence with 1 mismatch, and at fourth position in third
sequence with 1 mismatch. Alternatively, CAT is a motif of the given 3 input sequences

*This research was supported, in part, by the National Science Foundation under grant 0829916 and the National Institutes of Health
under grant R01-LM010101.
1We use the terms sequence and string interchangeably in this paper
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because the substrings CAT of sequence 1, CAA of sequence 2, and CGT of sequence 3 are
in the 1-neighborhood of CAT.

PMS, which is well studied in the literature, is known to be NP-hard [9]. Known algorithms
for PMS are divided into exact and approximation algorithms depending on whether they are
guaranteed to produce every motif always or not. Approximation algorithms for PMS are
generally faster than exact algorithms, which have an exponential worst-case complexity.
MEME, which is one of the popular approximation algorithms for finding motifs [1], uses
the expectation minimization technique to output a set of probabilistic models for each motif
indicating the probability of appearance of different characters in each position of the motif.
Pevzner and Sze [17] proposed the WINNOWER algorithm, which maps PMS to a problem
of finding large cliques in a graph where each node is an l-mer and two nodes are connected
iff the number of mismatches between them is less than 2d. Buhler and Tompa [2] used
random projections by taking only k positions out of the entire l-mer to group l-mers
together based on the similarity of the projections. Groups that have a large number of l-
mers have a high probability of having the desired motif as well. Price et al. [18] proposed
an algorithm based on performing a local search on the d-neighborhood of some of the l-
mers from input sequences. GibbsDNA [15] employs Gibbs sampling while CONSENSUS
[11] uses statistical measures to align sequences and finds potential motifs from the
alignment. Two other examples of approximation algorithms for the motif search problem
are MULTIPROFILER [13] and ProfileBranching [18].

While exact algorithms for the motif problem take longer to complete than approximation
algorithms, they guarantee to find all motifs. Due to their exponential complexity it is
impractical to run these algorithms on very large instances. But, for many instances of
practical interest, they are able to run within a reasonable amount of time. Many of these
algorithms use the suffix tree or other tree data structures to progressively generate motifs
one character at a time. MITRA [8] uses a data structure called Mismatch Tree while
SPELLER [22], SMILE [16], RISO [3], and RISOTTO [19] use suffix trees. RISOTTO [19]
is the fastest suffix tree based algorithm so far. CENSUS [10] makes a trie of all l-mers from
each of the input sequences. The nodes in the trie then store the Hamming distance (i.e.,
number of mismatches) from the motif as it is being generated, potentially pruning many
branches of the trie. Voting [4] uses hashing but needs space to store all possible strings of
length l. Hence the space required by this method is too large for large instances. Kauksa
and Pavlovic [14] have proposed an algorithm to generate a superset of motifs (i.e., a set of
motif stems). Since they do not provide any data on how difficult it may be to extract the
true motifs from this superset, one cannot assess the value of this algorithm. The recently
proposed PMS series of algorithms are both fast and relatively economical on space. PMS1,
PMS2 and PMS3 [20] are based on radix sorting and then efficiently intersecting the d-
neighborhood of all l-mers in the input sequences (every length l substring of a string is an l-
mer of that string). PMS4 [21] proposes a generic speedup technique to improve the run
time of any exact algorithm. PMSP [5] computes the d-neighborhood of all l-mers of the
first input sequence and then performs an exhaustive search with the remaining input
sequences to determine which of the l-mers in the computed d-neighborhood are motifs.
PMSPrune [5] is a branch-and-bound algorithm, which uses dynamic programming to
improve upon PMSP. Pampa [6] further improves PMSPrune by using wildcard characters
to find approximate motif patterns and then performing an exhaustive search within possible
mappings of the pattern to find the actual motifs. PMS5 [7] is the most recent algorithm in
the series. This algorithm, which is described in detail in Section II, efficiently computes the
intersection of the d-neighborhood of l-mers without generating the entire neighborhood.
PMS5 is faster than the algorithm for Pampa for challenge instances (15, 5) and larger [7].
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In this paper, we propose a motif algorithm PMS6 that is faster than PMS5. It's relative
speed comes from a faster algorithm for d-neighborhood generation and intersection. In
Section II we introduce notations and definitions used throughout the paper and also
describe the PMS5 algorithm in detail and in Section III we describe our proposed algorithm
for d-neighborhood intersection. The performance of PMS5 and PMS6 is compared
experimentally in Section IV.

II. PMS5
A. Notations and Definitions

We use the same notations and definitions as in [7]. An l-mer is simply any string of length
l. r is an l-mer of s iff (a) r is an l-mer and (b) r is a substring of s. The notation r ∈l s denotes
an l-ber r of s. The Hamming distance, dH(s, t), between two equal length strings s and t is
the number of places where they differ and the d-neighborhood, Bd(s), of a string s, is {x|

dH(x, s) ≤ d}. Let N(l, d) = |Bd(s)|. It is easy to see that , where
Σ is the alphabet in use.

We note that x is an (l, d) motif of a set S of strings if and only if (a) |x| = l and (b) every s ∈
S has an l-mer whose Hamming distance from x is at most d. The set of (l, d) motifs of S is
denoted Ml,d(S)

B. PMS5–Overview
PMS5, which is presently the fastest exact algorithm to compute Ml,d(S) for large (l, d), was
proposed by Dinh, Rajasekaran, and Kundeti [7]. This algorithm (Figure 1) first computes a
superset, Q′, of the motifs of S by making a series of calls to a function, Bd(x, y, z) = Bd(x)
∩ Bd(y) ∩ Bd(z), that computes the intersection of the d-neighborhoods of 3 l-mers. This
superset is then pruned to Ml,d(S) by the function output Motifs, which examines the l-mers
in Q′ one by one determining which of those are valid motifs. This determination is done in
a brute force manner. The correctness of PMS5 is established in [7]. Its time complexity is
O(nm3lN(l, d)), where m is the length of each input string si [7].

C. Computing Bd(x, y, z)
The basic idea in the algorithm of [7] to compute Bd(x, y, z) is to generate Bd(x) one l-mer
at a time and include it in Bd(x, y, z) only if it is in Bd(y) ∩ Bd(z). To facilitate this, Bd(x) is
represented as a tree Td(x). The root, which is at level 0, of Td(x) is x. The nodes at the next
level represent l-mers that are at a Hamming distance of 1 from x. Hence, if the length of x
is m and the alphabet is Σ = {0,1}, the root will have m children and the ith child will
represent the l-mer x′ that differs from x only at position i. That is, x′[i] = 0 if x[i] = 1 and x
′[i] = 1 if x[i] = 0. Figure 2 shows the tree T2(1001) with Σ = {0,1}.

The tree Td(x) is created dynamically in depth first manner. An l-mer t in a node (t, p) (t is
the l-mer represented by the node and p is the position at which this l-mer differs from the l-
mer in the parent node) is added to Bd(x, y, z) if t is in Bd(y) ∩ Bd(z). As we know the
current distance of t from each of x, y and z, we can check if there is possibly an l-mer in the
as yet ungenerated subtree of (t, p) that is a distance ≤ d from each of x, y and z. The subtree
rooted at (t, p) is pruned if there is no such l-mer.

Let t1 = t[1: p], t2 = t[p + 1: [l], x1 = x[1: p] and x2 = x[p + 1: [l]; y1, y2, z1, z2 are defined
similarly. Each position i of x2, y2 and z2 is one of the following five types [7]:

Type 1: x2[i] = y2[i] = z2[i].
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Type 2: x2[i] = y2[i] ≠ z2[i].

Type 3: x2[i] = z2[i] ≠ y2[i].

Type 4: x2[i] ≠ y2[i] = z2[i].

Type 5: x2[i] ≠ y2[i], x2[i] ≠ z2[i], y2[i] ≠ z2[i].

Let ni denote the number of positions of Type i, 1 ≤ i ≤ 5. Each ni may be decomposed as
below [7]:

1. N1,a = number of Type 1 positions i such that w[i] = x2[i].

2. N2,a(N2,b) = number of Type 2 positions i such that w[i] = x2[i](w[i] = z2[i]).

3. N3,a(N3,b) = number of Type 3 positions i such that w[i] = x2[i](w[i] = y2[i]).

4. N4,a(N4,b) = number of Type 4 positions i such that w[i] = y2[i] (w[i] = x2[i]).

5. N5,a(N5,b, N5,c) = number of Type 5 positions i 5 such that w[i] = x2[i])(w[i] =
y2[i],w[i] = z2[i]).

Dinh, Rajasekaran, and Kundeti [7] have shown that when traversing Td(x) in depth-first
fashion, we may prune the tree at every node (t, p) for which the following ILP has no
solution (note that dH(x1, t1), dH(y1, t1), dH(z1, t1) and n1 … n5 are readily determined for x,
y, z, t, and p).

1. n1 − N1,a + n2 − N2,a + n3 − N3,a + n4 − N4,b + n5 − N5,a ≤ d − dH(x1, t1)

2. n1 − N1,a + n2 − N2,a + n3 − N3,b + n4 − N4,a + n5 − N5,b ≤ d − dH (y1, t1)

3. n1 − N1,a + n2 − N2,b + n3 − N3,a + n4 − N4,a + n5 − N5,c ≤ d − dH(z1, t1)

4. N1,a ≤ n1

5. N2,a + N2,b ≤ n2

6. N3,a + N3,b ≤ n3

7. N4,a + N4,b ≤ n4

8. N5,a + N5,b + N5,c ≤ n5

9. All variables are non-negative integers.

As the possible values for n1, …, n5 and dH (x1, t1), dH (y1, t1), dH(z1, t1) are [0, …, l] and
[0, …, d], respectively, only (l + 1)5(d + 1)3 distinct ILPs are possible. For a given pair (l,
d), these distinct ILPs may be solved in a preprocessing step and we may store, in an 8-
dimensional table, whether each has a solution. Once this preprocessing has been done, we
can use the results stored in the 8-dimensional table to find motifs for many (l, d) instances.

Figure 3 gives the pseudocode for the algorithm to compute Bd(x, y, z). Its time complexity
is O(l + d|Bd(x, y, z)|) [7].

D. Intersection of Qs
PMS5 uses several novel techniques to compute a superset of the intersection Q′ of the Qs.
Although a superset of Q′ (Figure 1) is computed, PMS5 determines the exact set of motifs
because the last loop of the algorithm (Figure 1) verifies that each member of the final Q′ is,
in fact, a motif. One of the novel techniques applied for challenge instances of size (19,7)
and larger is a Bloom filter [12] with 2 hash functions. The l-mer to be hashed uses ┌l/4┐
bytes (recall that the alphabet size is 4). The first hash function is bytes 0-3 of the l-mer and
the second is bytes 1-4.
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III. PMS6
A. Overview

PMS6 differs from PMS5 only in the way it determines the motifs corresponding to an l-mer
x of s1 and the strings s2k and s2k+1. Recall that PMS5 does this by computing Bd(x, y, z)
independently for every pair (y, z) such that y ∈l s2k and z ∈l s2k+1 (Figure 1); the
computation of Bd(x, y, z) is done by performing a depth-first search of the tree Td(x) using
an ILP to prune subtrees. In PMS6 we determine the motifs corresponding to an l-mer x of
s1 and the strings s2k and s2k+1 using the following 2-step process:

Step 1: Form Equivalence Classes. In this step, the triples (x, y, z) of l-mers such that y
∈l s2k and z ∈ l s2k+1 are partitioned into classes C(n1, …, n5). For this partitioning, for
each triple (x, y, z), we compute n1, …, n5 using the definitions of Section II-C and p =
0, x1 = y1 = z1 = ∊, x2 = x, y2 = y, and z2 = z. Each triple is placed in the class
corresponding to its computed n1, …, n5 values.

Step 2: Compute Bd for all triples by classes. For each class C(n1, …, n5), the union,
Bd(C), of Bd(x, y, z) for all triples in that class is computed. We note that the union of
all Bd(C)s is the set of all motifs of x, s2k, and s2k+1.

Figure 4 gives the pseudocode for PMS6.

B. Computing Bd(C(n1, …, n5))
Let (x, y, z) be a triple in C(n1, …, n5) and let w be an l-mer in Bd(x, y, z). Let p = 0 and let
N1,a, N2,a, N2,b, N3,a, N3,b, N4,a, N4,b, N5,a, N5,b, N5,c be as in Section II-C. We observe that
the 10-tuple (N1,a, …, N5,c) satisfies the ILP of Section II-C with dH(x1, t1) = dH(y1, t1) =
dH(z1, t1) = 0. In fact, every l-mer of Bd(x, y, z) has a 10-tuple (N1,a, …, N5,c) that is a
solution to this ILP with dH(x1, t1) = dH(y1, t1) = dH(z1, t1) = 0. Given a 10-tuple solution to
the ILP, we may generate all l-mers w in Bd(x, y, z) as follows:

1. Each of the l positions in w is classified as being of Type 1, 2, 3, 4, or 5 depending
on the classification of the corresponding position in the l-mers x, y, and z (see
Section II-C).

2. Select N1,a of the n1 Type 1 positions of w. If i is a selected position, then, from the
definition of a Type 1 position, it follows that x[i] = y[i] = z[i]. Also from the
definition of N1,a, this many Type 1 positions have the same character in w as in x,
y, and z. So, for each selected Type 1 position i, we set w[i] = x[i]. The remaining
Type 1 positions of w must have a character different from x[i] (and hence for y[i]
and z[i]). So, for a 4-character alphabet there are 3 choices for each of the non-

selected Type 1 positions of w. As, there are  ways to select N1,a positions

out of n1 positions, we have  different ways to populate the n1 Type 1
positions of w, where q = n1 − N1,a.

3. Select N2,a positions I and N2,b different positions J from the n2 Type 2 positions of
w. For each i ∈ I, set w[i] = x[i] and for each j ∈ J, set w[j] = z[i]. Each of the
remaining n2 − N1,a − N1,b Type 2 positions of w is set to a character different from
that in x, y, and z. So, if k is one of these remaining Type 2 positions, x[k] = y[k] ≠
z[k]. We set w[k] to one of the 2 characters of our 4-letter alphabet that are

different from x[k] and z[k]. Hence, we have  ways to
populate the n2 Type 2 positions in w, where r = n2 − N2,a − N2,b.
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4. Type 3 and Type 4 positions are populated using a strategy similar to that used for
Type 2 positions. The number of ways to populate Type 3 positions is

, where s = n3 − N3,a − N3,b and that for Type 4 positions is

, where u = n4 − N4,a − N4,b.

5. To populate the Type 5 Positions of w, we must select the N5,a Type 5 positions, k,
that will be set to x[k], the N5,b Type 5 positions, k, that will be set to y[k], and the
N5,c Type 5 positions, k, that will be set to z[k]. The remaining n5 − N5,a − N5,b −
N5,c Type 2 positions, k, of w are set to the single character of the 4-letter alphabet
that differs from x[k], y[k], and z[k]. We see that the number of ways to populate

the n5 Type 5 positions is .

The preceding strategy to generate Bd(x, y, z) generates

l-mers w for each 10-tuple (N1,a, …, N5,c). While every generated l-mer is in Bd(x, y, z),
some l-mers may be the same. Computational efficiency is obtained by computing Bd(x, y,
z) for all (x, y, z) in the same class C(n1, …, n5) concurrently by sharing the loop overheads
as the same loops are needed for all (x, y, z) in a class.

Figure 5 gives the pseudocode for our algorithm to compute Bd(x, y, z) by classes.

As in the case of PMS5, run-time may be reduced by precomputing data that do not depend
on the string set S. So, for a given pair (l, d), there are O((l + 1)5) 5-tuples (n1, …, n5). For
each of the 5-tuples, we can precompute all 10-tuples (N1,a, …, N5,c) that are solutions to
the ILP of Section II-C with dH(x1, t1) = dH(y1, t1) = dH(z1, t1) = 0. The 10-tuple solutions of
the ILP are found using an exhaustive search. For each 10-tuple, we can precompute all
combinations (i.e., selections of positions in w). The precomputed 10-tuple solutions for
each 5-tuple are stored in a table with (l + 1)5 entries and indexed by [n1,…, n5] and the
precomputed combinations for the 10-tuple solutions are stored in a separate table. By
storing the combinations in a separate table, we can ensure that each is stored only once
even though the same combination may be needed by many 10-tuple solutions.

We store precomputed combinations as vectors. For example, a Type 1 combination for n1 =
3 and N1,a = 1 could be stored as {010} indicating that the first and third Type 1 positions of
w have a character different from what x, y, and z have in that position while the character
in the second Type 1 position is the same as in the corresponding position of x, y, and z. A
Type 2 combination for n2 = 4, N2,a = 2 and N2,b = 1 could be stored as {3011} indicating
that the character in the first Type 2 position of w comes from the third l-mer, z, of the
triplet, the second type 2 position of w has a character that is different from any of the
characters in the same position of x and z and the third and fourth Type 2 positions of w
have the same character as in the corresponding positions of x. Combinations for the
remaining position types are stored similarly. As indicated by our pseudocode of Figure 5,
combinations are considered in Gray code order so that only two positions in the l-mer being
generated change from the previously generated l-mer. Consequently, we need less space to
store the combinations in the combination table and less time to generate the new l-mer. An
example of a sequence of combinations in Gray code order for Type 2 positions with n2 = 4,
N2,a = 1, N2,b = 1 is {0012, 0021,0120,0102,0201,0210,1200,1002,1020, 2010, 2001, 2100}.
Note that in going from one combination to the next only two positions are swapped.
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C. Intersection of Qs
For challenge instances (19,7) and larger, we experimented with several Bloom filter
designs. As in [7], we used a partitioned Bloom filter of total size 1GB. From Bloom filter
theory [12] we can determine the number of hash functions to use to minimize filter error.
However, we need to minimize run time rather than filter error. Experimentally, we
determined that best performance was achieved using two hash functions with the first one
being bytes 0-3 of the key (i.e., the same function used in PMS5) and the second being the
product of bytes 0-3 and the remaining bytes (byte 4 for (19,7) instances and bytes 4 and 5
for (21,8) and (23,9) instances).

D. Complexity
The asymptotic time complexity of PMS56 is the same as that of PMS5, O(nm3lN(l, d)),
where m is the length of each input string s[j].

IV. Experimental Results
We evaluate the performance of PMS6 on challenge instances described in [7]. For each (l,
d) that characterizes a challenge instance, we generated 20 random strings of length 600
each. Next, a random motif of length l was generated and planted at random positions in
each of the 20 strings. The planted motif was then randomly mutated in exactly d randomly
chosen positions. For each (l, d) value up to (19,7), we generated 20 instances and for larger
(l, d) values, we generated 5 instances. The average run times for each (l, d) value are
reported in this section. Since the variation in run times across instances was rather small,
we do not report the standard deviation. Even though we test our algorithm using only
synthetic data sets, several authors (e.g., [7]) have shown that PMS codes that work well on
the kind of synthetic data used by us also work well on real data. As PMS5 is the fastest
algorithm [7] for large-instance motif search, we compare the run times of PMS6 with
PMS5. For PMS5, we used C++ code provided by the authors of [7]. PMS6 was coded by us
in C++.

The PMS5 and PMS6 codes were compiled using the -03 flag in gcc under 64-bit Linux and
run on a Intel Core i7 system running at 3.3 GHz. Our experiments were limited to challenge
instances (l, d) [7]. For each challenge instance multiple datasets of 20 randomly generated
strings each of length of 600 characters were generated. For each (l, d), the average time is
reported here. The standard deviation in the run times is very small.

A. Preprocessing
The preprocessing times of PMS5 and PMS6 for all challenge instances are given in Figure
6. The space required to save the preprocessed data is given in Figure 7. The time taken by
PMS5 to build its ILP tables for l = 23 and d = 9 is 883 seconds while PMS6 takes 25.5
seconds to build its ILP tables. For the (23,9) case, PMS5 uses roughly 300MB to store its
ILP results while PMS6 uses roughly 350 MB to store its ILP solutions and combinations.
Although, for large instances, PMS6 needs more space for its ILP tables than does PMS5,
the space required by other components of the PMS5 and PMS6 algorithms dominates. For
example, the Bloom filter used by both algorithms occupies 1GB and to solve (23,9)
instances, we need approximately 0.5GB for Q. At present, run time, not memory, limits our
ability to solve larger challenge instances than (23,9) using either PMS5 or PMS6.

B. Computing Bd

Next, we compare the time taken to compute all Bd(x, y, z) in PMS5 and time taken to
compute all Bd(C(n1, …, n5) in PMS6 for different challenge instances. The times are given
in the Figure 8. Note that since PMS5 and PMS6 use different Bloom filters to intersect the
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Qs, the number of iterations needed for Q′ to reach the threshold size (i.e., the number of
iterations of the for k loop (Figure 1)) may be different in PMS5 and PMS6. If PMS6 is run
for the same number of iterations as used by PMS5, the PMS6 times to compute the Bds
goes up to 8.89m for the (19,7) instances, to 1.29h for the (21,8) instances, and to 10.83h for
the (23,9) instances. The PMS5/PMS6 ratios become 2.5, 2.26 and 1.82, respectively, for
these instances.

C. Total Time
The total time (i.e., time to compute the motifs) taken by PMS5 and PMS6 for different
challenge instances is shown in Figure 9. The run time ratio PMS5/PMS6 ranges from a
high of 2.20 for the (21,8) case to a low of 1.69 for the (17,6) case. When preprocessing time
is factored in, the run time ratio PMS5/PMS6 varies from a high of 2.75 for the (13,4) case
to a low of 1.95 for the (17,6) case.

V. Conclusion
We have developed a new algorithm, PMS6, for the motif discovery problem. The run time
ratio PMS5/PMS6 ranges from a high of 2.20 for the (21,8) challenge instances to a low of
1.69 for the (17,6) challenge instances. Both PMS5 and PMS6 require some amount of
preprocessing. The preprocessing time for PMS6 is 34 times faster than that for PMS5 for
(23, 9) instances. When preprocessing time is factored in, the run time ratio PMS5/PMS6 is
as high as 2.75 for (13,4) instances and as low as 1.95 for (17,6) instances.
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Fig. 1. PMS5 [7]
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Fig. 2. 2-neighborhood tree
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Fig. 3. Computing Bd(x, y, z) [7]
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Fig. 4. PMS6
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Fig. 5. Compute Bd(n1, …, n5)
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Fig. 6. Preprocessing times for PMS5 and PMS6
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Fig. 7. Total storage for PMS5 and PMS6
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Fig. 8. Time taken to compute Bd(C(n1, …,n5)) and Bd(x, y, z)
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Fig. 9. Total run time of PMS5 and PMS6
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