
Improved Sequence Tag Generation Method for Peptide
Identification in Tandem Mass Spectrometry

Xia Cao1 and Alexey I. Nesvizhskii1,2

1Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
2Center for Computational Medicine and Biology, University of Michigan, Ann Arbor, MI 48109,
USA

Abstract
The sequence tag-based peptide identification methods are a promising alternative to the
traditional database search approach. However, a more comprehensive analysis, optimization, and
comparison with established methods are necessary before these methods can gain widespread use
in the proteomics community. Using the InsPecT open source code base (Tanner et al., Anal
Chem. 2005, 77:4626–39), we present an improved sequence tag generation method that directly
incorporates multi-charged fragment ion peaks present in many tandem mass spectra of higher
charge states. We also investigate the performance of sequence tagging under different settings
using control datasets generated on five different types of mass spectrometers, as well as using a
complex phosphopeptide-enriched sample. We also demonstrate that additional modeling of
InsPecT search scores using a semi-parametric approach incorporating the accuracy of the
precursor ion mass measurement provides additional improvement in the ability to discriminate
between correct and incorrect peptide identifications. The overall superior performance of the
sequence tag-based peptide identification method is demonstrated by comparison with a
commonly used SEQUEST/PeptideProphet approach.
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Introduction
Tandem mass spectrometry (MS/MS) has become the method of choice for identifying
peptides and proteins from complex biological samples.1–3 Application of mass
spectrometry (MS) in a high throughput setting brings significant computational data
analysis challenges.4 In particular, peptide identification from MS/MS spectra can be time
consuming and error-prone, especially when applied for the identification of post-
translational modifications (PTMs) such as phosphorylation 5–13.

Computational methods for peptide identification from MS/MS spectra can be roughly
divided into two categories: database searching and de novo sequencing. Database search-
based methods take an experimental MS/MS spectrum as input and compare it against
theoretical fragmentation patterns constructed for peptides from the searched database to
find a match.2 Representative computational tools that automate this process include
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SEQUEST,8 Mascot,7 X! Tandem,6 OMSSA,10 for a review see.14 The limitations of this
method include restricted nature of the search, i.e., it can find the exact peptide sequences
from the specified protein sequence database only. The computational time also becomes an
issue when the set of candidate peptides is large, as in the case of phosphopeptide analysis or
genomic database searches. De novo peptide sequencing method, exemplified by
computational tools such as Lutefisk15, 16, Sherenga17, PEAKS11 and PepNovo,9

reconstructs the peptide sequences directly from the mass spectra without referring to a
sequence database for help2. This method allows identification of peptides that are not
present in the searched sequence database. However, it is also computationally intensive and
requires high quality MS/MS spectra, which makes it unpractical for large scale analysis.

To address these limitations, hybrid computational strategies utilizing the idea of “sequence
tags” have been proposed. A tag is a short amino acid sequence with a prefix mass and a
suffix mass value which designate its position in the peptide. The database search time is
reduced significantly by only searching those candidate peptides that contain the tags
extracted from the MS/MS spectrum. Sequence tagging was first introduced by Mann and
Wilm,18 and further developed in recent years.12, 13, 19–23 InsPecT13 is an example of a
freely available open-source peptide identification tool that use tags as a filter to conduct the
peptide identification.

While the sequence tag-based method is clearly a promising alternative, a more
comprehensive analysis and comparison with established methods is necessary before these
methods can gain widespread use in the proteomics community. For example, previous tests
were largely carried out using older control dataset such as the original ISB 18 protein mix,
which may no longer be representative of data generated using the current generation of
instruments. The comparisons need to be done not directly with SEQUEST or Mascot, but
with the results of those tools after additional validation by PeptideProphet4 or similar
statistical methods. Furthermore, most previous studies focused on the analysis of doubly
charged MS/MS spectra only 12, 13, 24, whereas new instruments such as LTQ-FT, and new
fragmentation mechanisms such as electron-transfer dissociation (ETD), acquire a
significant proportion of MS/MS spectra on peptide ions of charge state 3+ or higher.

In this work, we first present a method, based on the tag generation algorithm of InsPecT, to
generate an improved set of tags for spectra of charge 3+ or higher using multi-charged
fragment ion peaks present in those spectra. Although suggested previously25, 26, to the best
of our knowledge, this is the first work that discusses in detail the utilization of the multi-
charged peaks in the tag construction process, and investigates their effect on peptide
identification. We also investigate the performance of the sequence tag-based method using
control datasets generated on different types of mass spectrometers and using a complex
phosphopeptide-enriched sample. Furthermore, we demonstrate that additional modeling of
InsPecT search scores using semi-parametric mixture modeling approach incorporating the
mass accuracy of the precursor peptide m/z measurement27 provides additional
improvement in the ability to discriminate between correct and incorrect peptide
assignments.

Experimental Procedures
Experimental Data

Protein mix data—The first group of data sets used in this study was obtained from a
mixture of purified trypsin digested proteins28. About 200 fmol of the standard mixture (Mix
3) was analyzed following separation by high pressure liquid chromatography (HPLC)
followed by electrospray ionization (ESI) tandem mass spectrometry using the following
MS instruments: Thermo Electron LTQ-FT, Thermo Electron LTQ, Agilent XCT Ultra,
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Thermo Electron LCQ Deca, and Waters/Micromass QTOF Ultima. For LTQ-FT, in
addition to using the whole data set (40376 MS/MS spectra), a more detailed analysis was
performed using a subset of spectra (20377 spectra in total from 5 spectral files: B06-11071,
B06-11072, B06-11073, B06-11074, and B06-11075). For the other four mass spectrometer
types, the following subsets of the full data set were used: LTQ (13432 MS/MS spectra, 3
spectral files LT20060324_S_60min18mix_03, LT20060324_S_60min18mix_04,
LT20060324_S_60min18mix_05), Agilent (46391 MS/MS spectra, 3 spectral files:
C066-000005, C066-000007, C066-000009), LCQ (11784MS/MSspectra,
4spectralfilesLQ20060324_s_60min18mix_03, LQ20060324_s_60min18mix_04,
LQ20060324_s_60min18mix_05, LQ20060324_s_60min18mix_06), and QTOF (4017 MS/
MS spectra, 3 spectral files QT20060328_Den18mix_01, QT20060328_Den18mix_02,
QT20060328_Den18mix_03).

Phosphopeptide-enriched sample—The data set of Drosophila melanogaster trypsin
digested proteins enriched for phosphopeptides using immobilized metal affinity
chromatography (IMAC) was described in29. The spectra were acquired on a Thermo
Electron LTQ instrument in MS-MS2-only mode (no MS3 spectra). This data set contained
7228 MS/MS spectra from 2 spectral files (A07_5206_c and A07_5208_c). Due to high
efficiency of phosphopeptide-enrichment (89% of the identified peptides were
phosphorylated), this data set was used to evaluate the performance of the method on
modified peptides.

InsPecT settings
Default parameter settings in InsPecT input file were used except when noted. The tag
length was set to 3 and the number of top scoring tags was 100. Trypsin was specified as the
enzyme used to digest proteins. With the protein mix data, no modifications were specified
except a fixed modification of 57.0 Da (iodacetamide alkylation) for cysteine. The searched
sequence database was constructed from the sequences of proteins known to be present in
the mixture, common contaminants, and a large number of decoy entries derived by
reversing the sequences from the human IPI database. In the case of phosphopeptide-
enriched data set, a maximum of three modifications were allowed which could either be
optional phosphorylation modification (+80.0 on S, T, and Y) or a fixed modification of 57
for cysteine. The searched database for the phosphopeptide-enriched sample consisted of all
Drosophila melanogaster sequences exported from the UniProt database, 26311 entries total,
to which the reversed set of sequences were appended.

Charge state assignment
Since the charge state of a peptide ion which produced MS/MS spectrum cannot always be
accurately determined, it creates ambiguities in the analysis of the data.17, 30, 31 InsPecT
uses a support vector machine (SVM) model to determine the charge state (1+, 2+ or 3+) of
a spectrum before the tag generation is conducted. This charge determination function is
effective in that it helps to reduce the database search running time since most spectra are
searched only once using the charge state determined by the SVM model. However, it can
also lead to incorrect assignments of the charge state resulting in incorrect peptide
identification. An alternative approach is to search multiply charged spectra allowing all
possible charge states (referred to below as “forced charge” option). In the case of high mass
resolution instruments such as LTQ-FT and QTOF, the charge state was taken directly from
the mzXML file, i.e. as determined by the instrument software.
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SEQUEST analysis
MS/MS spectra were extracted from mzXML files in *.dta format using mzXML2Other tool
*. Resulting *.dta files were searched with SEQUEST using the following parameter.
Protein mix data: peptide mass tolerance of 3.0 Da; b- and y-ion series; partial trypsin
digestion, allowing for one missed cleavage site; a fixed modification of 57.0 was specified
for cysteine. Phosphopeptide-enriched sample: peptide tolerance of 3.0 Da; partial trypsin
digestion, one possible missed cleavage; fixed modification of 57.0 for cysteine; variable
modifications of 80.0 Da (phosphorylation) were specified for S, T, and Y; a maximum 4
PTMs per peptide. The same sequence databases were used as described above.

First, SEQUEST results were used to derive a benchmark data set of spectra with known
peptide assignments to evaluate the accuracy of tags derived using different settings.
SEQUEST assignments were analyzed using PeptideProphet4 and ProteinProphet32. The list
of proteins was first filtered using ProteinProphet probability of 0.9, and then all MS/MS
spectra assigned a peptide from one of the high confidence proteins and with PeptideProphet
probability above 0.1 were extracted. A sequence tag generated from a spectrum in the
benchmark data set was considered correct if the tag segment was in the SEQUEST assigned
peptide sequence and its prefix and suffix masses were both within a 3 Da mass tolerance
from the actual prefix and suffix masses. For the comparison between SEQUEST/
PeptideProphet and sequence tagging, SEQUEST search results were analyzed using
PeptideProphet and filtered using various probability thresholds. PeptideProphet was run
under the most common settings, with a high mass accuracy binning option (‘-A’ option)
specified for QTOF and LTQ-FT data33. In the case of phosphopeptide-enriched sample,
PeptideProphet was run with ‘-l’ option which is beneficial in the case of phosphorylated
peptides.29

Results and Discussion
The sequence-tag based peptide identification strategy involves the following steps:13 (1)
spectrum filtering to remove noise; (2) generation of tags from the filtered spectrum using
partial de novo sequencing; (3) database filtering to limit the set of candidate peptides to
those containing one of the extracted tag; (4) tag extension in which the tag is extended in
the sequences to complete the peptide selection process; (5) computation of a score for each
candidate peptide and selection of the top scoring match. The subsequent sections of the
manuscript investigate in detail the sequence tag generation part of the algorithm (illustrated
in Figure 1), and the effect of various sequence tagging options on the entire peptide
identification process. It should also be emphasized that one of the main advantages of
sequence tag-based peptide identification methods is the computational speed of the
analysis. The improved computational efficiency of sequence-tag based peptide methods
compared to straightforward database searching using SEQUEST or similar tools has been
extensively discussed in the literature13. Thus, the discussion below will only consider how
the time of the analysis is affected by various sequence tagging options and parameters
investigated in this work, with regular InsPecT’s performance under default settings taken as
a reference point.

Exploratory analysis: spectrum filtering and fragment ion statistics
The key step in the process is generation of a small set of sequence tags for each spectrum
that satisfy the following property: at least one tag in the set of generated tags is present in
the sequence of the peptide that generated the spectrum, so that the peptide will not be
filtered out.24 The performance of the tag generation algorithm depends in part on the details

*http://tools.proteomecenter.org/software.php
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of spectrum processing and the types of fragment ions considered. By default, InsPecT
considers only 6 most intense peaks in the spectrum within a 50 Da window (the number of
peaks per interval considered will be referred to as peak depth below). Another assumption
during tag generation in InsPecT, as well as in most other programs, is that observed peaks
represent singly charged fragment ions. However, spectra of charge 3+ or higher are
expected to contain a significant number of multi-charged fragments. Some doubly charged
fragment ions are also present in 2+ spectra, e.g. peaks corresponding to a neutral loss of or
one or more residues at the peptide N-terminus.34

To investigate the fragment ion statistics for spectra of different charge state, an exploratory
analysis was performed using 2+, 3+, and 4+ charged spectra from the protein mix LTQ-FT
dataset (the 5 LC-MS/MS run subset, see Experimental Data). The spectra were filtered
using the default InsPecT peak depth of 6 (window size 50 Da), as well as using peak depth
3 and 12. Table 1 shows statistics for the most common ion types assigned to all correctly
identified peptides (based on SEQUEST analysis) in this data set. Fragment ions were
assigned to peaks in a ranked order based on their overall likelihood, i.e., a peak that can be
explained by more than one fragment ion would be assigned to a more common ion type. A
mass tolerance of 0.8 Da was used when assigning fragment ions to peaks. Multiple peaks
within a 0.8 Da of a predicted fragment ion, if present in the filtered spectrum, were counted
as one. For each peak depth, the Table shows the average number of peaks assigned an ion
of a given type in a spectrum of a particular charge state. Also shown are the percentage of
total assigned peaks labeled as given type, and the ion type propensity. Propensity is defined
here as the percentage of all possible ions of a given type that were observed in a spectrum
on average.

Table 1 shows several interesting trends. In the case of doubly charged spectra, the singly
charge ions b+ and y+ dominate (labeled as b and y in Table 1). The observed distributions
of ion types and propensities are largely in agreement with previous observations17, 35. At
peak depth 6, a spectrum of charge state 2+ contains on average 7.1 (propensity 0.64) and
8.7 (propensity 0.79) peaks corresponding to b+ and y+ fragment ions, respectively.
Combined, b+ and y+ ions account for about 40% of all assigned peaks. Note that this
percentage may be slightly underestimated due to assignment of peaks to other fragment ion
types by random change. The frequency of random assignment can be estimated to be
between 0.5 and 1 peak per ion type per spectrum (propensity ~ 0.05 – 0.1) based on the
observed counts for ions not expected to be present in doubly charged MS/MS spectra, such
as b+++ and y+++ (b3 and y3) ions. Doubly charged fragment ions are far less abundant, 1.1
(propensity 0.1) and 2.7 (propensity 0.24) b++ and y++ ions per spectrum, respectively. Since
the propensity y++ is just above the noise, and at the noise level for b++, their contribution to
tag generation is not expected to be significant.

The situation is different for spectra of higher charge state. In the case of triply charged MS/
MS spectra, doubly charged fragment ions are almost as frequent as singly charged ions. For
example, the propensity of y++ ions in the case of 3+ spectra is 0.39, close to the propensity
of 0.5 observed for y+ ions. In the case of spectra of charge state 4+, b++ and y++ ions
become the most frequently observed ions, with an additional substantial contribution from
triply charged fragment ions. This suggests that in the case of high charge MS/MS spectra
multi-charged fragment ions should be considered by the tag generation algorithms.

In considering the importance of multi-charged fragment ions, it is also necessary to
consider the effect of spectrum filtering, and in particular the peak depth parameter (Table
1). As peak depth increases, less intense peaks start contributing to the ion statistics. For
example, at peak depth 3, in the case of 2+ spectra there are on average 5.6 and 8.1 peaks
per spectrum labeled as b+ and y+, respectively. Combined, they explain close to half of all
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assigned peaks. At peak depth 12, the average number of peaks assigned these two ion types
increases to 7.8 and 9, respectively. However, inclusion of less intense peaks has a more
significant impact on other ion types, such as loss of water or ammonia ions and multi-
charged ions. As a result, at peak depth 12 only approximately 30% of all assigned ions are
b+ and y+ ions. Similar trends were observed for spectra of 3+ and 4+ charge states: at peak
depth 3, just a few ion types dominate, but at higher peak depth less common ion types start
catching up. This suggests that the comparative analysis of various sequence tagging
methods, and in particular the effect of multi-charged ions on tag generation, should
consider the peak depth parameter.

Spectrum graph generation and edge constraints
To incorporate multi-charged fragment ions, a new tag generation algorithm was
implemented using the InsPecT source code. The outline of the method is shown in Figure 1
using an example of a spectrum acquired on a triply charged peptide ion. As the first step,
the experimental spectrum is processed using InsPecT filtering function. The default peak
depth of 6 peaks per 50 Da window is used, except when noted. The analysis starts with a
standard assumption of singly charged fragment ions. Given a peak with mass to charge
ratio M in a spectrum acquired on a peptide ion with a singly protonated mass PM, a node of
mass M - H+ (b+ node) and its complementary node of mass PM - M (y+ node) are created,
where H+ is the proton mass. These two nodes are inserted in the spectrum graph and
labeled as type “0” and “1”, respectively. To include multi-charged fragment ions, the
procedure is extended by assuming that each peak in the spectrum may instead represent a
doubly charged fragment ion. Thus, two additional nodes of mass 2(M-H+) and PM-2(M-
H+)-H+ are created and labeled as “2” and “3” (b++ and y++ nodes), respectively. The triply
charged fragment ions can be accommodated in the same way (nodes of type “4” and “5”).

After all the nodes are inserted in the spectrum graph, edges are created between any two
nodes that have the mass difference between them corresponding to the mass of an amino
acid (or amino acid with a modification) within a certain mass tolerance (edge mass
tolerance constraint). The spectrum graph is then searched and each sub-path of a fixed
length (length 3 used in this work) is extracted as a tag. Each tag is represented as a triplet
<prefix mass, tag segment, suffix mass>. Connecting all node types, denoted as [0123] in
the 3+ spectrum example used in Figure 1, leads to a large number of edges, making the
spectrum graph very complex. This increases the number of sub-paths in the spectrum
graph, which in turn results in a loss of sensitivity (see below).

To reduce the spectrum graph complexity, additional constraints on edge creation are
introduced. The most stringent constraint would be to allow creation of sequence tags from
nodes of the same type only, denoted as [0][1][2][3] in Figure 1, e.g. 0-0-0-0 tag (all b+ ions)
or 1-1-1-1 tag (all y+ ions). Another option is to allow a mix of different node types, but
limit the kind of connections allowed. For example, it has been observed that peptide
fragments are more likely to appear together in a spectrum as a pair of complementary
peaks, e.g. b+ ion peak and its complement y++ ion peak, or b++ and its complement y+ in
the case of 3+ spectra.31, 36 Thus, a reasonable assumption is to allow nodes of not more
than two different types within the same tag.

Furthermore, as an additional constraint, the number of node type mismatches can be
limited, e.g. allowing tags with 1 mismatch (e.g. 0-3-0-0 tag) but not 2 mismatches (as in
0-3-3-0 tag). Figure 2 shows the results of the analysis of the number mismatches in the case
of the phosphopeptide-enriched data set. For each MS/MS spectrum of charge 3+ that was
identified with SEQUEST (see Experimental Methods), 100 randomly selected incorrect
tags and the two highest scoring correct tags were extracted. The tags then were divided into
categories based on the number of mismatches. It is evident that a large portion of correct
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tags have 0 mismatches (i.e., tags derived from fragment ions of the same type, e.g. all y+

ions). Allowing not more than 1 mismatch covers 99% of all correct tags. In contrast,
incorrect tags are distributed across all three categories, with a substantial number (30%) of
tags containing 2 mismatches.

Finally, when connecting nodes of type 2 or higher, it is reasonable to allow a higher mass
tolerance than what is used for singly charged fragment ions (0.5 Da). The same fragment
ion m/z mass measurement error effectively results in a larger error in the determination of
the corresponding peptide fragment mass due to multiplication of the m/z value by the
charge value.

The nomenclature for describing various constraints is illustrated in Figure 1. For example,
(03)(12) denotes a sequence tag generation method that allows connection between nodes of
type 0 and 3, or type 1 and 2 only, edge mass tolerance of 0.5 Da, and not more than 1
mismatch. The increase in the edge mass tolerance to 1.0 Da from 0.5 Da, when applied, is
explicitly indicated, e.g., (03)(12)1.0. For reference, the tagging method of InsPecT
considers nodes of type 0 and 1 only, no restriction on the number of mismatches, and uses
0.5 Da mass tolerance, and thus can be denoted as [01].

Tag scoring
The tag scoring function implemented in InsPecT uses a Bayesian network approach that
effectively captures the relationship between the peak intensity and the fragment ion type.
The tag score is a combination of the so-called node cut score, flank score, and edge mass
error calculated from the tag.37 The retraining of the Bayesian scoring function given the
modified tag generation process was not attempted in this work. Instead, several alternative
scoring functions were tested. An SVM model and a logistic regression model were trained
using multiple spectral features computed for each sequence tag. These features included the
summed fragment ion intensities, sum of the intensity ranks, sum of squared mass error for
all edges in the tag, and other features. However, when implemented within the InsPecT
source code, the results were not consistently better (data not shown). Thus, all the
subsequent analysis was performed using the existing InsPecT scoring function. While
performing this analysis, it was observed that sequence tags exhibited a heterogeneous
distribution of tag scores depending on the types of nodes used to create the tag. This was
partially addressed in this work by selecting 50 high scoring tags separately for each group,
e.g. in the case of (03)(12) setting, 50 (03) tags and 50 (12) tags, for a total of 100.

Evaluation of tag generation methods
Sensitivity analysis—An ideal tagging method should generate the tags fast and with
high sensitivity. The sensitivity (referred to as ‘tag accuracy’ in 24) is defined here as the
number of spectra in the SEQUEST-derived benchmark data set for which at least one
correct tag was in the list of N highest scoring tags (N=100 here). The sensitivity of a
tagging method depends on both the coverage of the peptide sequence by generated correct
tags and also the on discriminating power of the tag scoring function. Tag coverage is
defined here as the number of amino acids on the peptide covered by all the extracted
correct sequence tags (regardless of the tag score) to the length of the peptide. For example,
if for a peptide “WQDESDDEEGDQK” the tag extraction method generates five correct
tags: DES, ESD, SDD, DEE and EEG, covering 8 of the 13 residues, the tag coverage is
8/13=61.5%. A good tag scoring function would assign higher score for correct tags and
lower score for incorrect tags, ensuring that at least one of the highest scoring tags is correct.

From the practical point of view, the sensitivity is the most important parameter. However,
the total number of tags that can be extracted from the spectrum is informative as well since
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it affects the computational time of the tag generation algorithm. The tag coverage
parameter is less important in the context of this work since it does not matter what fraction
of the peptide sequence can be reconstructed by assembling extracted short sequence tags, as
long as at least one of the tags is correct (which is measured by the sensitivity parameter).
However, the tag coverage analysis is important for understanding the relationship between
various tagging options, the complexity of the spectrum graph, the sensitivity, as presented
below. Furthermore, it may be of interest in related applications, such as de novo peptide
sequencing.

To investigate the performance of various constraints applied during the tag generation
process, different tagging methods were compared in terms of the tag sequence coverage,
the number of all possible sequence tags that can be extracted from the spectrum graphs, and
the sensitivity. The analysis was first conducted using 2+ and 3+ spectra from the
phosphopeptide-enriched data set. Figure 3 shows the total number of sequence tags, tag
coverage, and the sensitivity for several different tagging methods and using charge state
determination function. The first two points in the plot represent methods that do not use
multi-charged peaks, with the second point, [01], representing default InsPecT settings. In
terms of the spectrum graph complexity, 2+ and 3+ spectra demonstrate a similar behavior.
As expected, creating and connecting all the four types of nodes makes the spectrum graph
more complex, leading to a much larger number of possible sequence tags compared to
using singly charged peaks only (Fig. 3a). The number of tags also increases with larger
edge mass tolerance. The sequence coverage trends, however, are very different. For 3+
spectra, the sequence coverage (Fig. 3b) increases when multi-charged fragment peaks are
included. In contrast, in the case of 2+ spectra the sequence coverage does not benefit from
inclusion of multi-charged peaks, reflecting the presence of only a few doubly charged
fragment ions in those spectra (Table 1).

The sensitivity measures the ability to obtain a sufficiently high score for at least one of the
correct tags given a much larger background of incorrect (random) tags that can be extracted
from the spectrum graph. Thus, the goal here is to define the set of conditions representing
the optimal tradeoff between the increase in the sequence coverage (positive effect on
sensitivity) and the total number of sequence tags (negative effect). Figure 3c shows that for
3+ spectra allowing multi-charged fragment ions increases the sensitivity, with (01)(23)1.0
being the optimal point in this data set. Connecting nodes of all types without any restriction
further increases the sequence coverage, however, the sensitivity drops due to a more
substantial increase in the number of sub-paths in the spectrum graph. In the case of 2+
spectra, the optimal performance is observed under [01] setting, again confirming that in
those spectra doubly charged fragment ion peaks are relatively rare.

The results of the sensitivity analysis for 3+ spectra in the phosphopeptide data set are
shown in more detail in Table 2. Inclusion of multi-charged peaks increases the sensitivity
from 77.6% or 76.6% with [01] method to 82.7% or 82.5% for tagging method (01)(23)1.0
using either charge determination or charge forced option, respectively. It should be noted
that the charge state determination function of InsPecT performed incorrect assessment on
approximately 5% of 3+ spectra. When searched with SEQUEST, 457 spectra were
determined (via assignment of a high probability peptide) to be of 3+ charge state, whereas
only 433 of them were called 3+ by the charge determination function of InsPecT.

As mentioned above, computational efficiency is an important advantage of sequence-tag
based methods. Thus, it is important that the algorithmic improvements, such as inclusion of
multi-charged fragment ions, do not lead to a substantial increase in the computational time.
The computational time of the sequence-tag extraction part of the method depends in part on
the complexity of the spectrum graph. Compared to [01] method, (03)(12) or (01)(23)
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methods are not significantly slower, with the increase in time not exceeding 5%. Allowing
connection among nodes of any type, such as [0123], is an order of magnitude slower, as
expected from Fig. 3a.

Effect of mass spectrometer type—The sensitivity of various tagging methods was
further investigated using 3+ spectra generated on different MS platforms (Table 3). As with
the phosphopeptide data set (Table 2), the charge state determination function of InsPecT
resulted in misclassification for a substantial number of spectra. Thus, Table 3 shows the
results obtained using the forced charge option only (the charge state is taken from the
mzXML files in the case of LTQ-FT data). The results obtained using the charge state
determination function of InsPecT are shown in the Supplementary Table 1. It should be
noted that using the forced charge option instead of the charge determination function of
InsPecT increases the overall time of the analysis by close to 50% due to the need to process
the same spectrum multiple times. Still, this increase is acceptable given a substantial loss in
the number of correct identifications observed when using the charge state determination
function.

Regardless of the MS platform, inclusion of doubly charged fragments resulted in higher
sensitivity. Overall, the best performance was observed with LTQ-FT data set (96.9%
sensitivity), followed by QTOF and LTQ (95.7%), and then LCQ and Agilent ion trap,
83.4% and 81.4%, respectively. For QTOF data set the best performance was achieved by
the tagging method with the edge mass tolerance of 0.5 Da, whereas it was 1.0 Da (for
connecting node types 2 and 3) for the other four instrument types. This reflects the superior
fragment ion mass accuracy of QTOF instruments.

It should also be noted that the analysis of QTOF data was likely performed in a suboptimal
way. MS/MS spectra generated using a QTOF instrument are of a higher mass accuracy and
resolution than those generated using ion trap instruments. Thus, these spectra can be
deconvoluted and de-isotoped, allowing reliable identification of the mass and charge state
of the fragment ion.38 Neither the commonly used conversion program ReAdW used in this
work to create mzXML files from raw instrument files, nor InsPecT program itself perform
these functions. Thus, additional data processing of QTOF data, e.g. using Mascot Distiller†

or a similar tool, should improve the performance of the sequence tag extraction algorithm,
and the entire peptide identification process, by reducing the number of nodes in the graph
given the knowledge of the fragment ion charge state, and by eliminating spurious nodes
arising from isotope-resolved (first, second isotope) peaks. Advanced spectrum processing
methods may improve the analysis of data generated on other instrument types as well.39

Effect of spectrum quality—The MS/MS spectrum quality is one of the most important
factors determining the likelihood of successful peptide identification. The Agilent data set
was used here to explore the correlation between the spectrum quality and the ability to
extract at least one correct sequence tag. In constructing the benchmark dataset (see
Experimental Methods), those MS/MS spectra were selected for which SEQUEST assigned
a peptide from a protein identified with high probability as determined by subsequent
ProteinProphet analysis. Among those spectra, some were identified with low
PeptideProphet probability and are likely to be of lower quality. Table 4 compares the
performance of different tag generation methods on spectra with PeptideProphet probability
between 0.1 and 0.9 (lower quality spectra) and those with probability equal or greater than
0.9 (higher quality). For all settings, the sensitivity is significantly higher for higher quality
spectra than for lower quality spectra. Within each spectrum quality group, the tagging

†www.matrixscience.com
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methods using multi-charged peaks outperform the ones using singly charged peaks only.
However, the improvement is far more significant for spectra of lower quality.

Analysis on spectra of charge 4+—The analysis was extended to spectra of charge 4+
present in the protein mix LTQ-FT data set, in which case triply charged fragment ions were
also considered in tag generation (node types 4 and 5). Table 5 lists the sensitivity for
different settings. To evaluate the variability across technical replicates of the same sample,
the results are shown separately for each LC-MS/MS run (mzXML file), with the combined
data set statistics shown at the bottom of the Table. The tagging method using only singly
charged peaks, [01], performed the worst compared to other tagging methods. However, the
use of triply charged fragment ions did not lead to further improvement compared to the
settings found optimal for 3+ spectra. The tagging method (03)(12),1.0 achieves the highest
sensitivity of 85.1%, a significant improvement compared to only 66.4% with the [01]
method. The results for the individual runs are highly consistent, indicating that the increase
in the sensitivity is due to algorithmic improvements and not due to run to run variability of
the mass spectrometer.

Effect of the number of top scoring tags considered—The 4+ LTQ-FT data set
was also used to investigate the sensitivity as a function of the number of top scoring tags
generated for each spectrum (Figure 4). The results are shown for three tagging methods,
[01], (01)(23)1.0, and (03)(12)1.0. In the case of (01)(23)1.0 setting, the algorithm first
selects 50 highest scoring (01) tags, followed by selection of 50 highest scoring (23) tags
(tags 51–100). As a result, [01] and (01)(23)1.0 curves are largely identical for the first 50
tags. The plot shows that the gain in sensitivity by generating more tags of the same kind
starts diminishing after the selection of the first 25 highest scoring tags. In fact, extracting
100 tags instead of 50 under [01] setting improved the sensitivity by less than 10%. On the
other hand, the addition of (23) tags allows a much higher increase in the sensitivity by
bringing in a new set of tags involving y++ and b++ fragment ions. The (03)(12)1.0 method,
also shown in Fig. 4 starts slower due to suboptimal performance of (03) tags (b+ and y++

fragment ions) compared to (01) tags, but after addition of (12) tags (y+ and b++ ions) gives
the best performance overall. Similar results were observed for 3+ spectra (data not shown).

The number of top scoring tags extracted from a spectrum in this work was fixed at 100,
which is a default parameter in InsPecT. Figure 4 indicates that the number of tags can
potentially be reduced to 50 without a substantial loss in the sensitivity. A range of 50–100
tags was also identified as an optimal range in the previous studies13. The optimal number of
tags represents a trade-off between the sensitivity and the computational time, and thus is
data set dependent. When the time of the analysis becomes the main consideration, e.g. in
the case of very large datasets or phosphopeptide analysis, as low as 25 tags may be used.
However, regardless of the total number of tags extracted from the spectrum, (01)(23)1.0 or
(03)(12)1.0 methods provide a substantial improvement over [01] method in the case of MS/
MS spectra of charge state 3+ and higher.

Effect of spectrum filtering—The results presented above were obtained using the
default spectral filtering setting of InsPecT (peak depth 6). However, the effects of spectral
filtering and inclusion of multi-charged fragment ions are interrelated, as discussed above.
Inclusion of multi-charged ions is beneficial only if (1) their propensity is well above the
noise level and (2) the propensity of singly charged ions is well below 1, since otherwise
multi-charged ions would only add redundant information. Since increasing the peak depth
has an effect of increased propensity of b+ and y+ ions (Table 1), the influence of multi-
charged ions is expected to diminish with increasing peak depth. Table 6 shows the
sensitivity of the [01] and (03)(12)1.0 tag generation methods for spectra of charge 3+ in the
protein mix LTQ-FT data set (5 run subset also used in Table 3) as a function of peak depth:
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retaining 3, 6, or 12 most intense peaks per 50 Da window. Indeed, increasing the peak
depth results in increased sensitivity in the case of [01] tagging option. At peak depth 12,
[01] option gives a sensitivity of 93.4%, compared with 91.1% when using the default peak
depth of 6, and 84.5% with the peak depth reduced to 3. Thus, the sensitivity of the [01]
method gets closer to, although does not reach, the 96.9% sensitivity achievable with the use
of multi-charged ions.

Furthermore, using [01] tagging option and increasing the peak depth from 6 to 12 leads to
more than a two-fold increase in the computational time due to doubling of the number of
nodes in the spectrum graph. In contrast, and as mentioned above, the computational time of
methods such (03)(12)1.0 remain similar to that of [01] method (at the same peak depth)
since similar doubling in the number of nodes due to consideration of multi-charged ions is
compensated by additional constraints on edge creation. Using [0][1] option with peak depth
12 (also shown in Table 6) gives computational times comparable to [01] and (03)(12)1.0
with default peak depth 6, but with a lower sensitivity of 92.9%.

Peptide Identification
Generation of sequence tags from MS/MS spectra, the main focus of this work, represents
only the first step in the peptide identification process. The more relevant metrics of the
performance are the number of identified peptides at a certain fixed false discovery rate
(FDR)14 and the overall computational time. These performance characteristics will be
discussed in the remainder of the manuscript using the protein mix LTQ-FT and the
phosphopeptide data sets.

After top scoring tags are generated for a set of spectra, they are organized in a trie
structure,40 and the protein database is scanned to get matches for each tag. If there is a
match, the tag is extended from the matching region in both directions to attempt matching
the tag’s prefix mass and suffix mass (allowing for user specified modifications). For all
candidate peptides selected this way, the composite match quality score (MQScore) is
computed using a combination of several features, including the number of b and y ion
matched, the summed intensity of b and y peaks, and the number of tryptic termini (NTT).
To distinguish between correct and incorrect peptide assignments, InsPecT calculates a
probability score (referred to as p-value) using a parametric mixture modeling approach
similar to that of PeptideProphet4. The p-value is computed as the complement (1 –
probability) of the posterior probability that the assignment is correct determined from the
distributions of the FScore among correct and incorrect identification. The FScore is
calculated from MQScore and Delta MQScore in a way resembling the SEQUEST
discriminate function4.

Making a direct comparison between InsPecT and SEQUEST/PeptideProphet may not be in
favor of InsPecT, especially in the case of LTQ-FT data, since PeptideProphet utilizes the
mass accuracy of the precursor ion measurement dM, i.e. the difference between the
measured and calculated precursor ion mass. This information is known to significantly
improve the power to discriminate between correct and incorrect identifications. Thus, the
InsPecT FScore and the mass accuracy dM distributions were also modeled using the
recently described semi-parametric mixture modeling approach27. This model uses decoy
peptides for the estimation of the negative mixture component, which removes parametric
assumptions making it applicable to any distribution of scores without the need to worry
about the shapes of the underlying distributions when fitting the data. The results of filtering
the data using probabilities computed by the model were compared with that using InsPecT
p-values (which do not take dM into account), as well as with SEQUEST/PeptideProphet.
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Figure 5 shows the receiver operating characteristic (ROC) plots for the protein mix LTQ-
FT data set. In the case of 4+ and 3+ spectra (Fig. 5a, b), four methods were compared: 1)
SEQUEST/PeptideProphet (labeled ‘SEQUEST+PP’); 2) Sequence tag based identification
using singly charge (SC) fragment ions only, [01] method, followed by p-value filtering
(‘Sequence tagging (SC)’) 3) Sequence tagging using multi-charged (MC) fragment ions,
(03)(12)1.0 method, followed by p-value filtering (‘Sequence tagging (MC)’); 4) Sequence
tagging, (03)(12)1.0 method, followed by semi-parametric modeling with inclusion of the
mass accuracy parameter dM (‘Sequence tagging (MC) + Mass Acc’). Note that ‘Sequence
tagging (SC)’ essentially represents the unmodified InsPecT program, except that the
peptide ion charge state was taken from the mzXML file instead of using the charge
determination function. In the case of 2+ spectra (Fig. 5c), the tags were generated using
[01] method only.

Since the size of the decoy subset of the searched database was very large compared to the
number of target sequences (proteins present in the protein mix sample), all identifications
of non-decoy peptides were taken as correct. Peptide identifications were filtered using
varying p-value or probability cut-offs, and the number of correct identifications and the
false discovery rate (fraction of peptide assignments passing the threshold that are incorrect)
were plotted for each cut-off. Only the most relevant region of FDR, i.e. less than 5%, is
shown. Several trends are apparent. First, for 3+ and 4+ spectra, incorporation of multi-
charged fragment ions in the sequence tagging algorithm significantly increases the number
of identified peptides, especially in the case of 4+ spectra. Second, inclusion of the mass
accuracy parameter provides additional improvement, helping the sequence tag-based
method outperform SEQUEST/PeptideProphet.

The increase in the sensitivity due to inclusion of the mass accuracy parameter observed
here is another example of how auxiliary information, i.e. variables other than the search
scores, can significantly improve discrimination when incorporated in the statistical
model14, 33. This is further illustrated in Figure 6, which plots the distributions of FScore
(Fig. 6a) and dM (Fig. 6b) among correct and incorrect identifications for 3+ spectra. The
correct identifications are clustered in a narrow range of dM values close to 0, whereas
incorrect identifications are distributed across the entire 5 Da interval (the mass tolerance
used by InsPecT tag extension algorithms in the process of selecting candidate peptides is
2.5 Da). As a result, the mass accuracy dM provides a boost in discriminating power in
addition to the main FScore itself.

Figure 7 shows the results of a similar analysis performed using 2+ and 3+ spectra from the
phosphopeptide-enriched data set. Since the searched protein database for this data set
included an equal number of target and decoy sequences, the number of correct peptide
identifications cannot be determined directly. Instead, for each probability score cut-off it
was estimated as the number of matches to target sequences minus the number of matches to
decoys. Similarly, FDR was estimated as the ratio of the number of decoy matches to the
number of matches to target sequences. Although the LTQ mass accuracy is lower than that
for LTQ-FT, the mass accuracy parameter dM still improved discrimination. Interestingly,
in this data set the sequence tag-based method outperforms SEQUEST/PeptideProphet to a
greater degree. One possible explanation for this is that allowing phosphorylation as a
variable modification significantly increases the number of candidate peptides that have to
be scored by SEQUEST, which in turn increases the likelihood that the correct peptide is
masked (not a top scoring match) by one of the incorrect peptides. Restricting the set of
candidate peptides to those sequences that contain one of the generated sequence tags brings
its size back to manageable levels. Second, the InsPecT peptide scoring function was
specifically optimized for phosphopeptide analysis41, which is another advantage compared
to the cross-correlation score of SEQUEST.
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Conclusion
We presented an improved sequence tag generation method that directly incorporates multi-
charged fragment ions often observed in MS/MS spectra of high charged state. Based on a
comprehensive analysis, the method was optimized to improve the sensitivity without a
substantial increase in the computational time. The improved performance was demonstrated
with spectra collected using a protein mix sample on five different mass spectrometers
(Thermo LTQ-FT, LTQ and LCQ, Waters/Micromass QTOF, and Agilent XCT), as well as
using a complex phosphopeptide-enriched sample analyzed using an LTQ instrument. We
also demonstrated that additional modeling of InsPecT search scores and inclusion of
auxiliary information (e.g. mass accuracy) provides additional noticeable improvement in
the sensitivity of peptide identification. In summary, this work confirms the potential of the
sequence tagging as sensitive and computationally efficient peptide identification strategy,
especially in the case of phosphopeptide analysis. The new tagging method was
implemented as an extension of the InsPecT open-source program.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Overview of the method and different tag generations settings.
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Figure 2.
The frequency of observing one the two highest scoring correct tags or one of the 100
randomly selected incorrect tags extracted from 3+ spectra in phosphopeptide-enriched data
set having 0, 1, or 2 mismatches of node type.
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Figure 3.
Optimal sensitivity as a trade-off between the total number of sequence tags that can be
extracted from the spectrum graph and the coverage of the peptide sequence by generated
correct tags. (a) Average number of sequence tags (correct or incorrect) that can be extracted
from 2+ (dashes) or 3+ (solid curve) spectra in the phosphopeptide data set using different
tag generation options. (b) Coverage of the peptide sequence by generated correct tags. (c)
Sensitivity, i.e. the percentage of spectra for which one of the top 100 scoring tags is correct
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Figure 4.
Sensitivity of different tag extraction methods as a function of the number of top scoring
tags considered for each spectrum (up to 100, the default value) in the protein mix LTQ-FT
4+ charge state spectra data set.
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Figure 5.
The number of correct identifications as a function of false discovery rate for spectra from
the protein mix LTQ-FT data set. (a) 4+ spectra. Shown are the results of SEQUEST/
PeptideProphet analysis (dashed green curve); sequence tagging using singly charge (SC)
fragment ions only, [01] method, followed by p-value filtering (dotted purple curve);
sequence tagging using multi-charged (MC) fragment ions, (03)(12)1.0 method, followed by
p-value filtering (dash dot magenta curve); sequence tagging, (03)(12)1.0 method, followed
by semi-parametric modeling with inclusion of the mass accuracy parameter dM (solid blue
curve). (b) 3+ spectra, same as above (c) 2+ spectra. The tags were generated using [01]
method only.

Cao and Nesvizhskii Page 20

J Proteome Res. Author manuscript; available in PMC 2013 August 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Histogram of InsPecT (a) FScore and (b) mass accuracy score dM plotted separately for
correct (solid blue) and incorrect (solid green) peptide identifications for 3+ spectra in the
protein mix LTQ-FT data set. Also shown are distributions fitted by the semi-parametric
model (dashed curves).
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Figure 7.
The estimated number of correct identifications as a function of false discovery rate in the
phosphopeptide data set (a) 3+ spectra, SEQUEST/PeptideProphet analysis (green dashed
curve), sequence tagging using singly charge (SC) fragment ions only, [01] method,
followed by p-value filtering (dotted purple curve); sequence tagging using multi-charged
(MC) fragment ions, (03)(12)1.0 method, followed by p-value filtering (dash dot magenta
curve); sequence tagging, (03)(12)1.0 method, followed by semi-parametric modeling with
inclusion of the mass accuracy parameter dM (solid blue curve). (b) 2+ spectra. The tags
were generated using [01] method only.
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Table 6

Effect of spectrum filtering on sequence tag generation. Sensitivity analysis of three different tag generation
methods for spectra of charge 3+ in protein mix LTQ-FT data set (4206 spectra in total). Spectra were filtered
using different peak depth: retaining 3, 6, or 12 most intense peaks per 50 Da window.

Peak depth

Sensitivity (%)

[01] [0][1] (03)(12), 1.0

3 84.5 79.2 93.5

6 91.1 89.8 96.9

12 93.4 92.9 96.9
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