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Abstract
We present a statistical method SAINT-MS1 for scoring protein-protein interactions based on the
label-free MS1 intensity data from affinity purification - mass spectrometry (AP-MS)
experiments. The method is an extension of Significance Analysis of INTeractome (SAINT), a
model-based method previously developed for spectral count data. We reformulated the statistical
model for the log-transformed intensity data, including adequate treatment of missing
observations, i.e. interactions whose quantitative data are inconsistent over replicate purifications.
We demonstrate the performance of SAINT-MS1 using two recently published datasets: a small
LTQ-Orbitrap dataset with three replicate purifications of single human bait protein and control
purifications, and a larger drosophila dataset targeting insulin receptor/target of rapamycin
signaling pathway generated using an LTQ-FT instrument. Using the drosophila dataset, we also
compare and discuss the performance of SAINT analysis based on spectral count and MS1
intensity data in terms of the recovery of orthologous and literature-curated interactions. Given
rapid advances in high mass accuracy instrumentation and intensity-based label-free quantification
software, we expect that SAINT-MS1 will become a useful tool allowing improved detection of
protein interactions in label-free AP-MS data, especially in the low abundance range.
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INTRODUCTION
Affinity purification coupled with mass spectrometry (AP-MS) is a popular method for
mapping protein-protein interaction (PPI) networks [1]. While there are alternative
approaches for identifying physical interactions between proteins, e.g. yeast two-hybrid
screening [2], AP-MS offers a complementary perspective and has several advantages [3, 4].
In AP-MS, target proteins (baits) are co-purified with their interaction partners (preys)
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through affinity purification such as epitope tag-based immunoprecipitation. The protein
mixture resulting from the purification is digested into peptides, which are identified using
tandem mass spectrometry (MS/MS, or MS2). Purification of multiple baits reveals protein
complexes in the target interaction network [5–8]. This method has proved to be powerful
for mapping both local networks [8–13] as well as global PPI networks [14, 15]. The utility
of quantitative information for detection of true protein interactions in the context of
labeling-based experiments has been long established [16–18]. However, quantitative data
such as spectral counts or integrated peptide ion intensities associated with each interaction
can be extracted and used even in label-free AP-MS experiments. This label-free
quantitative data can improve interaction scoring because bona fide interactions can be
distinguished from nonspecifically binding proteins via the analysis of quantitative protein
profiles across multiple purifications with different bait proteins and in the negative controls
(if available).

As label-free quantitative information is increasingly utilized for the analysis of AP-MS
data, it is crucial to develop statistically sound methods for scoring interactions. Several
approaches for this type of datasets have been recently reported. Sardiu et al utilized the
normalized spectral abundance factors for improved elimination of proteins observed in the
negative control runs [8]. CompPASS rescales observed spectral counts reflecting the
reproducibility of detection across biological replicates and the frequency of observing prey
proteins in purifications with different baits [12]. Spectral counts were also utilized in an
advanced empirical filtering scheme by Malovannaya et al. [19], and Mascot ion scores as
proxy for protein abundance were used in [20]. In a recent work, our group developed an
advanced statistical method termed Significance Analysis of INTeractome (SAINT) for
spectral count data [9, 21]. The method estimates the data generating distribution of spectral
counts under true and false interaction hypotheses, and computes the probability of true
interaction. SAINT incorporates the information from negative control purifications in
scoring, but in certain cases (multiple baits, low degree of network interconnectivity) can be
applied to datasets without controls.

While spectral counting is an efficient mode of quantification, MS1 intensity is a potentially
more accurate alternative for label-free quantification. Specifically, intensity data extracted
using software tools such as SuperHirn [22], MaxQuant [23], or IDEAL-Q [24] can provide
accurate measurements in the low abundance range since every sequenced peptide is
observed with intensity. This information is lost in spectral counting, which limits
quantification of the low abundance proteins identified by one or several MS/MS spectra
only. On the other hand, extraction of reliable MS1 information generally requires high mass
accuracy instrumentation and more advanced computational infrastructure. Nevertheless, the
availability of high mass accuracy AP-MS datasets is increasing, which necessitates
development of advanced scoring methods for continuous data such as intensity-based data.
To this end, we present an extension of the computational modeling framework of SAINT to
such data, termed SAINT-MS1. The model assumptions were modified to account for
continuous data, including appropriate treatment of missing observations. We applied the
method to two recently published dataset and evaluated the performance of our interaction
scoring method. We also discuss the comparison between the results obtained for the same
dataset using spectral count and intensity based data.

MATERIALS AND METHODS
QUBIC dataset

We first considered a small published dataset containing several human bait proteins, termed
QUBIC dataset [25]. QUBIC is a protocol for MS-based analysis of protein interactions
based on creating bait proteins using bacterial artificial chromosome recombineering
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technology, which has an advantage of avoiding over-expression of bait protein to preserve
native conditions. In this work we took the data for bait protein CDC23, a member of
anaphase-promoting complex (APC). The dataset contains 3 purifications of the bait and
additional 3 negative control purifications, analyzed using an LTQ-Orbitrap mass
spectrometer (Thermo Electron). Raw MS data were downloaded from Tranche data
repository and converted to mzXML format. Acquired MS/MS spectra were searched using
X! Tandem/k-score database search tool [26] against RefSeq v. 40 human protein sequence
database appended with an equal number of decoy sequences. The search was done allowing
tryptic peptides only and maximum 2 missed cleavage sites, and with cysteine
carbamylation specified as fixed modification. Monoisotopic fragment ion mass tolerance
was set to 0.5 Da, and precursor ion mass tolerance to 50 ppm. The search results were
further processed using PeptideProphet [27] and ProteinProphet [28], with the final protein
lists filtered using protein probability of 0.9 (decoy-based estimated false discovery rate of
less than 1%). Label-free protein quantification software IDEAL-Q was applied for peak
detection, deisotoping, peak integration and multiple LC-MS alignment [24]. Peak areas
were calculated based on the signal intensity of each peak derived from extracted ion
chromatograms. LC-MS data corresponding to the 3 biological replicates of the same
condition, i.e. CDC23 bait purification or control HeLa cell line purifications, were
processed separately. The average intensity of three most intense peptide ions per protein
[29] in each biological replicate was calculated as a measure of protein abundance. Only
peptides identified with PeptideProphet probability of 0.95 or higher in at least one of the
biological replicates were used for protein quantification. Note that the spectral count-based
quantitative protein abundance measures for this dataset were already used in our previous
analysis [21].

Drosophila dataset
We next considered a dataset from Drosophila Kc167 cells inducibly expressing 16
hemaglutinin (HA)-tagged core components of the Insulin receptor/Target of rapamycin
(InR/TOR) signaling pathway [30]. Kc167 cells were serum starved in 2% FBS overnight
and bait expression was induced using 600 μM CuSO4 for at least 16h. Cells were either
treated with 100 nM insulin for 20 min or left untreated. Affinity purifications of treated and
untreated cells were performed in two independent biological purification experiments. In
parallel with the test purifications, 24 control purifications (GFP expressing Kc167 cell line)
were used to generate a pattern of common contaminant proteins. Proteins were identified
using a LTQ-FT-ICR mass spectrometer (Thermo Electron). Acquired MS/MS spectra were
searched against the Drosophila Flybase database version 5.7 using the SORCERER-
SEQUEST (TM) search algorithm, allowing tryptic peptides only and up to two missed
cleavages. For additional details, including peptide and protein identification filtering and
spectral count matrix generation, see [30]. For label-free quantification the raw data was
converted to profile mzXML format. The software SuperHirn [22] was applied for peak
detection, deisotoping, peak integration and multiple LC-MS alignment. In order to consider
high quality MS1 information, SuperHirn requires a minimum of three isotopic peaks for
data extraction. Singly charged ions were discarded from the analysis. Peak areas were
calculated based on the signal intensity of each peak derived from extracted ion
chromatograms. LC-MS data derived from individual bait was used for multiple LC-MS
alignment, resulting in 16 LC-MS maps that were used to compare the data. Batches of four
control runs were generated to provide background LC-MS maps. In order to compare signal
intensities the average intensity of the three most intense peptide ions was calculated.

SAINT for MS/MS spectral count data
SAINT was originally developed for scoring interactions based on the spectral count data. It
is briefly summarized here to set the stage for subsequent analysis and discussion. Suppose
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that control purifications are available and they capture most non-specifically binding
proteins. The statistical model of SAINT is a mixture model

(1)

Here i and j index preys and baits respectively, and Xij corresponds to the spectral count of
the interaction between i and j. P(x|λ) denotes Poisson distribution for a count x with mean
λ. Specifically, λtrue and λfalse are the mean parameters of Poisson distribution under the
true and false interaction hypotheses. πs denotes the proportion of true interactions in the
data. The mean parameter λfalse is expressed as

(2)

where li is the sequence length of prey i, γ0 is the mean spectral count of all false
interactions (in log scale), and μi is the deviation from γ0 for prey protein i. Likewise, the
mean parameter λtrue is expressed as

(3)

where β0 is the mean (log) spectral count of true interactions in the entire data, (αj, αi) are
the mean spectral counts of true interactions in bait j and prey i respectively. Here the model
has the assumption that, if two proteins are true interactors, then the mean spectral count for
their interaction has a multiplicative effect combining bait and prey-specific abundance
levels.

For each interaction pair (i, j), the mixture model in Equation 1 can be used to calculate the
probability of true interaction (by Bayes rule), i.e.

(4)

When there are replicate purifications, we take the average of probabilities from replicates
as the final score for a given protein pair. Once probabilities are computed for all interaction
pairs, interactions can be sorted in a decreasing order of probabilities and the associated
false discovery rate can be approximated at a threshold probability by averaging the
complement probability (1−P) for the selected interactions.

For the estimation of model parameters, we estimate λfalse solely from the control
purification data, similar to the practice of using decoy peptides for estimating the negative
distribution in database search score distributions [31]. This leads to a semi-supervised
mixture model. Specifically, the model parameters (β0,αj,αi) and (γ0,μi) were estimated
from the samples generated from appropriate posterior distributions by Gibbs sampling for
Dirichlet process mixture model[32]. As a result, these parameters follow nonparametric
posterior distributions, allowing flexible modeling at the whole proteome level.
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SAINT for intensity data
For modeling intensity data, we replaced Poisson distribution with a continuous distribution
for intensity values. After log-transforming the data, we use Gaussian distribution for the
observed intensities and truncated Gaussian distribution for the missing data, which can be
written as

(5)

Here we set the truncation point t as half the lowest intensity in the corresponding
purification, taken in natural log scale. The mean parameter λ again has a linear additive
expression as in Equations 2 and 3, and λ and σ2 are assumed to follow nonparametric
Dirichlet process mixture prior distributions with Gaussian and inverse Gamma bases
respectively. One common approach for computing protein-level quantification (also used in
this work, see above) is taking the average of the intensities of the three most intense peptide
ions per protein [29]. In this case it is not necessary to normalize protein quantification by
protein length. The average peptide intensity is not expected to increase proportionally to the
length, hence the normalization factor li can be removed from the linear expression. Length
normalization is desirable when protein quantification is computed as the sum of all peptide
intensities [33].

Receiver-operating characteristic analysis
To evaluate the performance of the method on the Drosophila dataset, we took orthologous
interactions and literature curated interactions as positive sets. We also constructed multiple
sets of negative interactions to represent non-specific bindings as follows. We randomly
sampled 500 protein pairs from the list of all proteins in the data and considered each as a
negative set. To remove the variability due to poor representation of non-specific bindings
by a single set, we repeatedly drew negative sets 1,000 times and averaged the results over
them. We varied K from 100 to 1000 to ensure that the curve does not depend on the choice
of K. At each threshold, the sensitivity was calculated as the proportion of benchmark
interactions recovered, and the specificity as the proportion of negative interactions not
selected.

Implementation
The source C code for SAINT-MS1 is distributed as a part of SAINT-APMS project at the
Sourceforge repository at http://saint-apms.sourceforge.net.

RESULTS
QUBIC dataset

We applied SAINT-MS1 to the QUBIC dataset first. This dataset consists of triplicate
purifications for bait protein CDC23 and triplicate control purifications (See Methods). Thus
it serves as a good test dataset with high-quality quantification, which is helpful not only for
validating SAINT-MS1 scores, but also for comparing the filtering with intensity and
spectral count data. Hubner et al [25] performed one-sided t-tests between control and test
purifications (using intensities extracted by MaxQuant) and they recovered known
components of the anaphase-promoting complex using p-values and fold changes.
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We first examined the correlation between intensity and spectral count data. Intensity values
with no MS/MS identification were removed from the data for the consistency of
comparison (See Methods). Figure 1a clearly shows that the two data are linearly correlated
in the natural log scale, indicating a high correlation (Figure 1a; Pearson correlation 0.79).
The blue dots in the bottom of the plot correspond to the interactions for which spectral
count was present but intensity was absent. It is worth noting that the variability of intensity
values is greater for the proteins with fewer MS/MS identifications (smaller spectral counts),
although the trend is mild. However, we remark that there are insufficient data to generalize
this trend because these data come from replicate purifications of single bait only.

We filtered the data at the SAINT probability threshold 0.9 in the intensity and spectral
count data. Not surprisingly, results were nearly identical between the two quantification
modes and also concordant with the results reported in Hubner et al (Supplementary Tables
1 and 2), with the sole exception of single peptide hit C11orf51 which was not considered
for quantification in the SAINT analysis. All members of APC and its adaptors, as well as
previously uncharacterized interactors including NEK2 and ANAPC16, were identified with
high probability scores as was reported in the original report. This analysis confirms that the
high correlation in intensities and spectral counts directly results in similar probability
scoring by SAINT-MS1 and SAINT.

Drosophila dataset
Next we applied the method to the Drosophila dataset, which is larger in size and also has
both intensity and spectral count data. The missing data distribution was specified using the
same parameter values from QUBIC dataset after confirming that a few alternative
specifications led to almost identical results (data not shown).

While the intensity and spectral count data were highly correlated (Figure 1b; Pearson
correlation 0.75) as in the QUBIC dataset, there is difference between the two modes of
quantification. The intensity values for the proteins identified by few spectra varied more
widely than those for the proteins identified by a good number of spectra. This phenomenon
probably has to do with the fact that this dataset was generated from an LTQ-FT-ICR
instrument, which offers a relatively lower data quality for extracting peak intensities than
the latest instruments such as LTQ-Orbitrap.

Next, we selected interactions by controlling the false discovery rate below 1%, where
SAINT-MS1 reported 307 interactions. The SAINT based on the spectral count data
reported 208 interactions at the same FDR threshold, among which 150 overlapped. In the
interactions unique to the intensity data, some interactions were between the sixteen bait
proteins with a high rate of replicated evidence, indicating that not all additional interactions
are likely random hits. However, many additional interactions were detected from the preys
found in single bait only, which potentially indicates reduced specificity, a cost for detecting
more interactions than the spectral count data.

To formally test this, we performed a receiver-operating characteristic (ROC) analysis (see
Methods) using two benchmark sets, which contain the interactions between orthologous
proteins and the interactions reported in BioGRID database [34], see Figure 2. When
benchmarked against the orthology and literature-based interactions, the scoring result based
on the intensity improves the sensitivity compared to the result based on the spectral count
data, but the improvement comes at the price of a reduced specificity in the low error
regions.

The distinct ROC curves in the two quantification modes bear an important implication for
reconstructing the target network. If false positives admitted by the intensity data are
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enriched in the interactions with the core members of a protein complex, then the resulting
network shall be topologically different between the two quantification modes. On the other
hand, one may be concerned about the possibility of not capturing important network
components due to the lagging sensitivity of spectral count data. When we examined the
networks in this dataset, we found that the structure of interconnected baits remained
relatively unchanged between the intensity and spectral count data, but the interactions of
prey proteins uniquely present in insulin treated and untreated samples showed significant
differences (data not shown). However, this is expected because the interactions between
baits are normally observed in sufficiently high abundance levels.

DISCUSSION
While this work was mainly intended to introduce the extended scoring method for SAINT,
it encourages the discussion of MS intensity data regarding protein-level rollup of intensity
data and handling of missing data, especially when the sample size per model parameter is
extremely limited, a typical situation for AP-MS data analysis. As it was shown implicitly in
the intensity data analysis, modeling intensity data is statistically more challenging than
spectral count data because the variance parameter is critical in the former. This is mainly
because estimating the variance parameter for continuous distributions requires more data
than are available in typical datasets. Note that Poisson or other discrete distributions
approximately learn the variance parameter from the mean parameter because the stochastic
variability in counting process, particularly the mean-variance relationship, is often stable
and holds well in real datasets. For continuous data, summarizing repeated measurements
into a single representative value results in the loss of information for the variability of
measurement error. Nonetheless, protein-level MS intensity values are rolled up to either the
sum of intensities from all peptides or the average of top three intensities in most published
studies.

One can improve this situation by modeling the intensities from all available peptides in the
statistical model, instead of rolling them up to a single value for each protein. This has the
advantage that peptide intensities can be hierarchically modeled with a protein-level
parameter, treating peptide intensities as repeated measurements for the given protein. It is
straightforward to see that this approach yields better estimation of the measurement error
distribution. Suppose that the measurement variability is σ2 for each peptide in a single LC-
MS experiment. Then for a protein with k identified peptides, the average intensity from all
k peaks has the variance σ2/k, and the top three peptide summary approach has the variance
σ2/3, even after we ignore the bias toward higher peptide intensity. If a protein is identified
with a single peptide, however, the protein level intensity has the variance of σ2, which is
greater than the other proteins identified by more peptides. Hence peptide level intensity
data distinguish proteins with a varying number of peptides, indirectly incorporating MS/MS
information. Thus, advanced models that explicitly incorporate peptide-level abundance and
variability information (or even intensities of selected peptide fragment ions in targeted
proteomics strategies [35]) should be considered for future work. This, however, will require
not only development of a new statistical model, but also substantial modifications to
common informatics platforms for processing AP-MS data – a drawback compared to the
relative simplicity of working with spectral count data. Finally, while SAINT was developed
for the analysis of label-free AP-MS data, in the future it could be extended to AP-MS
experiments coupled with stable isotope labeling [16–18] to improve upon simpler statistical
modeling approaches described for these data [36].
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CONCLUSIONS
In this work, we presented SAINT-MS1, a statistical method with software for filtering AP-
MS datasets based on intensity-based label-free protein quantification data. Using two
recently published datasets generated on LTQ-Orbitrap and LTQ-FT instruments, we
demonstrated that the new scoring method based on intensity data is capable of capturing
more bona fide interactions in the low abundance range than the scoring based on spectral
count data. At the same time, the gain in sensitivity when using the intensity-based data may
come at a loss of specificity when the quantification method for extracting intensity data
may not perform the best. Still, given rapid advances in MS instrumentation and continuing
development of bioinformatics tools for extracting intensity-based information from MS
data, we expect that SAINT-MS1 will become a useful addition to AP-MS data analysis
pipelines.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Intensity plotted against spectral count in the QUBIC and Drosophila-Insulin datasets.
Peptides with intensity but missing MS/MS identification were removed. Dots under the
dashed lines indicate observations with spectral counts but missing intensity values. All axes
were drawn in the natural log scale.
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Figure 2.
The ROC curves for Drosophila-Insulin dataset comparing SAINT-MS1 (intensity) and
SAINT (spectral count). The selected interactions were benchmarked against (a)
orthologous interaction partners and (b) interactions previously catalogued in the literature
(BioGRID database).
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