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Abstract
Longitudinal shape analysis often relies on the estimation of a realistic continuous growth scenario
from data sparsely distributed in time. In this paper, we propose a new type of growth model
parameterized by acceleration, whereas standard methods typically control the velocity. This
mimics the behavior of biological tissue as a mechanical system driven by external forces. The
growth trajectories are estimated as smooth flows of deformations, which are twice differentiable.
This differs from piecewise geodesic regression, for which the velocity may be discontinuous. We
evaluate our approach on a set of anatomical structures of the same subject, scanned 16 times
between 4 and 8 years of age. We show our acceleration based method estimates smooth growth,
demonstrating improved regularity compared to piecewise geodesic regression. Leave-several-out
experiments show that our method is robust to missing observations, as well as being less sensitive
to noise, and is therefore more likely to capture the underlying biological growth.

1 Introduction
The study of time dependent shapes is an emerging field in Computational Anatomy, with
potential application to early brain development, aging studies, or the analysis of evolving
pathologic structures. As longitudinal data becomes more widely available, the need for
computer models of anatomical evolution becomes increasingly important. Two approaches
have been followed so far: the first consists in computing a realistic growth scenario from
cross-sectional time-series data, like in [4,10,6,3]. The second approach involves estimating
several individual growth trajectories and combining them with a framework for 4D
registration between growth trajectories or 4D atlas construction, to statistically analyze the
growth variability within a population, like in [13,8,14,7,9].

In any case, the methods rely greatly on the estimation of growth models from time series
data, which are sparsely distributed in time. Growth models provide a tool to generate
shapes at any instant in time (within the interval defined by the data), offering us the
opportunity to continuously measure shape properties. This is in contrast to using sparse
measurements such as volume or circumference for 1D regression absent the shape
information. The problem can be stated as “temporal shape regression” and can be solved by
purely descriptive statistical methods like the extension of kernel regression to Riemannian
manifolds [4], or by generative statistical models which define a parameterized family of
realistic growth models and the one which best fits the actual data is estimated based on a
regularized least-square criterion [8,7,2]. We favor this last approach, since it makes explicit
the assumptions which drive the estimation of growth trajectories and therefore enables the
inclusion of realistic biological priors to constrain the estimation.

The growth model in [7] is based on a continuous flow of diffeomorphisms, with piecewise
geodesics interpolating between shapes. This method estimates continuous non-linear
growth between shapes, but does not guarantee differentiable growth as the speed of
evolution is discontinuous at observation time-points. Our work is motivated by the
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assumption that the evolution of biological tissue is inherently smooth in time. If we
consider the growth of biological tissue as a mechanical system driven by external forces,
then the evolution of any particle on an anatomical surface is continuous with continuous
derivative and therefore does not change direction instantaneously, as observed in the
growth model estimated from [7].

Temporal smoothness can be enforced via smooth interpolation between 3D deformations
estimated at discrete time-points, using B-splines or polynomial interpolation as in [11,1].
However, these approaches are not based on the inference of a generic growth model, which
captures the dynamics of the shape changes over time.

Based on these considerations, we propose a new growth model parameterized by
acceleration, rather than velocity as in the large deformation setting of [12]. The estimated
acceleration could be considered an indication of the forces which drive the growth of the
anatomical structures. From this parameterization, we gain one order of differentiability and
guarantee that shape evolution is smooth in both space and time. We further deviate from
the large deformations framework by introducing a new regularization term which accounts
for the total amount of acceleration. As a consequence, our model does not constrain the
flow of deformation between shapes to be geodesic, or close to a geodesic path. By contrast,
the approach in [16] estimates twice differentiable trajectories as random perturbations of
geodesic paths.

The evaluation of our new methodology on real anatomical surfaces reveals the differences
between our approach and piecewise geodesic regression. Our regression yields a twice
differentiable evolution with improved regularity, thus discarding more noise from the data
to fit a more realistic growth trajectory. Also, we demonstrate that volume measurements
taken out of our 3D shape regression are compatible with a 1D regression of these
measurements, whereas piecewise geodesic regression appears to overfit. Lastly, we show
via leave-several-out experiments that our method better interpolates between data and is
therefore more robust to missing observations. This suggests a greater ability to capture the
underlying growth of the anatomical structures.

2 Shape Regression Parameterized by Acceleration
The problem of longitudinal shape regression involves inferring a continuous shape
evolution from a discrete set of shapes Sti observed at time ti. Shape evolution is modeled as
the continuous deformation of a baseline shape S0, formally defined as Rt = φt(S0) where Rt
corresponds to S0 having undergone the transformation φt with t varying continuously within
the time interval. The time-varying deformation φt is a general transformation from  to 
with φ0(S0) = S0. The baseline shape is deformed over time to closely match the observed
shapes (Rti ~ Sti) while the rigidity of the deformation is controlled via a regularity term.
This leads to a variational problem in the form of a trade off between fidelity to data and
regularity. For measuring shape similarity, we follow the work of [15], modeling shapes as
currents.

We define the acceleration field a(x, t) at point x and time t as a vector field of the form

(1)
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where xi are the shape points carrying a point force vector αi, and

 is a Gaussian kernel of dimension mass−1 with standard
deviation λV controlling the spatial extent at which the acceleration field varies.

The time-varying point force vectors αi(t) parameterize a flow of deformation φt(xi(t)) by
the integration of the 2nd-order ODE φ̈t(xi(t)) = a(xi(t), t) with initial position xi(0) and
initial velocity ẋi(0). The initial positions of the particles are assumed to be fixed at the
vertices of the baseline shape, while the initial velocity of the particles have to be
determined by the algorithm.

Let x(t), a(t), and α(t) be the concatenation of the xi(t)’s, ai(t)’s, and the αi(t)’s. This
parameterization leads to the specific regression criterion

(2)

where || · ||W* is the norm on currents and regularity is defined as

, interpreted as the ‘total amount of acceleration’, measured
using the norm in the reproducing kernel Hilbert space defined by the interpolating kernel
[5].

3 Description of the Algorithm
We implement an adaptive step size gradient descent algorithm. The gradient of the criterion
(2) with respect to force vectors and initial velocity is written as

(3)

where variables  and  satisfy coupled ODEs shown in Appendix A.

During each iteration of gradient descent, the trajectories of shape points are computed by
solving the 2nd-order ODE φ̈t(xi(t)) = a(xi(t), t) using a Verlet integration scheme. The

auxiliary variables  and  are computed using an Euler method with prediction/
correction. Eventually we compute the gradients given in equation (3). The algorithm may
be started with zero initial velocity and force, though we notice faster convergence when
initial velocity is determined by registration between the baseline and first target shape as in
[15].

4 Experiments
To evaluate our method, we use longitudinal image data from a child that has been scanned
16 times between four and eight years of age. The MRI data is first rigidly aligned to
establish a common reference frame. The intracranial volume and lateral ventricles are
segmented from each image using an EM based tissue classification algorithm and a level-
set based active contour segmentation tool.

We estimate the evolution of the intracranial surface using a regression model based on the
piecewise geodesic flow of diffeomorphisms as in [7]. The standard deviation of the
Gaussian kernel controlling deformation is set to 50 mm, roughly 30% of the diameter of the
baseline intracranial surface. For the scale of currents we use 20 mm, with a regularity
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weight of 0.1. Finally, time is discretized in increments of 0.0425 years. We also produce a
growth trajectory using our proposed method with the same parameter settings as above
except we weight regularity by 0.01 (the two weighted terms cannot be compared since they
have different ‘physical’ dimension). The parameters were tuned empirically to produce
regressions of comparable quality with both methods.

Shape evolution is considerably smoother using our proposed regression model as compared
to the piecewise geodesic model. This is particularly evident in the trajectories of the shape
points across time, a subset of which are shown in Fig. 1. It is an important distinction that
the trajectories estimated by our method are not a smoothing of the piecewise geodesic
method. Rather, the trajectories are the result of fundamentally different assumptions on the
underlying model which results in a more realistic estimation of growth.

The smoothness constraints imposed by our model limit the shape variation we can capture
over short time periods. Consequently, we investigate the accuracy of our model by
examining how closely we match the target data: our estimated growth scenario decreases
the initial sum of squared residual by 148%, compared to a 153% decrease from the
piecewise geodesic method. While our method does not come as close to matching the target
data, this suggests that our method is less sensitive to noise and less likely to overfit.

Next, we investigate the application of our model to the study of measurements derived from
shape. Here we obtain a continuous non-linear model of volume, shown in Fig. 2. The
results are consistent with a 1D regression model, such as kernel regression, applied to the
sparse volume measurements. However, we have focused our modeling efforts on capturing
the evolution of shape, with continuous volume measurements resulting naturally from the
estimated growth. In addition, the piecewise geodesic method appears to be overfitting,
producing unrealistic volume measurements, further suggesting that our method is more
robust in the presence of noisy data.

Finally, we consider the evolution of the lateral ventricles, which exhibit considerably more
complexity than the intracranial surface. The horns of the segmented lateral ventricles are as
thin as a few millimeters, making regression particularly challenging. As with the
intracranial volume, ventricle growth is estimated using a piecewise geodesic model and our
acceleration based model. The scale of deformation is set at 6 mm, the scale of currents to 2
mm, and regularity is weighted by 0.1 and 0.01, respectively.

The impact of missing data is examined by performing leave-several-out experiments, the
results of which are summarized in Fig. 3. In all experiments, selected target shapes were
chosen as uniformly across time as possible. Our method demonstrates robustness with
respect to the number of target shapes, with only minimal increase in the coefficient of
determination R2 when using more than 3 targets. This suggests that our method captures
the underlying growth with limited data, as additional target data does not greatly alter the
estimation. In contrast, piecewise geodesic regression is more influenced by additional target
data and is therefore likely to overfit.

5 Conclusion
We have introduced a new 2nd-order regression model for estimating smooth evolution
from time dependent shapes. This is based on a new way of parameterizing growth by
acceleration rather than velocity. We show on real anatomical data that, compared to the
standard piecewise geodesic model, our method is less sensitive to noise introduced during
segmentation and is robust to missing data, and is therefore more likely to characterize the
underlying biological growth. The evolution of volume extracted after shape regression was
shown to be compatible with a 1D regression on the observed volume measurements. Our
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method may be improved by additionally solving for initial positions of the shape points as
in [7], to address the apparent underestimation of initial volume in Fig. 2.

Note that the new concept introduced in this paper has been implemented for 3D-surface
data modeled as currents but can be easily adapted to a variety of other data and metrics.
Future work will focus on the interpretation of the estimated acceleration in terms of
external forces exerted on the biological tissue. This will enable the addition of more
biological and mechanical priors.
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A Differentiation of the Regression Criterion
Using matrix notation, we denote the current state of the system of shape points by the
vector X(t) = (x(t), ẋ(t))t concatenating position and velocity of every point. The state of the
system is evolved by the following differential equation:

(4)

with initial condition X(0) = X0 = (x0, ẋ0)t.

We now rewrite (2) as . Let δE be a variation of the
criterion E with respect to a variation δα(t) of the impulse vectors α(t), which induces a
variation of the state variable X(t):

(5)

The ODE in (4) shows that these variations δX(t) satisfy a linear inhomogeneous ODE. The
method of variation of parameters gives the solution

(6)

where  and 1{t≤ti} = 1 if ≤ ti and 0 otherwise.

Plugging this equation into (5) leads to:

(7)

where we denote the auxiliary variable η(t) as

(8)

From now on, we decompose the vectors into 2 blocks (the x-component and the ẋ-
component). Due to the definition of A, L and F, we have ∇X(ti) Ai = (

∇xi Ai 0)t, ∂XL = (γαt(∂1 + ∂1)(K(x, x)α) 0)t, ∂αL = 2γαtK(x, x),

 and .

Therefore, the gradient of the regression criterion with respect to the L2 metric given in (7)
is now equal to: ∇αE(t) = K(x(t), x(t)) (2γα(t) + ηẋ(t)), where we have decomposed the
auxiliary variable η into η = (ηx, ηẋ).
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The matrix K(x(t), x(t)) is precisely the Sobolev metric induced by the kernel on the set of
L2 functions, so the gradient is given in coordinates as in (3).
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Fig. 1.
a) and b) Shape evolution from baseline (solid) to final configuration (transparent) using a
model based on piecewise geodesics (a) and our method (b) with point trajectories for
selected particles displayed as black lines. c) The path of a point on the forebrain is
decomposed into coordinates. Growth is estimated using 15 target shapes, highlighting the
speed discontinuities present in the piecewise geodesic evolution.
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Fig. 2.
Volume measurements derived from our growth model are consistent with a kernel
regression (σ = 0.5) performed on the sparse volume measurements. Our model describes
the continuous evolution of shape and volume is measured after regression.
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Fig. 3.
Left: Snapshots from a continuous shape evolution of lateral ventricles estimated by our
regression model. Acceleration vectors are displayed on the surface, with color denoting
magnitude. Right: The impact of the number of target shapes on R2.
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