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Abstract
The human brain undergoes rapid organization and structuring early in life. Longitudinal imaging
enables the study of these changes over a developmental period within individuals through
estimation of population growth trajectory and its variability. In this paper, we focus on
maturation of white and gray matter depicted in structural and diffusion MRI of healthy subjects
with repeated scans. We provide a framework for joint analysis of both structural MRI and DTI
(Diffusion Tensor Imaging) using multivariate nonlinear mixed effect modeling of temporal
changes. Our framework constructs normative growth models for all the modalities, taking into
account the correlation among the modalities and individuals, along with estimation of the
variability of the population trends. We apply our method to study early brain development, and to
our knowledge this is the first multimodel longitudinal modeling of diffusion and signal intensity
changes for this growth stage. Results show the potential of our framework to study growth
trajectories, as well as neurodevelopmental disorders through comparison against the constructed
normative models of multimodal 4D MRI.

1. INTRODUCTION
The human brain undergoes significant changes during infancy and early development.
Advances in medical imaging have allowed us to track these changes in vivo longitudinally
which more accurately captures development as compared to cross-sectional analysis.
Growth modeling of longitudinal data yields a more accurate average trajectory as the
population model is built from individual temporal trajectories. This results in significantly
improved model of growth and growth variability, especially when inter-subject variability
is greater than the temporal change [1].

Previous neuroimaging studies have substantially increased our understanding of early brain
development. Prior studies of DTI and MRI have shown changes in early brain
development, including changes of diffusion parameters over time [2, 3] and contrast
changes as is depicted in T1W and T2W [4]. There are relatively few studies that have
looked at both DTI and MRI [5]. However, most of these studies have been cross-sectional
and only consider one modality. In this paper, we focus on multivariate longitudinal
modeling where growth model is jointly estimated based on all the modalities.
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We present a new method to generate models of temporal changes in multimodal MRI taken
at non-uniformly sampled discrete time points. Our proposed method estimates non-linear
models of growth trajectories for individual subjects, the population, and confidence
intervals around the average trajectory. This is accomplished using non-linear mixed effects
modeling (NLME) where multimodal changes are described using Gompertz functions. The
Gompertz growth function provides a representation of asymptotic growth using intuitive
parameters such as delay, rate of change, and expected asymptotic value. We have
demonstrated the utility of such modeling in our recent paper that presents a method for
unimodal analysis [6], where we compare growth in white matter regions. In this paper, we
demonstrate and apply our new method to longitudinal multimodal MRI data containing
both structural (T1W and T2W) and diffusion imaging modalities. We construct and analyze
normative models in anatomical regions of interest located in white matter and gray matter.
Results indicate that quantitative modeling of early brain development through MRI
generates normative models with confidence intervals that have potential for detecting
abnormal growth due to disease.

2. METHOD
2.1. Non-linear Mixed Effects Modeling

We use a non-linear mixed effects (NLME) model to analyze the longitudinal T1W, T2W
and DTI data. The mixed effect model is robust to outliers as it accounts for the variability
within individuals. In the mixed effects model, the observed data is assumed to be a
combination of both fixed effects, parameters associated with the entire population (or at
least within a sub-population), and random effects that are specific to an individual drawn at
random. In non-linear mixed effects models, some or all of the fixed and random effects
parameters present nonlinear responses. This makes nonlinear mixed effects model a natural
and common choice for longitudinal data. We use the NLME model proposed by Lindstrom
and Bates [7], where the jth observation of MRI/DTI on the ith individual is modeled as:

(1)

where M is the number of individuals, ni is the number of observations on the ith individual,
f is a nonlinear function of the covariate vector tij and parameter vector ϕi, and eij ~ 0, σ2)
is an independent identically distributed error term. The parameter vector can vary among
individuals which is incorporated into the model by writing ϕi as

(2)

β is a p-vector of fixed effects, and bi is a q-vector of random effects associated with
individual i with variance-covariance Ψ. Ai and Bi are design matrices.

2.2. Multivariate Analysis of Longitudinal MRI
We perform quantitative analysis on a population of longitudinal multimodal MRI data
within anatomical regions. We model the multimodal image features as non-linear mixed
effects, which combines regional population trends and individual subject trends. For this
section, we assume that all MR images have been registered to a standard reference space.
The primary goal for our analysis of growth trajectories is to determine the multivariate
growth patterns and study the variation of different imaging modalities in space and time,
using intuitive parametrization of growth trajectories. As the human brain undergoes rapid
changes in the first year of development and slows considerably in later years, we model
early development patterns in longitudinal multimodal MRI using the Gompertz function.
Specifically, we model temporal growth for an individual i, time points tij, and image
channel/modality c ∈ {c1 … ck} by nonlinear mixed effect model of the Gompertz function
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(3)

where the mixed effects are . The fixed effects for modality c,

, represent mean values of parameter  in the population. This parametrization
intuitively decomposes the mean of temporal changes of a population as saturation (β1),
delay (β2), and speed (−log β3). The random effects for each subject i and modality c,

, explains individual variation from the mean. We set one of the random effects
to zero to reduce the number of random effects in the model. Most of the variation of
individuals can be captured by b1 and b2 and including extra random effects in the model
may cause the matrix Ψ to be rank-deficient. By imposing joint multivariate distribution on

random effects of all the modalities, , we capture both
inter individual variability within a modality as well as association between the growth
patterns seen in different modalities.

2.3. Constructing Normative Models with Confidence Measures
The mixed effect model parameters provide descriptions of population trends as well as
individual trends, along with the variability within the population. We use the NLME
framework to construct normative models that not only describe the expected trends, but
also the expected deviations from the trends. We construct confidence intervals that bound
the population trends through Monte Carlo simulations based on the mean and covariance
matrix of the fixed effects, where we generate confidence bands at the 95% level. We also
generate 95% predicted intervals based on the mean and covariance matrix of the fixed
effects and random effects.

3. RESULTS AND CONCLUSIONS
We perform an analysis on a set of repeated scans of 26 healthy subjects acquired at
approximately 2 weeks, 1 year and 2 years of age. Four of the subjects had suboptimal DTI
scans at 1 year that were removed, but their scans for other time points and modalities were
included. The images include T1W, T2W and DTI. We apply the unbiased atlas building
framework [8] to the set of T2W images at 1 year to obtain spatial mappings between each
subject through the estimated atlas. Intra-subject registration was performed by IRTK
software.1 All time points of each subject are registered to this atlas via linear and nonlinear
transformations, first by mapping these images to the year 1 scan and then cascading the two
transformations for a mapping to the atlas. Tensor maps are calculated for each DTI scan,
and are registered to the atlas using transformations obtained by registering the DTI baseline
(B0) images to T2W images. T1W images were normalized using intensity value of fatty
tissue between the skull and skin. For T2W, the csf region of ventricles was used for
normalization. Fractional anisotropy features from the registered tensors were used for the
joint analysis between DTI and structural MRI.

We analyze growth trajectories in white and gray matter anatomical regions, using atlases
developed and disseminated by Mori et al. [9] and Harvard Center for Morphometric
Analysis2. Figure 1 shows the right posterior thalamic radiation (PTR) overlaid on
longitudinal T1W, T2W and FA image of one subject, along with the population and
individual trajectories estimated using our multivariate nonlinear mixed effect model. PTR

1http://www.doc.ic.ac.uk/~dr/software
2http://www.cma.mgh.harvard.edu/fsl_atlas.html
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includes optic radiation and it is one of the white matter tracts that matures early [10]. There
is a rapid change in T1W and T2W in the first year followed by slower maturation during
second year.

Figure 2 show the population trends and confidence intervals for white matter regions of
interest. This includes the body of corpus callosum (BCC) that is known to have a very
limited myelination at birth, whereas Posterior limb of internal capsule (PLIC) is known to
be one of the regions that shows early myelination. This pattern is evident as PLIC has a
higher FA and T1W values, with lower T2W values compared to BCC and superior
longitudinal fasciculus (SLF). However, BCC and SLF show a quick maturation during first
year, specially in T2W.

We also analyze growth trajectories in gray matter, even though DTI analysis has been
typically performed only in white matter. We observe small changes in FA values as gray
matter matures, however the changes of T1W and T2W are greater as expected. Figure 3
shows the changes of white and gray matter in different lobes. T1W and FA increase with
age and T2W intensities decrease with age. We noted a higher degree of maturation in
average T1W and T2W curves for occipital lobe as compared to frontal and temporal lobes.
Higher FA values are observed in white matter compared to gray matter due to the fiber
structure in white matter. We also observe high variability of FA and T2W at birth for white
matter, while T1W has high variability throughout early brain development.

Conclusions
We have presented a new method for generating normative models of growth from
multimodal longitudinal MR images. The method utilizes non-linear mixed effects modeling
using Gompertz parametrization of longitudinal changes. We applied and evaluated our
method to clinical data of early brain development to obtain normative growth models in
anatomical regions of interest in white and gray matter. These models describe the expected
trends of the population, as well as the expected deviations from these trends. Results
suggest that our approach has potential for detecting abnormalities in growth trajectories of a
patient by direct comparison to the constructed normative models. In the future, we will
explore the application of our approach to subjects with developmental delay or
degenerative disorders such as Krabbe disease.
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Fig. 1.
Co-registered multi-modal MRI data are shown on the left. Left to Right: Images taken at
two weeks, 1 year and 2 years. Top to Bottom: T1W, T2W and FA. Posterior thalamic
radiation is shown as red label on the images. Population and individual growth trajectories
for this region is shown to the right. Thick curves are the average growth trajectories for
normalized T1W, T2W and FA.
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Fig. 2.
Population growth trajectories (bold) and confidence intervals (light). From top to bottom:
Body of Corpus Callosum (BCC), Posterior Limb of Internal Capsule (PLIC), and Superior
Longitudinal Fasciculus (SLF). Bold curves are the average growth trajectories for
normalized T1W (red), T2W (green) and FA (blue), while the 95% confidence interval of
the curves are shown as shaded regions. Light color curves show the 95% predicted intervals
for each region.
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Fig. 3.
Population trends and confidence intervals for gray matter and white matter in the frontal,
occipital, and temporal lobes. Red denotes normalized T1W, green is T2W and blue is FA.
Bold color curves are the estimated population growth trajectories, while the 95%
confidence interval of the curves are shown as shaded regions. Light color curves show the
95% predicted intervals for each region.
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