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Abstract
The proepicardium is a transient extracardiac embryonic tissue that gives rise to the epicardium
and a number of coronary vascular cell lineages. This important extracardiac tissue develops
through multiple steps of inductive events, from specification of multiple cell lineages to
morphogenesis. This article will review our current understanding of inductive events involved in
patterning of the proepicardium precursor field, specification of cell types within the
proepicardium, and their extension and attachment to the heart.

Introduction
In vertebrates, the proepicardium (PE) is a transient extracardiac embryonic tissue that gives
rise to the epicardium and a number of coronary vascular cell lineages [1]. During heart
looping, the PE develops as an outgrowth from the right cardiac inflow segment [2]. It is
composed of an outer epithelial layer overlaying a core of mesenchymal cells suspended
within extracellular matrix [3]. Villous protrusions of the PE extend and attach to the
atrioventricular (AV) junction on the inner curvature of the looping stage heart. Following
attachment, the outer layer of the PE spreads across the surface of the myocardium to form
the epicardium. A subpopulation of epicardial cells undergoes an epithelial-to-mesenchymal
transition. Together with mesenchymal cells of the PE core, they invade the myocardium
and give rise to coronary smooth muscle cells, perivascular fibroblasts, coronary endothelial
cells and erythrocytes [1,4,5]. The PE is thought to also have the capacity to contribute to
the cardiomyocyte lineage; however, this remains controversial [6-10].

The inherent complexity of PE development, from specification of multiple cell lineages to
morphogenesis, makes the study of PE induction challenging. Because inductive
interaction(s) between inducing and responding cells can be a multistep and continuous
process during PE development, a number of different events should be investigated. This
article will provide a brief overview on inductive events patterning the PE precursor field,
specifying cell types within the PE, and promoting extension and attachment to the heart.

PE field
Until recently, little was known about the precise origin of the PE or the developmental field
from which PE cells arise. Cre-loxP-based analysis demonstrates that PE cells express
Nkx2.5 and Isl1 at some point in their development [7]. Expression of Nkx2.5 and Isl1
delineates the primary and secondary heart fields, respectively [11,12], suggesting that the
PE arises from the lateral plate mesoderm (LPM). Data in the zebrafish is also suggestive of
LPM origins of the PE [13]. Direct fate mapping or lineage tracing with higher spatial
resolution will be required to determine the exact location of PE precursors within the LPM.
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High spatial resolution fate mapping data has recently become available in the chick (Figure
1) [14]. These studies identified a previously unrecognized posterior cardiogenic domain
defined as the tertiary heart field (Figure 1A). A portion of the PE field was mapped to a
location within the LPM directly adjacent to the right tertiary heart field [14]. This cell
tracing data provides the first direct evidence for a LPM origin of the PE. PE precursors
remain adjacent to, but do not intercalate with, the cardiogenic mesoderm (Figure 1B and
1C), suggesting that topological organization of the PE precursor domain and the tertiary
heart field is maintained throughout cardiac morphogenesis. Collectively, these data provide
a framework regarding the timing and ontogeny of PE specification, allowing for further
assessment of inductive tissue-tissue interactions regulating PE development. Further studies
will be necessary to determine the extent of the entire PE field within the LPM.

Molecular induction
A number of different molecular markers are often used to delineate PE identity. These
include transcription factors such as Wt1, Tbx18, Tcf21 and signaling components Cfc and
Raldh2. These markers are preferentially expressed within epithelial and mesenchymal cells
of the PE, but are also expressed in other tissues [6,13,15,16]. Two novel PE markers, Scx
and Sema3D, define distinct subpopulations within the mouse PE [17]. Unlike other PE
markers, in the heart region expression of Sema3D and Scx is restricted to the PE and
epicardium. These molecular markers, alone or in combination, can be used as a readout of
PE molecular induction.

How PE identity is induced remains largely unknown; however, the close proximity of the
liver bud to the PE is suggestive of inductive interactions between these two tissues . This
possibility has been experimentally tested. Ectopic implantation of quail liver bud into
posterior lateral regions of chick host embryos induces expression of Wt1, Tbx18 and Tcf21
in adjacent host tissue [18]. Strikingly, other endoderm-derived tissues such as lung bud and
stomach do not share this capacity. These results suggest a role of the liver bud in PE
molecular induction (Figure 2) but cannot rule out a contribution from the myocardium.
However, liver bud implantation in posterior lateral regions far from the myocardium still
induces expression of PE markers, suggesting that a myocardium-derived signal is not
necessary. To test this possibility more directly, chick non-myocardial mesoderm was co-
cultured with quail liver bud, resulting in elevated expression of Wt1 and Tcf21 [18]. A
requirement for mature hepatocytes in PE molecular induction has been explored in
Hnf1bahi2169 mutant zebrafish in which hepatocyte markers prox1 and hhex are absent [19].
Wt1, Tbx18 and Tcf21 are expressed at wild-type levels in the heart region of the mutant
zebrafish, indicating that the completion of liver maturation is not required for PE molecular
induction.

Studies in chick and zebrafish have implicated bone morphogenetic protein (BMP) signaling
in PE molecular induction (Figure 2). Both implantation of beads soaked with Noggin, a
BMP antagonist, or BMP2-secreting cells, into the right inflow results in loss of Tbx18
expression in the heart region [6]. Consistent with this, in Bmp4 and type 1 BMP receptor
mutant zebrafish, expression of Tbx18 and Tcf21 is absent around the heart but unaffected
in other tissues [19]. However, the source of BMP signals remains to be determined.

In addition, an indirect effect of fibroblast growth factor (FGF) signaling in PE laterality
development has been suggested. FGF8 and Snai1 are asymmetrically expressed in the right
side of Hensen's node and the LPM [20]. Inhibition of right-sided FGF8 or Snai1 signaling
results in the loss of Tbx18 expression in the right inflow, whereas ectopic left-sided FGF8
or Snai1 signaling leads to bilateral expression of Tbx18 and Wt1 [21]. Taken together,
these data suggest that maintenance of laterality is required for proper PE marker
expression. The transcription factors Tbx5 and Hand2 appear to be required for PE marker
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expression. Tbx5a is a member of the T-box transcription factor family that is expressed in
the LPM [22]. Expression of Tbx18 and Tcf21 is markedly reduced in the heart region of
Tbx5a mutant zebrafish. Introduction of a dominant negative form of Tbx5a at various
stages reveals a requirement for Tbx5a prior to heart morphogenesis. Though it is not
expressed in the PE, Hand2, a basic helix-loop-helix transcription factor, is necessary for
proper development of the epicardium and coronary vasculature [23]. Expression of Tbx18
and Tcf21 is absent in the heart region of Hand2 mutant zebrafish, suggesting a role of
Hand2 in PE molecular induction; however, a secondary effect due to extensive myocardial
defects cannot be ruled out [19]. Additionally, genetic lineage tracing studies suggest that
Hand1-expressing cells of the septum transversum contribute to the PE [23].

Marker expression is an effective readout of inductive interactions; however, additional
readouts are required for a more complete understanding of PE induction. Although liver
bud and FGF signals induce ectopic expression of PE markers, morphological characteristics
such as villous protrusions are not observed. These data suggest that additional signals from
the myocardium, or other tissues, may be required for morphogenetic induction.

Morphogenetic induction of the PE
Morphogenetic induction of the PE, or its protrusion and attachment to the heart, is the result
of an orchestrated series of cellular events, including cell proliferation and guided
protrusion. Several studies have provided different pieces of evidence regarding PE cell
protrusion and incorporation to the heart. In the mouse, retinoid X receptor alpha null
animals display increased PE cell apoptosis with incomplete formation and distention of the
epicardium [24]. Similarly, inhibition of FGF signaling results in reduced PE villous
outgrowth associated with increased cell death and decreased cell proliferation [25]. In
contrast, Connexin43 alpha 1 null PE explants display increased proliferation and cellular
locomotion [26]. In addition to its previously noted role in PE marker expression, Tbx5
appears to also be required for PE cell incorporation into the heart. PE cells infected with
retrovirus expressing anti-sense Tbx5 do not contribute to the formation of epicardium and
coronary vasculature [22].

Myocardium-derived BMP signals direct protrusion and attachment of the PE to the heart
[27]. During PE protrusion, Bmp2 expression is localized to the AV junction. Misexpression
or inhibition of Bmp2 results in blocked attachment of the PE to the looping heart.
Importantly, perturbation of BMP signaling blocks this morphogenetic process but does not
affect PE identity or heart patterning, as revealed by unchanged expression of Tbx18, Wt1,
Tcf21, Tbx2 and Cx40. In vitro, PE cells can undergo directional epithelial expansion
toward the source of BMPs without the myocardium [27]. Taken together, this study
proposes a model in which myocardium-derived paracrine signals induce morphogenetic
outgrowth of the PE toward the AV junction.

After attachment, PE cells spread across the surface of the myocardium to form the
epicardium. A number of studies have demonstrated the importance of adhesion molecules
in this process. Alpha 4 integrin null mice form an epicardial layer at E10.5; however, by
E12.5 this layer is completely absent from the ventricles, suggesting defective epicardial
attachment to the heart [28]. Similar phenotypes have also been observed in cell surface
protein VCAM1 null mice [29].

Together, these studies indicate that myocardium-derived signals are critical to PE
morphogenetic induction (Figure 3). These effects may be mediated by a number of cellular
functions, including gap junctions, cell adhesion molecules, and growth factors. As the PE
undergoes morphogenetic changes, inductive signals must also be acting to specify diverse
PE cell fates.
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PE cell type diversity
PE cells were originally thought to give rise only to epicardium; however, a series of
retroviral-based lineage tracing studies showed that the PE also generates a number of other
cardiac lineages, including coronary vascular smooth muscle cells, cardiac fibroblasts and
coronary vascular endothelial cells [1,30]. Subsequent studies employing chick/quail
chimeras and adenoviral tagging [4,31-33] corroborate these findings.

While in the avian system the PE is capable of generating coronary artery endothelial cells,
venous and lymphatic endothelial cells derive from other sources [34,35]. Both in avian and
mouse, venous endothelial cells arise from inflow angiogenic sprouts [34,36]. In mouse the
origin of coronary artery endothelial cell is less clear, as multiple sources including the sinus
venosus, PE and endocardium have been cited to be responsible for this event [17,36-38].
Although multiple cell types arise from the PE, how and when their fate decisions are
induced remain unknown.

The distinct cell lineages contributing to the coronary vasculature are distributed in a mosaic
pattern within the PE prior to its attachment to the myocardium. Indeed, this expression
pattern is observed for cellular and molecular markers [1,17,25,33,38-41].However, it is
unknown whether PE cells expressing a single marker give rise to the same cell lineage type
in the heart. Previous work suggests that fate segregation towards different cell types occurs
within the PE, as retroviral clonal analysis revealed that individual PE cells do not give rise
to multiple fates [1]. Alternative evidence shows that epicardial cells expressing Tcf21 give
rise to both cardiac fibroblasts and coronary artery smooth muscle cells [42]. This implies
that cell fates may not segregate within the PE or that more than one fated cell type is
labeled by Tcf21. Uncovering the precise temporal and spatial location of PE cell type
segregation is imperative for further investigations on the inductive signals in PE cell type
specification.

Current evidence hints to a few factors involved in PE cell type specification. Conditional
KO mice lacking b-catenin expression in the PE, display an absence of the main coronary
arteries. Vessels are devoid of smooth muscle cells positive for alpha-SMA while retaining
PECAM-1 positive endothelial cells [43]. Given that PE migration to the heart and
epicardial formation were not affected, the authors concluded that b-catenin has a specific
role in induction of the coronary vascular smooth muscle lineage. Similarly, retinoic acid
and adenoviral overexpression of Raldh2 in quail PE explants decreases alpha-SMA
expression, while inhibition of retinoic acid signaling in vivo leads to increase expression of
alpha-SMA. Ectopic VEGF in PE explants results in decreased alpha-SMA expression and
modest increase in endothelial QH1 marker [41]. Lastly, Tcf21 positive epicardial cells give
rise to coronary artery smooth muscle cells and cardiac fibroblasts. However, in Tcf21 null
embryos cardiac fibroblasts markers are absent in the myocardium but retained in the
epicardium [42]. Collectively, these studies are beginning to elucidate how diversification of
PE cell types is induced during their recruitment to the heart.

Conclusion
Current evidence is starting to reveal critical information regarding PE induction; however, a
considerable amount of work is still needed. For instance, the inductive signals that mediate
PE field specification are completely unknown. This has been in part due to the lack of
information pertaining to the temporal and spatial window of PE field specification. The
recent discovery of a previously undescribed PE progenitor field will enable the search for
potential inductive signals involved in this process.
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The study of PE induction represents an exciting challenge that could potentially result not
only in a better understanding of PE developmental biology but also in the implementation
of cell based clinical therapies. Currently, myocardium-derived BMP is the only factor
known to play a role in PE morphogenetic induction. However, the mechanisms translating
paracrine BMP signaling into PE morphogenetic events remain unknown. The contribution
of the PE to a number of coronary vascular cell types has been known for more than a
decade. While the discovery of inductive PE signals demands diligent work, as many
embryological manipulations can cause multiple developmental effects, the determination of
events that specify the diverse cell types that arise from the PE is critical to our general
understanding of heart development.
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Figure 1.
Proepicardial Field. A) Schematic of an early somite stage chick embryo. Heart precursors
occupy bilateral fields within the lateral plate mesoderm. The primary heart field (1°) is
indicated in grey, the secondary heart field (2°) is indicated in pink, and the posterior tertiary
heart field (3°) is indicated in green. Fate mapping studies indicate the progenitors of the
Proepicardium reside outside and adjacent to the tertiary heart field (blue). B) Schematic of
a heart tube. The primary heart fields have fused along the midline, while the secondary and
tertiary heart field have not yet been incorporated into the heart. The proepicardial
precursors maintain their position lateral to the heart field mesoderm (blue). C) Schematic of
a looping stage heart. the proepicardium (blue) can be seen extending off the right inflow of
the heart. HT - heart tube, At - atria, AVJ - atrioventricular junction, Vt - ventricle, Pe -
proepicardium, A - anterior, P -posterior, R - right, L- Left, D - dorsal, V - Ventral.
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Figure 2.
Poepicardial molecular induction. A) Diagram of an early looping stage heart. Liver bud
(green) derived signals induce proepicardial marker expression in the adjacent mesothelium
(blue). Paracrine and autocrine BMP signaling is also critical for proepicardial marker gene
expression. At - atria, OFT - out flow tract, Vt - ventricle, A - anterior, P - Posterior, R -
right, L - left, D - dorsal, V - ventral.
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Figure 3.
Proepicardial morphological induction. A) Schematic of early mesothelium transitioning to a
“ grape-like” cluster of proepicardial cells. FGF signaling and the transcription factor Tbx5
are required for this transition. BMP secreted by atrioventricular junction myocytes direct
oriented proepicardial extension. B) Schematic of a looping stage heart. Following
proepicardial extension and attachment to the inner curvature of the heart, Alpha4 integrin
and Vcam1 are necessary for proper spreading and adherence of epicardial cells to the
myocardium. At -atria, AVJ - atrioventricular junction, Vt - ventricle.
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Figure 4.
Proepicardial cell fate induction. A) Schematic of a late looping stage heart. Different colors
in the proepicardium represent different cell fate potentials. B. Model of proepicardium cell
fate induction in which cell fates have not been definitively established and individual cells
within the proepicardium can go on to give rise to multiple cell types. C) Model of
proepicardium cell fate induction in which cells within the proepicardium are already
restricted to a cell fate prior to the proepicardium binding to the heart. D) Whole mount
immunofluorescence staining of a late looping stage quail embryo stained with antibodies
against the extracellular matrix protein tenascin-C (red), and the quail endothelial marker
QH1 (green). E) Higher magnification image of proepicardium from (D), QH1 positive
endothelial cells are clearly present within the proepicardium before it attaches to the heart.
At -atria, AVJ - atrioventricular junction, Vt - ventricle, Pe - proepicardium, OFT - outflow
tract.
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