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Abstract

Stochastic signals with pronounced oscillatory components are frequently encountered in neural systems. Input currents to
a neuron in the form of stochastic oscillations could be of exogenous origin, e.g. sensory input or synaptic input from a
network rhythm. They shape spike firing statistics in a characteristic way, which we explore theoretically in this report. We
consider a perfect integrate-and-fire neuron that is stimulated by a constant base current (to drive regular spontaneous
firing), along with Gaussian narrow-band noise (a simple example of stochastic oscillations), and a broadband noise. We
derive expressions for the nth-order interval distribution, its variance, and the serial correlation coefficients of the interspike
intervals (ISIs) and confirm these analytical results by computer simulations. The theory is then applied to experimental data
from electroreceptors of paddlefish, which have two distinct types of internal noisy oscillators, one forcing the other. The
theory provides an analytical description of their afferent spiking statistics during spontaneous firing, and replicates a
pronounced dependence of ISI serial correlation coefficients on the relative frequency of the driving oscillations, and
furthermore allows extraction of certain parameters of the intrinsic oscillators embedded in these electroreceptors.
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Introduction

Oscillatory activity is common in neural systems. Mechanical

oscillations form an important class of sensory stimuli, for instance,

in hearing, but may also be generated autonomously by

mechanosensory hair cells [1]. In single neurons, periodicities

may occur in the form of subthreshold membrane potential

oscillations [2]. Oscillations at the level of brainstem and spinal

cord neural networks generate the coordinated motor patterns for

breathing and locomotion. Cortical networks may cause period-

icities of local field potentials [3] or electroencephalogram (EEG)

or magnetoencephalogram (MEG) activity [4].

With few exceptions, e.g. motor rhythms and the precise

rhythm of the electric organ discharge in weakly electric fish [5],

the oscillations generated by neural systems are not coherent over

long time scales, but instead show fluctuations in both phase and

amplitude (see Fig. 1, middle panel, for an example). Such periodic

signals with limited coherence are termed stochastic oscillations, and

are characterized by a preferred frequency band of spectral power.

An individual neuron’s activity may be affected by stochastic

oscillations via synaptic input to it, or from its own endogenous

fluctuations. Although stochastic oscillations are frequently found

in neural systems, there is generally poor understanding of how an

input current of this kind affects the firing pattern of a neuron, its

ability to transmit information about time-dependent stimuli, and

its interaction with other cells in a neural network. This is in

marked contrast to the often studied (non-stationary) problem of

how a deterministic periodic driving affects neural activity (see e.g.

[6–13]). The simplest yet non-trivial problem that comes up with

stochastic oscillations is how they shape the spontaneous activity of a

spiking neuron, our topic here.

For the strictly periodic (i.e. a deterministic) driving, different

analytical approaches and results exist (see e.g. [8,11,12]). Explicit

expressions for the spike statistics of neurons driven by stochastic

oscillations, however, are still lacking even for simple integrate-

and-fire type models (for a notable exception, see [14] for an

approach to the count statistics of such models). Formulas, e.g. for

the ISI statistics, are desirable for several reasons. First, the

analytical approach gives us a more thorough understanding of the

spike time statistics, along with opportunities to formulate

falsifiable predictions from the model. Secondly, in many neurons,

a stochastic oscillatory drive may arise from noisy background

processes rather than from specific sensory input. Analytical results

may help to understand this more complicated situation of
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oscillatory noise and sensory stimuli being present at the same

time. Put differently, before we can characterize the signal

transmission of such a cell, it is in many cases beneficial to first

thoroughly understand its spontaneous (i.e. autonomous signal-

independent) activity caused by intrinsic noise or massive synaptic

background. Thirdly, the temporal structure of single neuronal

spike trains is conserved even if many independent spike trains are

superposed [15] (weak correlations between neurons will addi-

tionally shape the power spectrum of the sum). Hence, on the

network level, characteristics like the ISI density and ISI

correlations of presynaptic cells driven by stochastic oscillations

still affect postsynaptic target cells and thus shape network

dynamics. Last, by comparing the ISI statistics of real neurons

to analytical expectations, it may in certain cases be possible to

draw conclusions about intrinsic parameters of the neural

dynamics, which may otherwise be inaccessible, as has been

carried out recently for sensory neurons with spike-frequency

adaptation [16,17].

Extensive experimental results pertinent to this problem of how

stochastic oscillations shape the spontaneous spiking of a sensory

neuron exist for the peripheral electroreceptors in paddlefish,

which embed two distinct types of stochastic oscillators, one

running at approx. 25 Hz, residing in a population of epithelial

cells, which drives another in the peripheral terminals of afferents,

running at approximately twice higher frequency. It was shown

that the forcing from stochastic epithelial oscillations leads to

rather complicated firing statistics of afferent firing, with multiple

peaks in spike train power spectra, and extended-range correla-

tions in the ISI sequence, continuing for tens of ISIs [18,19]. We

made use of a database of digitized recordings of spontaneous

firing of electroreceptor afferents, obtained from in vivo paddlefish

preparations in which external environmental noise due to water

motion was minimized.

In this paper, we present novel analytical results for the firing

statistics of a perfect integrate-and-fire (PIF) neuron model, which

is driven by noisy oscillations [14]. The PIF model is the canonical

model for a supra-threshold, regularly firing neuron, in which the

effective mean input current m is so strong that it overshadows any

voltage-dependence of the subthreshold membrane dynamics. The

membrane potential v obeys the dynamical equation

_vv(t)~mzx(t)zz(t), ð1Þ

where _vv denotes the temporal derivative of v(t). The model

generates spikes whenever v(t) hits the threshold at v~vT and is

subsequently reset to v~0. The driving consists of a so-called

harmonic noise, representing the stochastic oscillation, given by

the following Langevin equations [20]

_xx(t)~y(t) ð2Þ

_yy(t)~{cy(t){v2
0x(t)z

ffiffiffiffiffiffiffi
2D
p

j(t), ð3Þ

together with a short-correlated Ornstein-Uhlenbeck process [21]

_zz(t)~{
z(t)

t
z

ffiffiffiffiffiffiffiffi
2Dz

t2

r
j2(t), ð4Þ

which mimics broadband intrinsic fluctuations. The values of the

noise are not reset after spiking. Important parameters of the model

are: (i) the frequency ratio w~V=(2pm=vT) of the damped

frequency V~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

0{c2=4
q

of the harmonic noise to the mean

firing rate m=vT, (ii) the quality factor Q~V=c which quantifies the

bandwidth and coherence of the harmonic noise, (iii) the non-

dimensionalized variance of the harmonic noise

ŝs2
x~Sx2T=m2~D=(cv2

0m2), (iv) the non-dimensionalized variance

of an Ornstein-Uhlenbeck (OU) broadband noise process

ŝs2
z~Sz2T=m2~Dz=(tm2), and (v) its non-dimensional correlation

time t̂t~tm=vT~t=STT. Our model with stochastic oscillations is

illustrated in Fig. 1. Note that it can be regarded as a

generalization of previous models, in which a PIF model was

driven by uncorrelated white noise [22], exponentially correlated

noise [16,23], or a white noise and periodic driving [8,12,24,25].

For this simple model, we calculate approximations for the ISI

density and the ISI serial correlations and compare them to

numerical simulations of the model. When discussing our explicit

results, we focus on changes of the ISI statistics upon varying the

Figure 1. Illustration of the neuron model, showing a
calculated membrane voltage trace (upper panel) that yields
a spike time whenever a threshold level is reached, and sample
trajectories of input narrow-band harmonic noise (middle
panel) and broadband short-correlated Ornstein-Uhlenbeck
(OU) noise (lower panel).
doi:10.1371/journal.pcbi.1003170.g001

Author Summary

We explore how a neuron responds to a special type of
input signal which is oscillatory but noisy (narrow-band
noise). These fluctuations could be due to sensory input,
due to oscillatory activity of a surrounding network, or due
to a natural stimulus. We study theoretically the effects of
noisy oscillations on an idealized model neuron, which
would otherwise produce as output a series of action
potentials at regular intervals. Because our model is
comparably simple, we can describe the effects on ISI
statistics analytically with formulas that we test against
computer simulations of the model. Moreover, we can
compare our theoretical predictions to experimental data
from electroreceptors of paddlefish - a biological example
for spiking neurons that are naturally stimulated by
stochastic oscillatory input. In particular, our theory
provides a simple explanation of the seemingly compli-
cated patterns of correlations between interspike intervals,
that are observed for the electro-afferents in paddlefish;
the theory shows also good agreement with respect to
other independent spike train statistics. Our findings
further the understanding of how nervous activity is
shaped by oscillatory noisy signals, which can emerge in
the neural networks of the brain, in the sensory periphery,
and in the environment.

Effect of Stochastic Oscillations on Neural Firing
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ratio w of the frequency of stochastic oscillations to the neuron’s

firing rate, a parameter that also shows a remarkable effect for the

electroreceptor afferents of paddlefish. In particular, we show that

upon variation of w the skewness of the ISI density and also the

structure of the ISI correlation coefficient as a function of the lag

both change drastically, changes that are well-described by our

theory.

We then compare our formulas for the ISI statistics to

experimental data from electroreceptor afferents of paddlefish,

obtained previously [18]. The analytical results from our simple

perfect integrate-and-fire model work reasonably well in predicting

(matching) these experimental data, indicating that the limitations

of this model are not severe for representing sensory neurons with

a high ongoing firing rate. This accords with other reports of

remarkably good performance of stochastic perfect integrate-and-

fire models for mimicking the ISI statistics of spontaneously active

sensory neurons [17,22] (for the performance of more general IF

models in reproducing spike statistics, see e.g. [26,27]). We

conclude with a short discussion of the implications of our results

for oscillatory physiological systems in general.

Results

In this work, we aim at (i) the statistics of individual interspike

intervals (ISI) by means of their probability density function (pdf),

its coefficient of variation (CV), and its skewness, and (ii) the

correlations between ISIs as quantified by the serial correlation

coefficient (SCC). We study these statistics for the perfect

integrate-and-fire (PIF) model and compare the theoretical results

to experimental data.

Perfect integrate-and-fire model
Despite the apparent simplicity of the PIF model, the fire-and-

reset condition severely complicates the analysis. For the

calculation of the ISI density and ISI correlations, one has to

solve a first-passage-time problem in the form of a Fokker-Planck

equation in a four-dimensional state-space spanned by the voltage

and all the noise variables. The fire-and-reset condition imposes a

complicated boundary condition on a half-space [28], which

however can be ignored in the case of a weak colored noise where

the standard deviation of the total noise is much smaller than the

base current m, or, in terms of a small parameter E, if

E~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝs2

xzŝs2
z

q
%1: ð5Þ

In this case, based on the methods presented in [16,23], the

solution with natural boundary conditions can be used to calculate

the ISI density. Furthermore, to obtain explicit expressions for the

ISI moments and the SCC, a perturbation calculation of the

characteristic function, in which E enters as the small parameter,

turns out to be advantageous. These approximations are outlined

in Methods and lead, for the considered problem, to formulas of

reasonable length for the statistics of interest. In the next section,

we compare our formulas to results from numerical simulations for

small fixed values of E. In METHODS, we also show some of the

statistics as functions of our small parameter E in order to give the

reader some intuition about the range of validity of our formulas.

Our results are valid for arbitrary time scales of harmonic noise

and OU noise; the general formulas are provided in the Methods

section. However, because the effects of an exponentially

correlated noise on ISI statistics are well-known [16,23,29], we

focus on variations in the time scales of the harmonic noise, and set

the correlation time of the OU noise to a small value if not stated

otherwise. In most of the cases discussed, the latter noise thus acts

essentially as a white-noise source. Direct inclusion of a white noise

is not possible in our perturbation approach.

Shape of interspike interval density; skewness and

coefficient of variation. For the ISI density with weak total

noise, a short-correlated Ornstein-Uhlenbeck process (t%STT),
and a high quality factor of the harmonic noise (Q&1), we obtain

(see Methods):

P1(t)~
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pc3

1(t)
q exp {

(t{STT)2

4c1(t)

" #

(STT{t)c2(t)z2c1(t)½ �2

2c1(t)
{c2

2(t)z2c1(t)c3(t)

( )
,

ð6Þ

with

c1(t)~ŝs2
zt(t{t)z

ŝsxSTT
2pw

� �2

1z
2n

STT
t{

3

2Q
sin

2pw

STT
t

� �
zcos

2pw

STT
t

� �� �
exp {

n

STT
t

� �� �ð7Þ

c2(t)~ŝs2
ztz

ŝs2
xSTT

2pwQ
1{ cos

2pw

STT
t

� �
{Q sin

2pw

STT
t

� �� �
exp {

n

STT
t

� �� �
,
ð8Þ

c3(t)~ŝs2
x exp({

n

STT
t) cos

2pw

STT
t

� �
z

1

2Q
sin

2pw

STT
t

� �� �
ð9Þ

n~pw=Q ð10Þ

where STT~vT=m is the mean ISI. A more lengthy expression

that holds true for arbitrary correlation time of the OU noise and

arbitrary quality factor of the harmonic noise but still requires that

the total noise is weak, is given in the Methods section in Eqs. (43–

46).

Fig. 2A shows how the skewness of ISI distributions changes for

different values of the frequency ratio w. These examples suggest

that the ISI distribution is positively skewed for wv0:5,

symmetrical for w~0:5, and negatively skewed for w slightly

larger than 0:5. In fact, Fig. 3B reveals an oscillating pattern of the

skewness cs as a function of the frequency ratio. For sufficiently

weak OU noise, the skewness is negative if w~nzx with integer n
and x[½0:5, 1�, whereas the skewness is positive if w~nzx with

integer n and x [ ½0,0:5�. For stronger OU noise, the skewness is

increased such that it is positive for all values of w (cf. Fig. 3B3), as

shown in Results for the electroreceptor afferents. This is plausible

because it is known that with dominating exponentially correlated

noise or with uncorrelated noise, the ISI density is positively

skewed [16].

Note that the ISI distribution can also be multimodal, as

demonstrated in Fig. 2B (here, the full theory Eqs. (43–46) had to

be used, because t~STT, which is not small as assumed for

Eq.(6)). Such multimodal histograms have also been obtained for

the FitzHugh-Nagumo and leaky integrate-and-fire models driven

by white noise and a strictly periodic signal, and have been

Effect of Stochastic Oscillations on Neural Firing
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Figure 2. Comparison of ISI distributions P1(t) obtained from numerical simulation or theory Eqs.(6–9) for A and Eqs. (43–46) for B.
A: ISI distributions for different frequency ratios: w~0:2 (top panel), w~0:5 (middle panel), or w~0:8 (bottom panel). Parameters: Q~30, ŝsx~0:2,
ŝsz~0:3, and t̂t~0:01. B: Example of a multimodal ISI histogram at high relative driving frequency w, with harmonic noise input that was nearly
periodic (large quality factor Q~106). Parameters: ŝsx~0:2, ŝsz~0:25, t̂t~1:0, w~20, m~1, vT~1 and, consequently, r0~1=STT~1.
doi:10.1371/journal.pcbi.1003170.g002

Figure 3. Second and third-order interval statistics as a function of the frequency ratio for different values of the OU broadband
input (remaining parameters ŝsx~0:2, Q~30:0, and t̂t~0:01). A: Coefficient of variation (CV) for ŝsz~0:1 (A1), ŝsz~0:3 (A2), or ŝsz~0:8 (A3). B:
Skewness cs for ŝsz~0:1 (B1) ŝsz~0:3 (B2), or ŝsz~0:8 (B3). Theoretical CV and skewness (blue) were computed by numerical integration from the
theoretical ISI distribution Eq.(6)–Eq.(9) ; the simpler expression Eq.(11) is shown in red in A.
doi:10.1371/journal.pcbi.1003170.g003

Effect of Stochastic Oscillations on Neural Firing
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experimentally observed for auditory neurons (see, e.g. [7,30]) and

electrosensory neurons in weakly electric fish (see, e.g. [31]).

Besides the skewness of the distribution, its relative width as

quantified by the coefficient of variation (CV) is another important

statistic, which characterizes the variability of ISIs. For a

sufficiently high quality factor Q of the harmonic noise, and a

small correlation time of the broadband OU noise, we obtain the

following approximation for the squared CV:

C2
V~2ŝs2

z t̂tz

ŝs2
x

2p2w2
1z2n{

3

2Q
sin(2pw)zcos(2pw)

� �
e{n

� �
,
ð11Þ

an expression that yields values close to simulation data and to

values of the CV obtained by using an integral involving our

approximation for the ISI density Eq.(6) (cf. red lines to symbols

and blue lines in Fig. 3 A).

We can draw a few conclusions from Eq.(11). Firstly, the OU and

harmonic noise processes make independent contributions to the ISI

variability, the two terms being proportional to ŝs2
z and ŝs2

x. This is

reasonable because it reflects the addition of the noise sources in the

input, and the fact that we used a perturbation theory. Secondly, the

CV is an oscillatory function of the frequency ratio w. We can

certainly expect that driving the system with a multiple of its own

(firing) frequency allows for more regular spiking of the neuron

(corresponding to the minima in the CV at w~1,2 . . .) than a forcing

with a frequency very different from its autonomous rhythm. Thirdly,

there is an overall decline of CV with growing w because of the

exponential function. This is explained because the noise intensity of

the driving stochastic oscillations declines with increasing frequency

v0, and hence the harmonic noise becomes less efficient in

broadening the ISI density. All of these predictions of the formula

are quantitatively confirmed for different values of the standard

deviations of the OU noise (cf. Fig. 3A). Remarkably, for a perfect

integrate-and-fire model, although the mean firing rate does not

depend on the noise [23] (see also Methods section)and, in particular

not on w, higher-order statistics such as the CV and the skewness do.

Serial correlation coefficients. The serial correlation coef-

ficient (SCC) rk of interspike intervals can be computed from the

variances SDt2
nT of the nth-order interval distribution (see

METHODS). For a high quality factor of the harmonic noise and

a small correlation time of the OU broadband noise, the formula

for the SCC can be considerably simplified to read

rk~2
ŝsx

2pwCV

� �2

l1 sin(2pwk)zl2 cos(2pwk)½ � exp {nkð Þ ð12Þ

with parameters l1,2 that do not depend on the interval lag k:

l1~
3

2Q
1{cosh n cos(2pw)½ �{sinh n sin(2pw) ð13Þ

l2~1{cosh n cos(2pw)z
3

2Q
sinh n sin(2pw):

For the CV in Eq. (12), the approximate expression in Eq.(11) is

adequate.

The dependence of the serial correlation coefficient Eq.(12) on

the lag k has the form of a damped oscillation, sampled at discrete

values of the lag. This simple structure permits a number of

conclusions. Firstly, if assumed to have a short correlation time,

Ornstein-Uhlenbeck noise affects the SCC mainly via the CV in

the prefactor, and thus tends to reduce the amplitude of the serial

correlations at all lags. In contrast, an increase in the variance of

the harmonic noise amplifies the serial correlations. Secondly, spike

intervals are correlated mainly due to the correlations in the

driving stochastic oscillations, and hence the SCC shows an overall

decay with the ‘‘lag constant’’ Q=(pw), reflecting simply the finite

(limited) phase coherence of the harmonic noise input. Thirdly, the

SCC oscillates with the lag k, but because the argument k attains

only integer values, rather complex looking patterns can result if

the multiplying factor w in the trigonometric functions is not an

integer or a simple ratio such as w~1=2. Fourthly, for a frequency

ratio of w~1, the SCC is close to zero for all lags because in this

case the sine term in Eq.(12) drops out, and the prefactor of the

cosine term l2&p2=(2Q2) is rather small for a high coherence of

the harmonic noise. Hence, if the frequencies of the stochastic

oscillation and the neuron coincide, the resulting spike train is

close to a renewal process. This is similar to findings in a bistable

system under dichotomous driving [32,33], for which the linear

correlations vanish if the switching rate of the dichotomous driving

coincides with the spontaneous hopping rate of the bistable system.

All of these predictions are confirmed in the comparisons to

numerical simulations in Fig. 4 A. Correlations are very small for

w~1 (Fig. 4A). They look complex for w~0:4 and w~0:7, and are

simply sinusoidal for small w. For a value w~0:48, close to one half,

a kind of beating pattern emerges. Finally, for w~1=2, we observe a

clear and long-extended oscillation of the SCC, alternating between

positive and negative values, while decaying. In all cases, our

formula works very well in predicting these different structures.

Another validation of our analytical result at very high

coherence of the harmonic noise is illustrated in Fig. 4 B, showing

the correlation coefficient of adjacent intervals r1 as a function of

the frequency ratio. Also in this case, a nontrivial dependence is

observed, with clear minima of the SCC at w~0:5zn (where n is

an integer), and sharp changes around integer values of w.

The overall length of the ISI correlations can be characterized

by the correlation lag, defined as

nc~2
X?
k~1

r2
k: ð14Þ

The correlation lag measures the temporal extent of the SCCs,

irrespective of the sign of the coefficients, in units of the mean

interspike interval. For the SCCs approximated by Eq.(12), the

sum in Eq.(14) is calculated exactly as:

nc~
(e2n{1)

2e4n sinh2 n(cos(4pw){cosh(2n))

ŝsx

2pwCV

� �4

|

e2n½l2
2{l2

1z(3l2
2zl2

1) cos(4pw)z2l1l2 sin(4pw)�{2l2
2

	
{2e4n(l1 sin(2pw)zl2 cos(2pw))2



,

ð15Þ

where l1,2 are given by Eq.(13). Fig. 5 shows the correlation lag versus the

frequency ratio, w. It is clearly maximal and even diverges for w?0.

However, there are sharp local maxima around w~1=2,3=2, . . .. There

are also minima close to zero for integer values of w because in this latter

case the spike train is nearly a renewal process.

Comparison with experimental data from paddlefish
electroreceptors

The theory developed in the previous sections was applied to

experimental data obtained from in vivo electroreceptors of

Effect of Stochastic Oscillations on Neural Firing
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paddlefish. A single peripheral electroreceptor (ER) in paddlefish

embeds two distinct oscillators. One resides in a population of

epithelial cells (epithelial oscillator, EO), and can be recorded near

an epithelium. This EO is coupled synaptically to another

oscillator associated with the terminal of a given primary sensory

afferent neuron (afferent oscillator, AO) [18]. Unidirectional

coupling of these self-sustained oscillators, EORAO, results in

spontaneous biperiodic firing patterns of afferents having two

fundamental frequencies, including the EO’s at about fe~26 Hz,

and another corresponding to the mean firing rate of an afferent,

Figure 4. Serial correlation coefficients. A: SCC value (ranging from 21 to +1) as a function of the lag k of interspike intervals, for different
values of the frequency ratio: w~0:1 (A1), w~0:4 (A2), w~0:48 (A3), w~0:5 (A4), w~0:7 (A5), or w~1:0 (A6). Parameters: ŝsx~0:1, ŝs2

z~0, and Q~30.

Dots: simulation. Lines: theory. B: SCC at lag k~1, r1 , for highly coherent harmonic noise, as a function of w. Parameters: ŝsx~0:15, ŝs2
z~0, Q~300.

Theoretical curves were computed from Eq.(11) and Eq.(12).
doi:10.1371/journal.pcbi.1003170.g004

Figure 5. Correlation lag nc, in units of the mean interspike interval, as a function of the frequency ratio w. Dots show results of
numerical simulations; blue lines show theory according to analytical evaluation of the sum Eq.(14). A: Correlation lag for different values of the
quality factor of harmonic noise input: Q~10 (A1), Q~30 (A2), and Q~100 (A3). Parameters: ŝsx~0:1, and ŝsz~0. B: Correlation lag at different levels
of OU broadband noise: ŝsz~0 (B1), ŝsz~0:05 (B2), and ŝsz~0:2 (B3). Parameters: ŝsx~0:1, Q~30, and t̂t~0:05.
doi:10.1371/journal.pcbi.1003170.g005

Effect of Stochastic Oscillations on Neural Firing
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fa, ranging from 30 up to 78 Hz, depending on the particular

electroreceptor [18]. These two fundamental frequencies are seen

as separate peaks centered at fe and fa in the power spectral

density of an afferent’s firing. These peaks were used to determine

the frequency ratio of the two oscillators as w~fe=fa. Only the AO

is affected by external electric field stimuli. The EO acts as a

stimulus-independent source of narrow-band noise input to the

AO [34,35]. Thus, the paddlefish electroreceptor system is an

appropriate source of experimental data for validating the theory

developed here.

In the in vivo preparation of paddlefish, an extracellular single

unit recording offers information about the firing of an ER

afferent. However, parameters of the epithelial oscillator, such as

its effective quality factor and its variance, are hidden (DISCUS-

SION). Previous computational studies have shown that a model of

two unidirectionally coupled oscillators reproduces well the

spontaneous and response dynamics of paddlefish ERs

[14,19,36]. Here, we use our theory for the PIF model with

harmonic noise, and in particular analytical expressions for the

SCCs, to extract statistical and dynamical properties of the

oscillators embedded in these ERs, and to verify the theoretical

predictions of how the statistics of ISIs depend on the parameters

of the coupled oscillators.

We analyzed spontaneous spiking activity from a sample of

n~56 ER afferents (METHODS). External noise was minimized,

and a criterion for stationarity of long data segments was imposed.

The data were in the form of sequences of spike times ftig,
i~1,:::,N, where N was of the order of 15000–50000 spikes,

corresponding to recording times of 300–900 s. The mean firing

rates of these units were in the range of 37.9–77.7 Hz, with mean

and SD of 54.368.71 Hz. The ratio of the EO to AO frequencies,

w~fe=fa, was 0.48 6 0.06 for the sample (range 0.40–0.61). The

CV of the corresponding ISIs of these units was 0.19 6 0.05 (range

0.11–0.31). Histograms in Fig. 6 summarizing these statistics

illustrate the diversity of firing rates and variability among this

sample of ER afferents.

From a given spike sequence, we estimated the SCCs, the

probability density of ISIs, and the power spectral density of the

spike train. Fig. 7 shows these measures for three representative

afferents with distinct values of the EO-to-AO frequency ratio, w,

which were below, near, or above w~0:5. For all afferents in the

sample, the distributions of ISIs were unimodal, and peaked close

to the mean ISI (Fig. 7A). They all showed extended decaying

series of significantly non-zero serial correlations, arising from the

interaction of the EO and AO, with a structure determined by the

frequency ratio w [19]. To assess the variation of SCC values due

to unavoidable minor non-stationarity, we split the spike train into

20 segments, each 2000 ISIs long, and estimated the SCCs for

each segment, which yielded error bars for the SCC values shown

in Fig. 7B. The PSD (Fig. 7C) showed a characteristic structure of

peaks, with a peak at the fundamental frequencies of the EO and

AO (fe and fa, respectively), sideband peaks at combination

frequencies (fa+fe), and their higher harmonics [18,19].

To apply our theory to experimental data, we extracted from

the serial correlations of an afferent spike train the four parameters

needed for the PIF model: the quality factor Q of the EO (a metric

of the bandwidth and coherence of harmonic noise), the frequency

ratio w, the SD of the EO ŝsx (the magnitude of harmonic noise),

and the intensity of broadband OU noise, ŝs2
z t̂t. These parameters

were extracted using a fitting procedure described in the Methods

(last section).

Fig. 7 illustrates the outcome for three representative ER

afferents. Our theoretical expression for the serial correlations of

ISIs, Eq.(12), shown by the red lines in Fig. 7B, provided excellent

fits for experimental data, as fitted values were within the error

bars of most experimental SCCs. The extracted parameters of the

PIF model for these three afferents are listed in Table 1.

To calculate the probability densities of ISIs and the PSDs, we

needed to accept a value for the correlation time of OU

broadband noise, t̂t (which was t in units of the mean ISI interval,

i.e. t̂t~t=STT). This was the only free parameter in our procedure

of comparison of experimental data and theory. Probability

densities of ISIs calculated according to the theory Eq.(6) (solid

lines in Fig. 7A), with the parameters from Table 1, showed good

correspondence with experimental data, and weak dependence on

the correlation time of OU noise. Instead of tuning up t̂t, the

correlation time of OU broadband noise was assumed to be fixed

at t̂t~0:2 for all afferents, which provided good correspondence of

experimental and theoretical ISIs distributions for all units, such as

those shown in Fig. 7A.

Finally, Fig. 7C,D compares power spectra of spike trains

obtained from numerical simulations of the PIF model Eqs.(1–4),

using parameters from Table 1, to the PSDs of ER spike trains.

Although the PSD’s from simulations reproduced well the overall

shape of experimental PSDs, the agreement between them is

incomplete, especially at low frequencies, f v10 Hz, suggesting

that the PIF model is an oversimplification of the stochastic

dynamics of these electroreceptors. In particular, ER afferents in

another fish species are known to exhibit spike-frequency

adaptation resulting in short-term negative correlations [37–39].

Figure 6. Histograms of firing statistics for a sample of n~56 paddlefish ER afferents, including distributions of the mean firing rate,
fa, A, the ratio of EO to AO frequencies, w~fe=fa, B, and the coefficient of variation, CV, C. These graphs are for different number of
afferents than used in Fig. 6 of Ref. [18].
doi:10.1371/journal.pcbi.1003170.g006
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These anticorrelations result in reduced power at low frequencies

and a sharper peak at the mean firing rate. A previous study [19]

showed that introduction of spike-frequency adaptation in a

spiking model of paddlefish ERs results in an additional

subtraction of low-frequency power similar to that observed in

the experimental PSDs shown in double log scale in Fig. 7D.

Nevertheless, the overall agreement of our simple and analytically

tractable model is clear.

The quality of fit is further illustrated in Fig. 8A showing

measured and calculated correlation lag of the ISI sequence.

Figure 7. Experimental data from three representative paddlefish electroreceptor afferents (dots in A1–A3, dots and error bars in
B1–B3, and gray lines in C1–C3), compared to theory, for the values of the frequency ratio, w, listed at the top. A: ISI probability
density functions (PDFs). Theoretical PDFs (red, blue, green lines) were calculated using Eq.(6) with n~1; t̂t~0:02, 0.2 and 0.5 (legend in A2), and other
parameters derived from fitting the SCCs, as explained in the Methods, final section. B: Serial correlation coefficients (SCCs). Theoretical red lines show
least square fits using Eq.(12). C–D: Power spectral densities (PSDs). Theoretical lines (magenta) were obtained from numerical simulation of the PIF
model using Eqs.(1–4), with t̂t~0:2, and other parameters the same as for theoretical curves in panels A1–3, derived from the SCC fitting procedure.
doi:10.1371/journal.pcbi.1003170.g007
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Furthermore, correspondence of theory and experiment is

demonstrated in Fig. 8B for the skewness of the ISI distribution,

an independent variability measure derived from ISI distribution.

As seen from the figure, theory estimate was biased towards

somewhat smaller values of the skewness. The Spearman rank

correlation coefficient was rs~0:999 for the correlation lags and

rs~0:907 for the skewness (Pv10{21 for both).

The application of the fitting procedure to our sample of ERs

provided the following sample-averaged values for the parameters

of the PIF model:

Q~16:27+4:344 (range 8.570–29.46), ŝsx~0:221+0:063
(range 0.129–0.443), and ŝsz~0:176+0:054 (range 0.084–0.303).

It is noteworthy that the SD values of the broadband OU noise,

ŝsz, were close to or even larger than SDs of the harmonic noise,

ŝsx. Nevertheless, the first-order approximation used in our theory

was adequate to provide close correspondence with the experi-

mental data, as seen in Figs. 7 and 8.

Next, we analyzed how the statistical properties of afferent ISIs

depend on the parameters of epithelial oscillations. In contrast to

analytical or numerical analyses, which allow studying the

dependence of a given statistical measure versus a single control

parameter, other parameters being fixed, here instead each

experimental data point on the scatter plots of Fig. 9 carries a

set of 4 measurable parameters (w, Q, ŝsx, ŝsz) with fixed values.

Variation of these parameter values between different ERs allows

qualitative tendencies to be clearly seen in the sample of n~56
experimental data points, and these trends can be compared to

theoretical predictions. We start with Fig. 9A, showing a scatter

plot of the electroreceptor ISI correlation lag nc (i.e. how slowly

the serial correlations of ISIs decayed; Eq.(14)) versus the Q values

of epithelial oscillations (i.e. their bandwidth and coherence).

According to the theory, SCCs will decay more slowly for more

coherent epithelial oscillations (i.e. for larger Q values), such that

nc increases with Q. This prediction was supported by a positive

correlation between them in the experimental data (Fig. 9A),

having a significant Spearman rank correlation coefficient of

rs~0:391 (P~3|10{3), despite considerable scatter.

To quantitatively compare experimental data to expectations

from theory, we calculated nc versus Q from the PIF model Eq.(15)

for each ER in the sample, with the other three parameters (w, ŝsx,

ŝsz) extracted using the SCC fitting procedure (Methods, final

section), yielding a curve for that electroreceptor over the range of

Q values along the abscissa of Fig. 9A. The family of n = 56 PIF

model curves were then averaged to calculate the sample-averaged

tendency �nnc(Q) (solid blue line) and its standard deviation snc
(Q)

(dashed blue lines):

�nnc(Q)~(1=n)
Xn

k~1

nc(Q,wk,ŝsx,k,ŝsz,k), ð16Þ

snc (Q)~ (1=n)
Xn

k~1

n2
c(Q,wk,ŝsx,k,ŝsz,k){�nn2

c(Q)

" #1=2

,

where wk, ŝsx,k, and ŝsz,k are the parameters for the k-th afferent.

The mean trend from theory formed a straight line with positive

slope, correctly predicting that the correlation lag increases for

more coherent epithelial oscillations. More than expected of the

experimental data points (47/56 = 84%) fell within the predicted

61 SD (68%) bands.

Table 1. Fitted values of PIF parameters for the three afferent neurons for which ISI statistics are shown in Fig. 7.

Afferent Mean firing rate (Hz) CV w Q ŝsx ŝs2
z t̂t

1 53.00 0.181 0.408 16.40 0.197 5.1061023

2 49.42 0.153 0.495 22.38 0.198 3.2061023

3 38.29 0.164 0.591 19.38 0.224 6.1061023

doi:10.1371/journal.pcbi.1003170.t001

Figure 8. Comparison of experimental data with theory for the sample of n~56 paddlefish ERs. A: ISI correlation lags nc calculated from
the experimental data according to Eq.(14), vs. values from theory, Eq.(15), calculated using parameters obtained from fitting experimental SCCs. B:
Skewness of experimental vs. theoretical ISI distributions. 45u line is shown by dashed strokes on both panels.
doi:10.1371/journal.pcbi.1003170.g008
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The ISI variability metric nc also depended strongly on the

frequency ratio w (Fig. 9B), with the largest correlation lag attained

for a value of w close to 0.5, i.e. when there were two afferent

spikes per cycle of epithelial oscillations. This is consistent with the

PIF theory (solid blue line) showing a local maximum of the

correlation lag for w~0:5. Furthermore, most experimental points

were within theoretical 61 SD bounds (blue dashed lines,

calculated in the same way as for Fig. 9A but by varying w
instead of Q). The large scatter of data points presumably was due

to diversity of afferent variabilities.

Finally, Fig. 9C shows that the skewness of ISI distributions was

negatively correlated with the frequency ratio w, such that the tails

of ISI distributions were significantly reduced at higher values of w

(Spearman correlation coefficient rs~{0:745, Pv1:6|10{12).

This negative correlation was borne out by analytical calculations

from the PIF model (blue lines).

Discussion

This report analyzed a scenario in which the membrane

potential and spiking of a neuron is forced by weak noisy

oscillatory input, in a narrow but non-vanishing frequency band.

Our goal was to study the effects of narrow-band noise input on

the output spiking statistics of a neuron. Our analysis centered

around a perfect integrate-and-fire model of a single neuron,

stimulated by a mixture of stochastic oscillations and broadband

noise. We obtained novel explicit expressions for the probability

density and serial correlation coefficients of the model’s interspike

intervals (ISIs). By a perturbation calculation of the Fokker-Planck

equation, we derived a structurally simple form for the serial

correlation coefficient. This novel derivation helps to solve the

inverse problem: using the spike statistics of a neuron to estimate

parameters of the underlying stochastic processes that drive its

firing. No other body of theory has rigorously addressed the

implications of narrow-band stochastic input for neural firing

statistics, despite much acclaim of the widespread roles of

oscillators in nervous systems.

Our new analytical formulas compare extremely well with

results from our numerical simulations of the spiking neuron

model, provided that the variance of the total input noise is weak,

such that the coefficient of variation of spiking output remains low,

less than approximately 0.3.

We compared the PIF theory to spike time data from a well-

defined experimental system, the electroreceptor afferents of

paddlefish, which receive stochastic synaptic driving in a narrow

frequency band from ongoing oscillations arising in their sensory

epithelia. For a given afferent’s sequence of ISIs, a fitting

procedure was used to extract four parameters needed for the

PIF model, and the model’s output was computed. The only

appreciable discrepancy between model and experiment was

observed in the skewness of ISI distributions in which the model

showed consistently smaller values and in the low frequency

regime of spike train power spectra, in which the model showed

excess noise power. This low frequency regime is presumably

shaped by spike-frequency adaptation, which we did not

incorporate in our model to keep it analytically tractable.

The fitting parameters varied considerably for different units,

reflecting natural variability of the electroreceptors. These natural

ranges of values permitted us to check whether different functional

relationships were correctly predicted by the theory. For example,

in both theory and experiment, the temporal extent of the SCCs

(i.e., their correlation lag, nc) increases monotonically with the

quality factor of epithelial oscillations (Fig. 9 A), whereas nc

depends in a non-monotonic fashion on the frequency ratio w,

attaining a maximum at w~1=2 (Fig. 9 B), for both theory and

experiment. We note that previous computational work showed

that this frequency ratio corresponds to a maximum mutual

information rate for electroreceptor afferents stimulated by a time-

varying stimulus [36]. Thus, our study provides further arguments

in favor of the idea that oscillators embedded in the electro-

receptor system are tuned to maximize stimulus encoding [34].

We applied our formulas to the inverse problem of whether the

spike statistics of a neuron can be used to estimate parameters of

the underlying stochastic processes that drive its firing. Using only

our formulas for the firing rate, the CV, and the serial correlation

coefficient, we were able to predict the parameters of the epithelial

oscillator (Q,w,s2
x) and the variance of the broadband noise, s2

z .

Using these predicted parameters, our analytical formulas

provided excellent fits to the experimental serial correlation

coefficients, and close correspondence between model and

experiment in their ISI distributions and power spectra (except

at low frequency).

It could be argued that the suggested solution of the inverse

problem is too cumbersome in the case of epithelial oscillations of

paddlefish ERs. Power spectra of afferent spike trains show a

second fundamental peak due to synaptic input at the frequency of

epithelial oscillations, fe, so this spectral peak provides direct

Figure 9. Statistical properties of afferent ISIs (ordinates) versus parameters of epithelial oscillations (abscissas), estimated from
experimental data for the sample of n = 56 paddlefish ERs (filled circles). A,B: The ISI correlation lag characteristic, nc , versus values of Q (A),
or the frequency ratio w (B), of epithelial oscillations. C: Skewness of ISI distributions versus frequency ratio w. Blue lines: Theoretical results from PIF
models for parameters extracted from each ER by fitting (Methods, final section), while varying Q or w. Solid blue lines: Mean curves for the sample.
Dashed blue lines: +1 standard deviation.
doi:10.1371/journal.pcbi.1003170.g009

Effect of Stochastic Oscillations on Neural Firing

PLOS Computational Biology | www.ploscompbiol.org 10 August 2013 | Volume 9 | Issue 8 | e1003170



information. However, the fe peak is of limited usefulness for

measuring parameters of the epithelial oscillation such as their

quality factor, Q, because afferent spike train spectra incorporate

the effects of nonlinear transformations during synaptic transmis-

sion and spike generation, and also because the fe peak may

overlap with other spectral peaks, e.g. a sideband.

In general, the good agreement of the simple PIF model and the

experimental data indicates that the detailed voltage dependence

of the neural dynamics, more faithfully modeled in a conductance-

based Hodgkin-Huxley model, is less important for the spiking

statistics than the stochastic oscillatory driving, provided that the

mean input to the neuron is appropriate for tonic firing with low

ISI variability. The PIF model is able to reproduce several

complex features observed experimentally in the afferent spike

timing [18,19], including skewing of ISI probability densities in

different ways, oscillations, beating, or seemingly chaotic patterns

in the serial correlations of interspike intervals as a function of the

lag. The ability of our theory to reproduce complex non-renewal

spike timing may encourage experimentalists to look for and

analyze seemingly complex looking patterns in ISI correlations.

Examples of narrowband noisy neural oscillations include the

gamma band (25–90 Hz) extracellular field potentials prevalent in

mammalian cortex [40], which have been suggested, along with

transient synchronization between brain areas, to mediate or reflect

higher cognitive functions [4,41]. Such fast gamma oscillations interact

with slower rhythms, including the theta rhythm in hippocampus, and

slower oscillations in thalamic nuclei. From the point of view of a single

cell in a specific brain region engaged in a specific rhythm, input from

other brain regions could be regarded as a stochastic oscillation. What

matters the most for the ISI statistics of this cell may be not so much the

synchrony of the activity but the frequency ratio between the stochastic

oscillatory driving and the mean firing rate of the driven cell. Put

differently, instead of coherence and synchronization, an important

signal for cognition might be the frequency ratio of narrowband

stochastic oscillations in related brain areas. Our work provides a

rigorous demonstration and model of how the operation and spiking

statistics of neurons can change sharply when the frequencies of

different stochastic oscillatory components approach or assume an

integer ratio (i.e. a rational number). Perhaps integer ratioing could

function as a trigger or gate for cognitive, memory, or other

information processes, acting like an event detector.

Specifically, our results show how the structure of a neuron’s

serial ISI correlations depends characteristically on the frequency

ratio of weak stochastic oscillatory input, and the intrinsic

periodicity of a neuron receiving the input, with extreme SCC

behavior occurring at integer multiples. We have delineated other

parameters which strongly affect SCCs including the quality factor

of stochastic oscillatory drive (i.e. its bandwidth and coherence),

the neuron’s mean firing rate, and the overall level of spike timing

noise (its CV). Our results bear general importance for the effects

of weak stochastic oscillations on the spiking statistics of neurons in

other systems, and are relevant to the study of neuronal firing in

many brain regions. We have defined a basis in theory for using

serial correlations to detect and characterize weak interactions of

physiological oscillators, which may apply to other organ systems

as well [42–44]. For example, the breathing and heartbeat

rhythms can assume integer frequency ratios, and are known to be

coupled [45].

Methods

Statistics of stationary sequences of interspike intervals
We used conventional metrics, summarized here for clarity, to

characterize the statistics of a stationary spike train given by the set

of spike times ftig. The spiking statistics can be derived from its

sequence of interspike intervals (ISIs) fTigi~1,2,..., where

Ti~ti{ti{1 denotes the i-th ISI. Calculations are simplified

without loss of generality by restricting the stationary ensemble of

spike trains to those realizations having a spike at time t~0, called

the zero-th spike. Under this choice of the origin, the n-th order

interval, defined as the sum of n consecutive ISIs, is equal to the n-

th spike time:

tn~T1z � � �zTn: ð17Þ

The stationary spiking statistics can be formulated in terms of the

statistics of the nth-order intervals, for all n§1. Knowing the

probability density of the n-th-order interval

Pn(t)~ lim
Dt?0

Prob tvtnƒtzDtf g
Dt

ð18Þ

for arbitrary n§1, yields complete information about the spiking

statistics.

The ISI probability density P(t) is given by the first-order interval

density: P(t)~P1(t). Let the mean ISI be denoted by STiT, which

is independent of the index i due to stationarity (here and in the

following, the notation S:T refers to the ensemble average). Then,

the mean of the nth-order interval is StnT~nSTiT, and the variance

is SDt2
nT~S(tn{StnT)2T. The coefficient of variation (CV), defined as

the ratio between ISI standard deviation and mean is given by

CV~

ffiffiffiffiffiffiffiffiffiffiffiffiffi
SDt2

1T
q

St1T
: ð19Þ

The CV is a measure of irregularity of the spike train; it is equal to

one for a Poisson process. The statistics of individual ISIs are

further characterized by the skewness defined by

cs~
S(t1{St1T)3T

SDt2
1T

3=2
: ð20Þ

Correlations among the ISIs are characterized by the serial

correlation coefficient (SCC)

rn~
STiTiznT{STiT2

ST2
i T{STiT2

, ð21Þ

which depends on the order of ISIs. The SCC measures the

correlations between two ISIs that are lagged by an integer n. This

measure can be related to the nth-order variances by the formula

[23]

rn~
SDt2

nz1TzSDt2
n{1T{2SDt2

nT
2SDt2

1T
: ð22Þ

Relation between noise parameters
In this paper we gave parameters of the model simulation in

terms of ŝsx,ŝsz,t̂t,Q and w. Here we provide the inverse

relationship, how to obtain the simulation parameters D,Dz,c,

and v2
0 given m,vT,ŝsx,ŝsz,t̂t,Q and w:
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c~
2pwm

QvT
, v2

0~
2pwm

vT

� �2

1z
1

4Q2

� �
: ð23Þ

Using these values, one can easily determine the noise intensities:

D~cv2
0m2ŝs2

x, Dz~mvTŝs2
z t̂t: ð24Þ

Analytical formulas for a PIF model driven by weak
stochastic oscillations

The mean ISI in the PIF model is independent of the properties

of a noise with zero mean [23] and is given by

STT~
vT

m
: ð25Þ

In fact, for large times t, the spike count N(t) is determined by the

free running solution of Eq. (1) (i.e. v(t) without resetting, cf. [29]):

N(t)~
v(t)

vT
zO(1)~

mt

vT
z

1

vT

ðt

0

dt’½x(t’)zz(t’)�zO(1). Averag-

ing this expression, the integral term vanishes and we obtain the

firing rate
1

STT
~ lim

t??

SN(t)T
t

~
m

vT

, from which follows Eq. (25).

Furthermore, using Eq. (17), we find that the mean n-th-order

interval is given by StnT~nvT=m.

To obtain higher moments as well as the probability density of

tn, it is important to recognize that the nth-order intervals can be

interpreted as a first-passage time (FPT). In fact, in the PIF model

the statistics of the sum of n subsequent ISIs for a firing threshold

vT is equal to the statistics of a single ISI with respect to a firing

threshold at nvT. The statistics of a single ISI is, however, nothing

else than the statistics of the FPT with respect to the boundary

v~nvT for a ‘‘particle’’ that starts at v~0 and is not reset at v~vT.

The equivalence between n-th spike time and the FPT with respect

to the boundary nvT is due to the fact, that the ‘‘velocity’’ _vv of the

particle is independent of v according to Eq.(1). Consequently, the

time of the nth spike depends only on the total distance nvT that a

particle has to cover.

The FPT problem can be solved by using the Fokker-Planck

equation for the probability density p(v,x,y,z; t), which is associated

to our stochastic model (see e.g. [46]). This equation reads

Lp

Lt
~{(mzxzz)

Lp

Lv
{y

Lp

Lx
z

L
Ly

(cyzv2
0x)p

� �

z
1

t

L
Lz

(zp)zD
L2p

Ly2
z

Dz

t2

L2p

Lz2
:

ð26Þ

The probability density has to satisfy certain boundary and initial

conditions. Specifically, we demand that particles that have crossed

the boundary nvT are not allowed to re-enter the domain vvnvT

(see [28] for a discussion on a related problem). This precludes

repeated threshold crossings. As a consequence, there is no

probability flux through the boundary with negative velocity.

Mathematically, this entails the boundary condition

lim
E?0z

p(nvT{E,x,y,z,t)~0, Vx,y,z : mzxzzv0, ð27Þ

because no particles are found just below the boundary v~nvT if

_vvv0. Furthermore, we require that the probability density and the

probability current vanish at infinitely distant boundaries (natural

boundary conditions). In the following, we assume that the total

noise is weak. In particular, we require that the standard deviation

of xzz is much smaller than m, or

E2~ŝs2
xzŝs2

z%1, ð28Þ

where

ŝs2
x~

s2
x

m2
~

D

cv2
0m2

and ŝs2
z~

s2
z

m2
~

Dz

tm2
ð29Þ

are the normalized variances of x and z. Under this assumption, it is

highly unlikely that _vv becomes negative and hence, the boundary

condition Eq.(27) can be safely neglected.

The initial condition is determined by the fact that at time t~0
the neuron has just fired a spike and the membrane potential has

just been reset to v~0. This implies, that the initial probability

must satisfy

p(v,x,y,z; 0)~d(v)pF (x,y,z), ð30Þ

where pF (x,y,z) is the probability density of the variables x, y and z,

upon firing. How can one obtain this probability density? To this end,

let us for the moment reconsider the original setup, where the

trajectories are reset if v~vT. Then the dynamics are restricted to

the domain vƒvT and the probability density p̂p(v,x,y,z; t) will in

this case converge to some stationary probability density, which will

be denoted by p̂ps(v,x,y,z). The density upon firing must be

proportional to the fraction of particles that exit the domain through

the surface element dxdydz per unit time. This fraction is equal to

J (s)
v (vT,x,y,z)dxdydz, where J (s)

v (v,x,y,z)~(mzxzz)p̂ps(v,x,y,z) is

the stationary probability current in the v direction. Thus,

pF (x,y,z)!(mzxzz)p̂ps(v,x,y,z): ð31Þ

Under the weak noise assumption Eq.(28), the stationary distribu-

tion p̂ps(v,x,y,z) does not depend on v, because for t?? all values

v[½0,vT� have equal probability due to the voltage-independence of

the membrane dynamics and the loss of the memory about the

initial condition. We hence find

p̂ps(v,x,y,z)&ps(x,y,z)~

1

(2p)3=2sxsysz

exp {
1

2

x2

s2
x

z
y2

s2
y

z
z2

s2
z

 !" #
,

ð32Þ

where s2
y~D=c. Upon normalization, the initial condition can now

be written as

p(v,x,y,z; 0)~
mzxzz

m
ps(x,y,z)d(v): ð33Þ

The time-dependent solution of the Fokker-Planck equation (26)

with the initial condition (33) can be related to the nth-order

interval density Pn(t) as follows: The probability per unit time to

cross the boundary nvT at time t is equal to the total probability

current across the boundary at time t, hence
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Pn(t)~

ð?
{?

dx

ð?
{?

dy

ð?
{?

dz (mzxzz)p(nvT,x,y,z; t): ð34Þ

For the sake of notational convenience, we will henceforth use the

dimensionless time t̂t~mt=vT and membrane potential v̂v~v=vT.

Furthermore, we introduce the non-dimensionalized variables

x̂x~

ffiffiffiffiffiffiffiffiffi
m3

Dv3
T

s
x, ŷy~

ffiffiffiffiffiffiffiffiffi
m

DvT

r
y, ẑz~

ffiffiffiffiffiffiffiffiffiffiffi
mt2

DzvT

s
z, ð35Þ

and the non-dimensional parameters

ĉc~
cvT

m
, v̂v0~

v0vT

m
, t̂t~

tm

vT

d1~

ffiffiffiffiffiffiffiffiffi
Dv3

T

m5E2

s
d2~

ffiffiffiffiffiffiffiffiffiffiffiffiffi
DzvT

m3t2E2

s
:

ð36Þ

In these rescaled variables the Fokker-Planck equation takes the

form

Lp̂p

L̂tt
~{½1zE(d1x̂xzd2ẑz)� Lp̂p

Lv̂v
{ŷy

Lp̂p

Lx̂x
z

L
Lŷy

(ĉcŷyzv̂v2
0x̂x)p̂p

� �
z

1

t̂t

L
Lẑz

(ẑzp̂p)z
L2p̂p

Lŷy2
z

L2p̂p

Lẑz2
:

ð37Þ

Probability density of the nth-order intervals. The nth-

order interval density can be derived from the characteristic

function

W(q,k,r,l ,̂tt)~ð?
{?

dv

ð?
{?

dx̂x

ð?
{?

dŷy

ð?
{?

dẑz exp½i(qv̂vzkx̂xzrŷyzlẑz)�p̂p(v̂v,x̂x,ŷy,ẑz,̂tt):

In fact, comparing with Eq.(34) we observe that Pn(t) can be

represented by the formula

Pn (̂tt)~

1

2p

ð?
{?

dq e{inq 1{iE d1
L
Lk

zd2
L
Ll

� �� �
W(̂tt,q,k,r,l)

� �
k~r~l~0

:
ð38Þ

Applying the respective Fourier transform to the FPE yields a first-

order equation for the characteristic function W:

LW
L̂tt

z(r2zl2)W{iq 1{iE d1
L
Lk

zd2
L
Ll

� �� �
W

z(ĉcr{k)
LW
Lr

zv̂v2
0r

LW
Lk

z
1

t̂t
l
LW
Ll

~0:

ð39Þ

The initial condition can be derived from Eq.(33) and reads

W(0,q,k,r,l)~

1ziE
d1

ĉcv̂v2
0

kzd2t̂tl

� �� �
exp {

1

2

k2

ĉcv̂v2
0

z
r2

ĉc
zt̂tl2

� �� �
:
ð40Þ

To solve Eq.(39), it is useful to make the ansatz

W(̂tt,q,k,r,l)~F (̂tt,q,k,r,l)exp {
1

2

k2

ĉcv̂v2
0

z
r2

ĉc
zt̂tl2

� �� �
, ð41Þ

which after insertion into Eq.(39) yields

LF

L̂tt
z(v̂v2

0r{Ed1q)
LF

Lk
z(ĉcr{k)

LF

Lr

z
l

t̂t
{Ed2q

� �
LF

Ll
zFq E

d1

ĉcv̂v2
0

kzd2t̂tl

� �
{i

� �
~0:

ð42Þ

This equation can be solved by the method of characteristics.

Using Eq.(38), the final result reads (with tw0)

Pn(t)~
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pc3

1(t)
q exp {

(t{nSTT)2

4c1(t)

" #

(nSTT{t)c2(t)z2c1(t)½ �2

2c1(t)
{c2

2(t)z2c1(t)c3(t)

( )
,

ð43Þ

where the functions c1(t), c2(t) and c3(t) are given by

c1(t)~ŝs2
zt2 e{t

tz
t

t
{1


 �

z
ŝs2

x

v2
0

1{
c2

v2
0

zct{
a1 sin(Vt)za2 cos(Vt)

4Vv2
0

exp {
c

2
t


 �� � ð44Þ

c2(t)~ŝs2
zt 1{e{t

t


 �

z
ŝs2

x

Vv2
0

cV 1{e
{

c
2
t
cosVt


 �
z V2{

c2

4

� �
e
{

c
2
t
sinVt

� �
,

ð45Þ

c3(t)~ŝs2
xe

{
c
2
t

cosVtz
c

2V
sinVt


 �
zŝs2

z exp {
t

t


 �
: ð46Þ

and

a1~
c

2
12V2{c2
	 


, a2~V 4V2{3c2
	 


: ð47Þ

For stochastic oscillations with a high quality factor

Q~V=c&1, these expressions can be simplified. In this case,

the damped and undamped oscillation frequencies are approxi-

mately the same, i.e. we can set v0&V~
2pw

STT
. Assuming

furthermore, that the correlation time of the OUP is much

smaller than the mean ISI, i.e. if t%STT, we can neglect the

exponentials e{t=t, resulting finally in Eqs. (6–9).

Moments of the nth-order interval. To compute the nth-

order variance, we consider the Laplace transform of the nth-order

interval density

�PPn(s)~

ð?
0

dt e{stPn(t): ð48Þ

Knowing this function the moments can be generated by
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Stm
n T~ {1ð Þmdm �PPn

dsm

����
s~0

: ð49Þ

The Laplace transform can be derived from the function

w(s,v,k,r,l)~ð?
0

d̂tt e{ŝtt

ððð
dx̂xdŷydẑz exp½i(kx̂xzrŷyzlẑz)�p̂p(̂tt,v,x̂x,ŷy,ẑz):

ð50Þ

In fact, from Eq.(34) we find that

�PPn(s)~ 1{iE d1
L
Lk

zd2
L
Ll

� �� �
w

� �
v~nvT,k~r~l~0

: ð51Þ

Applying the transformation (50) to the FPE (37) leads to an

equation for w:

Lw

Lv
z(ĉcr{k)

Lw

Lr
zv̂v2

0r
Lw

Lk
z

1

t̂t
l
Lw

Ll

~{(szr2zl2)wzy0(v,k,r,l)ziE d1
L2w

LkLv
zd2

L2w

LlLv

 !
:

ð52Þ

Here, the function y0 arises from the initial condition Eq.(33) and

is given by

y0(v,k,r,l)~

1ziE
d1

ĉcv̂v2
0

kzd2t̂tl

� �� �
exp {

1

2

k2

ĉcv̂v2
0

z
r2

ĉc
zt̂tl2

� �� �
d(v):

ð53Þ

Eq.(52) is difficult to solve, because of the mixed derivatives on the

right-hand-side. For weak noise, however, E is a small parameter

and perturbation theory can be applied. To this end, w is written

as a power series in E, i.e. w~w0zw1EzE2w2z � � �. Substituting

this expansion into Eq.(52) and solving order by order, yields an

approximation of w for weak noise. Using further Eq.(49), we

obtain in the leading order the nth-order variance

SDt2
nT~SDt2

nThnzSDt2
nTOU, ð54Þ

where

SDt2
nTOU~2ŝs2

zt2 e{
nSTT

t z
nSTT

t
{1

� �
, ð55Þ

SDt2
nThn~

2ŝs2
x

v2
0

1{
c2

v2
0

zcnSTT{

�

a1 sin(nVSTT)za2 cos(nVSTT)

4Vv2
0

exp({
cSTT

2
n)

�
,

ð56Þ

For n~1, we find the squared CV in leading order of E (cf.

Eq.(19)):

C2
V~

2

STT2
ŝs2

zt2 e{
STT

t z
STT

t
{1

� ��

z
ŝs2

x

v2
0

1{
c2

v2
0

zcSTT{
a1 sin(VSTT)za2 cos(VSTT)

4Vv2
0

exp {
cSTT

2

� �� ��
:

ð57Þ

Again, for a high quality factor Q:V=c&1, one can set

v0&V~2pw=STT, which yields

C2
V~

2ŝs2
zt2

STT2
e{

STT
t z

STT
t

{1

� �
z

ŝs2
x

2p2w2
1z2n{

3

2Q
sin(2pw)zcos(2pw)

� �
exp({n)

� �
:

ð58Þ

Furthermore, if t%STT the term e{STT=t{1 can be neglected in

the first term of Eq.(58) leading to the simplified formula Eq.(11).

Serial correlation coefficient. Knowing the nth-order

variance given above, the SCC can be computed using Eq.(22)

rn~
1

C2
VSTT2

ŝs2
zt2 1{e{

STT
t

� �2

exp {
STT(n{1)

t

� �"
z

z
ŝs2

x

2Vv4
0

~ll1 sin(VSTTn)z~ll2 cos(VSTTn)
h i

exp {
cSTT

2
n

� �� ð59Þ

with

Figure 10. Comparison of ISI statistics from numerical simulation and theory versus noise strength E~ŝsx for different values of the
frequency ratio w as indicated in the legends: coefficient of variation (A) with a double logarithmic plot of the same data in the
inset, skewness of ISI density (B), and serial correlation coefficient at lag one (C). Remaining parameters: Q~30, ŝsz~0, m~1, and vT~1.
doi:10.1371/journal.pcbi.1003170.g010
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~ll1~a1 1{cosh
cSTT

2

� �
cos(VSTT)

� �

{a2 sinh
cSTT

2

� �
sin(VSTT)

ð60Þ

~ll2~a2 1{cosh
cSTT

2

� �
cos(VSTT)

� �

za1 sinh
cSTT

2

� �
sin(VSTT)

ð61Þ

and C2
V is given by Eq.(57). For small correlation time of the OUP,

the first term can be neglected. Furthermore, if the quality factor

of the harmonic noise is high, we can again use the approximation

v0&V. Under these assumptions, the SCC is given by Eq.(12) (see

Results).

Comparison of numerical simulations to theory for
higher noise amplitudes

Here we briefly discuss the range of validity for our

approximations. In general, we expect our theory to be valid

whenever E%1. Let us recall that

E~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝs2

xzŝs2
z

q
ð62Þ

and, hence, we can increase E by increasing only sx, only sz, or

both simultaneously. In Fig. 10, we chose the first option, i.e. we

vary only the harmonic noise strength. In the three panels of

Fig. 10, we show the CV, the skewness, and the serial correlation

coefficient at lag one as functions of E and for three selected values

of the frequency ratio w. Varying both ŝsx and ŝsz for the ratios

ŝsz=ŝsx~0:5 or 1 yield very similar results (not shown).

The plots illustrate that the theory works well for Ev0:1,

confirming its general validity. For the statistics of the single ISI

(CV, skewness), only minor deviations are found even for

E [ ½0:1,1�. This is not so for r1, which shows strong deviations

for E&1 and can even reverse its sign for a strong harmonic

driving at frequency ratios w~0:2 and 0:8. However, deviations of

r1 between theory and simulations can be neglected for Ev0:5
and w~0:5, which covers the experimentally relevant ranges of w
and E for paddlefish electroreceptor afferents (data for w~0:45
and w~0:55 look very similar but are not shown).

Data analysis for electroreceptor afferents
Data from n~56 afferents of 19 animals were from experiments

at University of Missouri-St. Louis in 2000–2002, under an

IACUC-approved animal use protocol (W01-13) there. The

spontaneous discharges of electroreceptor afferents of paddlefish

(Polyodon spathula) were recorded in in vivo preparations with

procedures detailed in [18]. A fish was held at rest in a plastic

chamber, maintained by a stream of oxygenated water. The water

temperature was maintained at 22uC. No external electric field or

any other relevant kinds of stimulation were applied while

recording spontaneous afferent firing. Disturbance of spontaneous

afferent firing by the turbulence of water flowing into the mouth of

a fish was minimized by partitioning the chamber [18].

Nonstationarity was further minimized by choosing segments of

data in which a moving average of the afferent firing rate over a

10 s window fluctuated less than 62% from the mean firing rate.

Analyses of spike time sequences from paddlefish electroreceptor

afferents were performed using MATLAB’s Signal Processing and

Statistics Toolboxes. A spike train, x(t), was represented as a sequence

of delta functions centered at spike times of an afferent, with the mean

firing rate r0 subtracted: x(t)~
PN

i~1 d(t{ti){r0. For the purpose

of estimating the power spectral density (PSD), each delta function was

approximated by a rectangular pulse of width Dt and height 1=Dt,
where the sampling interval Dt was set to 1 ms. The PSD, defined as

G(f )~SX (f )X �(f )T, where X (f ) is the Fourier transform of the

spike train, was estimated using the Welch periodogram method

(function pwelch of MATLAB’s Signal Processing Toolbox).

The following procedure was used to extract 4 parameters of the

PIF model (w, Q, ŝsx, and ŝs2
z t̂t) from an experimental sequence of

ISIs:

(i) An original ISI sequence was normalized to have the mean

ISI equal to 1, Ti=�TT (where �TT~
P

Ti=N is the average of

the sequence of N intervals)

(ii) The experimental coefficient of variation and SCCs were

calculated according to (19) and (21).

(iii) The experimental SCCs were fitted using MATLAB

function nlinfit with the formula (12), where Q, w, ŝsx are

fitting parameters. For the fitting, an initial value of the

frequency ratio w was estimated from the experimental

power spectrum density as the ratio of the peak frequencies

of epithelial to afferent oscillations, w~fe=fa, see e.g.

Fig. 7(C1).

(iv) Finally, the intensity of OU noise, ŝs2
z t̂t, was calculated from

Eq.(11), yielding

ŝs2
z t̂t~

C2
V

2
{

ŝs2
x

4p2w2

1z2n{
3

2Q
sin(2pw)zcos(2pw)

� �
e{n

� �
, n~pw=Q:

ð63Þ
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