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Abstract

Integrative genomics predictors, which score highly in predicting bacterial essential genes, would be unfeasible in most
species because the data sources are limited. We developed a universal approach and tool designated Geptop, based on
orthology and phylogeny, to offer gene essentiality annotations. In a series of tests, our Geptop method yielded higher area
under curve (AUC) scores in the receiver operating curves than the integrative approaches. In the ten-fold cross-validations
among randomly upset samples, Geptop yielded an AUC of 0.918, and in the cross-organism predictions for 19 organisms
Geptop yielded AUC scores between 0.569 and 0.959. A test applied to the very recently determined essential gene dataset
from the Porphyromonas gingivalis, which belongs to a phylum different with all of the above 19 bacterial genomes, gave an
AUC of 0.77. Therefore, Geptop can be applied to any bacterial species whose genome has been sequenced. Compared with
the essential genes uniquely identified by the lethal screening, the essential genes predicted only by Gepop are associated
with more protein-protein interactions, especially in the three bacteria with lower AUC scores (,0.7). This may further
illustrate the reliability and feasibility of our method in some sense. The web server and standalone version of Geptop are
available at http://cefg.uestc.edu.cn/geptop/ free of charge. The tool has been run on 968 bacterial genomes and the results
are accessible at the website.
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Introduction

Essential genes are the genes which are ‘‘essential’’ for survival

of an organism [1,2]. Therefore, identification of gene essentiality

is important in understanding the minimal requirements for cell

survival and functionality [3,4]. The study of essential genes is an

important step towards understanding the evolution of microbes

[5]. Systematic genome-wide interrogations, such as single-gene

knockouts [6,7], transposon mutagenesis [8,9,10] and RNA

interference [11,12], have been used to identify essential genes.

However, such experiential techniques are challenging and time-

consuming. High-efficiency computational methods offer an

appealing alternative for predicting essential genes without the

expense and difficulty of an experimental screen.

An initial computational approach, by comparing the genomes

of Haemophilus influenzae and Mycoplasma genitalium, identified

approximately 250 candidate essential genes as the minimal gene

set [3]. These genes were considered necessary for the survival of

H. influenzae and M. genitalium. Bacterial essential gene products are

often attractive drug targets in the development of antibiotics.

Several previous studies relied upon homology mapping against an

experimentally determined set of essential genes to identify drug

targets [13,14,15,16,17,18,19]. The evolutionary distance between

genomes can have a significant impact on the outcome of

comparative genomic analyses [20]. On the other hand, orthologs

of essential genes do not always carry out essential functions

among those closely related organisms, and may even be absent in

certain situations [21]. When an essential gene is lost, it is possible

for a living cell to be rescued through the over-expression of a non-

homologous and non-essential gene [5]. Consequently, the

number of genes identified in the minimal set using comparative

genomics across many bacterial species decreased significantly

from comparing of H. influenzae and M. genitalium [20,22].

Flux balance analysis is a constraint-based modeling technique

used to simulate fluxes of metabolic networks at the steady-state. It

can be used to identify minimal gene requirements. The essential

genes in several bacteria have been predicted based on this

method [23,24,25]. An accuracy of 85% was obtained in

predicting yeast essential genes [26]. Flux balance analysis is a

powerful approach for predicting essential genes. However, it is

strongly dependent on the knowledge of metabolic networks.

It has been found that several classes of biological features are

correlated with gene essentiality and they are used to predict

essential genes. As an example, a gene with an essential function is

likely to use optimal codons, to be located on the leading strand,

and to be with a high centrality [27,28,29,30,31]. In general,
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genomic features fall into three categories: intrinsic features based

on sequences, those derived from sequences, and data from

functional genomics experiments. Machine learning systems based

on integrative features have been trained to identify essential genes

in Saccharomyces cerevisiae [32,33,34]. Chen et al. investaged the

relationship between the gene fitness of S. cerevisiae gene and the

features derived from the high-throughput data [32]. They

selected the fitness associated factors to predict the fitness of

individual protein by machine learning methods. Seringhaus et al.

[34] used only sequence dependent features to estimate essentiality

for yeast proteins. The study showed excellent performance: a ten-

fold cross-validation in yeast with a probability threshold of 0.5

correctly classified over 80% of a total of 4648 genes. The

organism-wise cross-validation between Escherichia coli and Pseudo-

monas aeruginosa yielded the area under curve (AUC) scores of 0.75–

0.81 in the receiver operating curves (ROC) using 33 broad

variables [35]. Cross-organism prediction on four bacteria yielded

AUC scores between 0.69 and 0.89, based on 13 integrative

biological features [36]. Of the 13 features, the protein domain

enrichment is the strongest predictor of essential genes [36].

However, the machine learning method cannot be used

universally because of the lack of available experimental data in

most genomes. Thus, a black box gene essentiality prediction

algorithm, independent of experimental data, has been developed,

which incorporates information on the biased gene strand

distribution, the homologous search and the codon adaptation

index (CAI) [37]. The algorithm achieved an AUC score of 0.81

when applied to the Mycoplasma pulmonis genome. It also achieved

an accuracy of 78.9% and 78.1% in predicting essential genes in

Staphylococcus aureus and Bacillus subtilis genomes, respectively.

Essential genes should be persistent during the long-term

evolution [2]. Based on this idea, we developed a universal tool to

offer gene essentiality annotations only via evolutionary informa-

tion. Therefore, we apply phylogeny weighted orthology variable to

reflect evolutionary information in searching essential genes. In this

work, we used a workflow similar with that developed by [37] given

that its outstanding performance. A gene is considered essential if its

essential orthologs are persistent, especially in similar species. For

estimating orthology, we used the reciprocal best hit (RBH) method,

which was widely and effectively applied to map orthologs

[38,39,40,41]. The distance of phylogeny between species was

computed using the Composition Vector (CV) method [42]. The

tool is called as gene essentiality prediction tool based on orthology

and phylogeny (Geptop). The web server and open source

standalone package implementing our method are freely available

at http://cefg.uestc.edu.cn/geptop/.

Materials and Methods

Data sets
Database of essential genes (DEG) hosts essential genes identified

by experimental techniques across a wide range of organisms [43].

The current version (6.8) contains 19 bacterial strains and 8

eukaryotes. The annotations of gene essentiality were obtained from

the DEG database and the complete coding sequences of all 19

bacteria were taken from GenBank. We then classified genes into

the essential set and the non-essential set according to gene

annotations in GenBank for each genome. As a result, 19 essential

sets and their corresponding non-essential sets were obtained.

Searching orthologs and estimating phylogeny distance
The orthologous gene pairs between each pair of genomes were

identified based on the reciprocal best hit (RBH) method. For two

given genomes, one genome was used as the query and the other

as the subject. A query-subject gene pair was confirmed if it was

found that a gene in the query matches another gene in the subject

by all-against-all Blastp search with a default E-value cutoff of 10.

If there were multiple hits with the E values lower than the cutoff

for a given query gene, the hit with the lowest E-value was masked

as the best hit. Then, the query and subject was switched to

confirm the subject-query gene pairs using the same procedure.

The symmetrical hits between query-subject gene pairs and

subject-query gene pairs were identified as orthologous gene pairs.

The composition vector (CV) method is used to estimate

evolutionary distance [42]. To calculate the CV distance between

two species, we first collected amino acid sequence data. Second,

we computed the frequencies of six-peptides. Thirdly, a compo-

sition vector of dimension 206 was obtained for each species by

putting the ‘normalized’ frequencies in a fixed order. Fourthly, the

correlation C between two species was determined by the cosine

function of the angle between the two normalized vectors. Finally,

the normalized distance D between them is defined to be:

D~
1{C

2
:

Training workflow
Our method was based on phylogeny weighted orthology to

predict the gene essentiality. To determine the optimal cutoff S0 of

identifying essential genes, we used E. coli as the test set, and the

other 18 proteomes were used as the training set. The homology

mappings were performed by RBH between E. coli and each of the

proteomes. We identified the mapping score (M) as 1 if an E. coli

gene was homologous and essential in the multiple genomes set

during the homology mapping procedure. Meanwhile, the CV

distance (D) between E. coli and each proteome was also computed.

After mapping all 18 genomes, we defined the gene essentiality

score Si for ith E. coli gene:

Si~1-( P
N

j~1
Mij|Dj)

1=N :

where j denotes the jth proteome in the multiple genomes set, N

denotes the count of proteome and the range of S was between 0

and 1. In this training procedure, N equals 18. Finally, we looked

for the optimal cutoff, S0, using a greed search method. If S.S0,

the gene is predicted to be essential, otherwise, the gene is

predicted to be non-essential.

Performance assessment of method
The following parameters were measured in this study to assess

the performance of the predictor:

sensitivity~
TP

TPzFN

specificity~
TN

TNzFP

precision~
TP

TPzFP

accuracy~
TPzTN

TPzTNzFPzFN

F{measure~
2|sensitivity|precision

sensitivityzprecision

The Geptop as a Gene Essentiality Prediction Tool
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where TP, FN, FP and TN denote the true positives, false

negatives, false positives and true negatives, respectively. The

sensitivity parameter measures the proportion of essential genes

that have been correctly identified. The specificity parameter

represents the proportion of negatives that have been correctly

predicted. The precision parameter is the probability that the

essential genes were predicted as essential. The accuracy is the

proportion of overall samples that have been correctly identified.

The F-measure represents the harmonic mean of precision and

sensitivity.

Gene phyletic ages
We used the method described in [44,45] to determine the

phyletic ages for the genes in E. coli. For mapping orthologs, we

applied RBH with E-value .10. We randomly collected 43, 68,

71, 75, 143 and 40 genomes from Archaea, Bacteria, Proteobac-

teria, Gammaproteobacteria, Enterobacteriaceae and E. coli,

respectively. The number of hits required to assign a protein to

the given age class was determined as half of the effective number

of genomes. Consequently, the genome of E. coli was divided into

six broad taxonomic classes. The unassigned genes were classified

as strain-specific class.

Results

Homology mapping of essential E. coli genes to other
organisms

We used a RBH method to search for orthologs of essential E.

coli genes in 18 bacterial species. All bacteria had well-character-

ized essential genes determined by experimental techniques, and

the annotations were extracted from DEG (Table 1). The

evolutionary distance between each of the 18 bacterial genomes

and E. coli was calculated with the CV method. The numbers of

shared essential genes among E. coli and other genomes were

correlated to their evolutionary distances (Spearman’s r = 20.576,

p,0.01). As an example, Salmonella typhimurium Ty2 is phyloge-

netically related to E. coli, sharing 283 E. coli essential genes (Ecol),

of which 256 also show essentiality in S. typhimurium Ty2. B. subtilis

shares 221 Ecol genes, of which 149 are consistent with B. subtilis

essential genes (Bsub). With respect to the more distinct genomes

such as Mycoplasma only share about 120 essential genes when

compared with the Ecol dataset. Therefore the evolutionary

distance between genomes does indeed have a significant impact

on the outcome of homology mapping. Moreover, essential genes

are not always conserved in similar species. There are 256 essential

genes in S. typhimurium Ty2 closely related to essential E. coli genes,

but only 84 Ecol orthologs also perform essential functions in the

closely related S. typhimurium LT2. It is confusing when choosing

the reference organism for homology mapping by essential

function because essential genes do not always transfer across

organisms regardless of the evolutionary distance. That is why we

performed homology mapping using multiple genomes rather than

a single genome.

Classifier training on the 18 bacterial genomes and cross-
organism validation in E. coli

To determine the cutoff of identifying essential genes, we used

18 proteomes as searchable databank and then E. coli was applied

to test; a detailed workflow is shown in Figure 1. Validation test of

the classifier yielded an AUC score of 0.947 using Ecol (Figure 2).

The changes in precision, sensitivity and specificity along with that

of predicted essentiality score cutoff are illustrated in Figure 3. The

number of non-essential genes was almost eight times greater than

that of essential genes. To avoid the bias caused by excessive

Table 1. Detailed information regarding the 19 bacterial species investigated.

Organism Abbreviation Number of genes Phylum

Essential Total

Acinetobacter baylyiADP1 Abay 499 3307 Proteobacteria

Bacillus subtilis 168 Bsub 271 4176 Firmicutes

Caulobacter crescentus NA1000 Ccre 480 3878 Proteobacteria

Escherichia coli MG1655 Ecol 296 4146 Proteobacteria

Francisella novicida U112 Fnov 390 1719 Proteobacteria

Haemophilus influenzae Rd KW20 Hinf 642 1657 Proteobacteria

Helicobacter pylori 26695 Hpyl 322 1573 Proteobacteria

Mycobacterium tuberculosis H37Rv Mtub 614 4003 Actinobacteria

Mycoplasma genitalium G37 Mgen 378 475 Tenericutes

Mycoplasma pulmonisUAB CTIP Mpul 310 782 Tenericutes

Pseudomonas aeruginosa UCBPP-PA14 Paer 335 5892 Proteobacteria

Salmonella typhi Ty2 StypT 352 4313 Proteobacteria

Salmonella typhimurium LT2 StypL 230 4423 Proteobacteria

Staphylococcus aureus N315 SaurN 302 2583 Firmicutes

Staphylococcus aureus NCTC 8325 SaurC 351 2891 Firmicutes

Streptococcus pneumonia TIGR4 SpneT 111 2105 Firmicutes

Streptococcus pneumonia R6 SpneR 133 2042 Firmicutes

Streptococcus sanguinis SK36 Ssan 218 2270 Firmicutes

Vibrio cholerae N16961 Vcho 779 3834 Proteobacteria

doi:10.1371/journal.pone.0072343.t001

The Geptop as a Gene Essentiality Prediction Tool
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number of false essential genes and insufficient number of true

essential genes, we used the harmonic mean of precision and

sensitivity (F-measure) to determinate the threshold of classifying

essential genes. This indicator is widely used for assessing the

performance of various kinds of classifiers [46,47,48]. The

classifier identified 371 essential genes in E. coli at (S0 = 0.15) with

the maximal F-measure. Of these predicted essential genes, 246

were true positives; however, 50 real essential genes were lost.

Therefore, we were able to achieve a sensitivity of 83.1% and

specificity of 96.8%.

The other broadly used essential dataset (EcolP) was downloaded

from the PEC database [49]. These essential genes were also used

as a validation set and the classifier yielded an AUC score of 0.978.

This score is much better than the result of a recent study using the

integrative machine learning systems [36] (AUC = 0.82–0.89).

With the maximal F-measure, the classifier predicted 261 essential

genes in EcolP (S0 = 0.15) and achieved an accuracy of 96.7%.

Because the cutoff of S determined byEcolP is as the same as by

Ecol, we therefore determined S0 to be 0.15.

For evaluating the effect of using different multiple genomes, we

randomly picked 3, 6, 9, 12, 15 and 17 genomes, for 10 times of

each case, from the remaining 18 genomes and computed the

AUC scores of predicting Ecol. As can be seen from Figure 4, the

application of more genomes indeed made the results of prediction

better and more stable. Thus, the application of multiple genomes

in the classifier can improve the power of prediction.

Cross-validations of classifier
The proteins of the 19 collected organisms were randomly upset

and then partitioned into ten samples. Of the ten newly generated

proteomes, one proteome was used as the test set, and the

remaining proteomes were used as the training set. We repeated

this ten times, thus each of the ten proteomes was used once as the

validation data. This ten-fold cross-validations in the random

samples yielded an AUC score of 0.918. The results balanced

between precision (0.512) and sensitivity (0.581) with the S0 set at

0.05–0.07 and yielded an accuracy of 0.916.

Considering that the distinct evolutionary information was

discarded during the random sampling, cross-organism validation

was adopted to re-estimate the classifier. One of the 19 collected

organisms was used as the test set, and the other ones were trained.

Validation was repeated 18 times with each of the organisms being

used exactly once as the validation data (For Ecol dataset, we have

already performed this validation test above). Cross-organism

predictions yielded AUC scores between 0.569 and 0.959

(Figure 5).

For overall predictions, 52.6% of their AUC scores were greater

than 0.8, which indicated that classifier was significant and

efficient. For example, the model Gram-positive bacterium Bsub

yielded a high AUC score of 0.952. From all predictions, five

yielded acceptable AUC scores between 0.7 and 0.8, while the

other three predictions tended to be randomized. We applied the

cutoff of 0.15 on the classifier to predict essential genes in 18

organisms and 15 of them exceeded an accuracy of 0.8 (Table 2).

Geptop
Taking all the 19 bacteria as the multiple genomes set and

adopting the same model and the threshold, we formed an online

and also a standalone tool designated as Geptop. The Geptop web

server first provided an online platform to detect essential gene sets

Figure 1. Training workflow based on 18 groups of essential genes and using Ecol as test.
doi:10.1371/journal.pone.0072343.g001

Figure 2. ROC curve of cross-organism validating for Ecol. Black
diamond denotes the default cutoff of 0.15.
doi:10.1371/journal.pone.0072343.g002

The Geptop as a Gene Essentiality Prediction Tool
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across bacterial species using our classifier (http://cefg.uestc.edu.

cn/geptop/). After a user submits the whole-proteome for a

bacterial species in the FASTA format, the web server will

automatically compute the essentiality score for each gene by

comparing the orthology and phylogeny information for the 19

genome datasets (from DEG). The default cutoff is set at 0.15. The

result will be automatically sent to the user via e-mail when the

prediction is completed. Alternatively, a standalone version

Geptop is also available. This package is dependent on Python,

Biopython and BLAST+.

Application of Geptop: predicting essential genes in
sequenced bacterial genomes

We predicted essential genes in 968 sequenced bacteria, which

are from 26 different phyla, using our Geptop method. Our

webserver provides the details of these predictions at http://cefg.

uestc.edu.cn/geptop/list.html. With the default cutoff (S = 0.15),

most predictions identified 250–350 essential genes (Figure 6).

Previously, the minimal gene set of cellular life has estimated

approximately 250 candidates [3,21]. Our result provides a piece

of evidence for supporting this estimation.

A newly experimentally identified essential gene dataset from

Porphyromonas gingivalis was also collected [50], which could be used

to assess the performance of Geptop since this species belongs to a

different phylum comparing the bacteria included in Geptop. As

expected, 281 essential genes were predicted by our websever

(Table S1 in File S1), 80% of them are experimentally identified.

This prediction yields an AUC score of 0.77. We thus confirm that

the method of Geptop does predict essential genes effectively even

when applied in distantly organisms and most estimations could

yield an AUC score exceed 0.70.

Since our method aims to find essential genes by evolutionary

information, it might lose the species-specific essential genes.

However, the species-specific genes (young genes) were found less

likely essential than older genes [45]. As mentioned above, we lost

50 real essential genes for Ecol by the cross-organism prediction.

We investigated the phyletic ages of these 50 genes and found 12

of them belong to strain-specific or E. coli-specific. That is to say,

only 4% (12/296) essential genes were mistakenly classified

because they are species-specific. Therefore, the performance of

Geptop is acceptable if we do not specially focus on those species-

specific essential genes.

Discussions

Geptop advantages
Cross-organism predictions yielded AUC scores between 0.69

and 0.89 using another integrative genomics method [36].

Acinetobacter baylyi, P. aeruginosa and B. subtilis was used to predict

EcolP, and the AUC scores were between 0.82 and 0.89. When

using EcolP to predict essential genes in A. baylyi (Abay) and B.

subtilis (Bsub), the AUC scores were 0.80. The authors [36] did not

use EcolP to carry out prediction for the essential set of Paer for the

strain UCBPP-PA14, which is involved in our work. The study

used only one genome for cross-validation. As mentioned in [36],

RBH did not work well using only one genome. However, our tool

consider putting in the phylogeny information (CV), could

effectively work dependent of multiple genomes. We here used

three of EcolP, Bsub, Abay and Paer for training, and the rest one for

testing. The AUC scores of cross-organism predictions of EcolP

and Bsub by Geptop are 0.91 and 0.85, respectively, which are

slightly better when comparing with the integrative method.

However, the AUC of Abay (0.77) shows a little weaker. When

using 18 genomes for training, the power of method is improved,

even Abay (AUC = 0.85) is better than the integrative method

(Figure 5). Another machine learning system based on the

integrative features was trained to identify Ecol using Pseudomonas

aeruginosa, and to identify essential genes in P. aeruginosa (Paer) using

E. coli [35]. It yielded an AUC of 0.81 and 0.80 in predicting Ecol

and Paer, respectively. We also used Bsub, Abay and Paer to predict

Ecol by Geptop then yielded an AUC of 0.88, simultaneously,

adopted Bsub, Abay and Ecol to predict Paer then yielded an AUC of

0.77. Generally, our method is competitive with the integrative

method when using only three genomes as training set.

Figure 3. The precision, sensitivity and specificity in relation to
the cutoff rank. The vertical dashed line represents the default cutoff
of 0.15.
doi:10.1371/journal.pone.0072343.g003

Figure 4. AUC scores of jackknife test. We randomly picked 10
times of 3, 6, 9, 12, 15, 17 genomes from the remaining 18 genomes
and computed the AUC scores of predicting Ecol. Error bars are
representing 90% confidence intervals on the estimates of the means.
doi:10.1371/journal.pone.0072343.g004

The Geptop as a Gene Essentiality Prediction Tool
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Although integrative genomics predictors scored highly in

predicting bacterial essential genes, these classifiers usually rely

on several biological features. The lack of functional experimental

resources blocked the application of those algorithms. We

investigated a different integrative genomics predictor based only

on sequence compositional information, with 158 features

considered. These features were amino acid usage (20 features),

codon usage (64 features), codon position-specific nucleotide usage

(12 features), 2-tuple codon position-specific nucleotide usage (48

features), and 14 features from CodonW (http://codonw.

sourceforge.net). Details are listed in Table S2 (File S1). Genes

were classified as essential or non-essential as given by the DEG

annotations. We then used CD-HIT (http://www.bioinformatics.

org/cd-hit/) to remove the redundant data. Because of the

asymmetric numbers between the essential and non-essential sets,

the negative sample set was randomly chosen from the non-

essential set to have evenly sized groups. The six prediction models

were obtained after the support vector machine training for the six

groups of samples. The average prediction score of models for

each bacterial genome was computed and this prediction yielded

an AUC score (Figure 7). The Geptop predictor improved AUC

scores when compared with this compositional bias based classifier

by focusing on higher scoring groups that had an AUC higher

than 0.8 yielded by the Geptop. However, most low AUC scoring

bacteria showed a limited change. For example, the Geptop

yielded a maximum AUC score of 0.959 when predicting the

Streptococcus sanguinis essential set, which was significantly higher

than the integrative compositional information predictor (AUC

score of 0.751). For the lowest Geptop AUC score of 0.569 in

Haemophilus influenzae, the compositional classifier yielded a similar

score of 0.587.

The Geptop is partly based on homology mapping. Similarly, a

recently study has also performed Blast searching as a feature of

the prediction [37]. This algorithm integrated the homology

searching (one-way alignment), the codon adaptation index and

the biased distribution of essential genes in leading and lagging

strands. This study provided accuracy of about 80% when

combined using the essential dataset in the Mycoplasma genitalium

(Mgen) and the essential genes for Mycoplasma pulmonis (Mpul) to

predict essentiality in genomes of B. subtilis and S. aureus. In our

study, we improved the performance of predicting B. subtilis

(accuracy = 92%) and S. aureus (accuracy = 87%) by equally using

Mgen and Mpul.

Figure 5. AUC scores from cross-organism Geptop prediction. The range of AUC is from 0.5 to 1.
doi:10.1371/journal.pone.0072343.g005

Table 2. Cross-organism test accuracies of the Geptop.

Dataset Precision Sensitivity Specificity Accuracy

Abay 0.810 0.511 0.979 0.908

Bsub 0.665 0.753 0.974 0.959

Ccre 0.824 0.527 0.984 0.928

Ecol 0.663 0.831 0.968 0.958

EcolP 0.704 0.909 0.971 0.967

Fnov 0.787 0.633 0.950 0.878

Hinf 0.550 0.268 0.861 0.631

Hpyl 0.343 0.308 0.848 0.737

Mtub 0.686 0.316 0.974 0.873

Mgen 0.941 0.460 0.887 0.547

Mpul 0.914 0.581 0.964 0.812

Paer 0.503 0.496 0.971 0.944

StypT 0.734 0.793 0.975 0.960

StypL 0.254 0.444 0.929 0.903

SaurN 0.488 0.613 0.915 0.880

SaurC 0.620 0.650 0.945 0.909

SpneT 0.199 0.532 0.881 0.862

SpneR 0.232 0.541 0.875 0.854

Ssan 0.639 0.844 0.949 0.939

Vcho 0.675 0.285 0.965 0.827

doi:10.1371/journal.pone.0072343.t002

Figure 6. The distribution of predicted essential gene numbers.
doi:10.1371/journal.pone.0072343.g006

The Geptop as a Gene Essentiality Prediction Tool
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The T-iDT finds essential genes by comparing a bacterial gene

set against the DEG [51]. This tool matches potential essential

genes in the DEG database using Blastp with an E-value cutoff of

10210 and bit score greater than 100. The tool is based only on

homology mapping to search for essential sets, which differs in two

aspects when compared with the Geptop. First, we performed

homology mapping by RBH to search for optimally matched

genes in each bacterial genome; second, evolutionary distance was

considered when searching orthologs among distinct genomes.

Additionally, we also identified the essential genes in 19 bacterial

species using cross-organism T-iDT predictions. Because the aim

of the T-iDT is to identify drug targets, the essentiality prediction

results showed high average specificity of 0.759 and low average

sensitivity of 0.316 (Table S3 in File S1). However, our cross-

organism Geptop prediction improved both the average specificity

of 17.8% and sensitivity of 23.1% by at the default cutoff of 0.15

compared with the T-iDT. On the other hand, Holman et al. [17]

defined a Multiple Hit Score (MHS) to predict essential genes

based on the top alignments to essential genes for each bacterial

strain in the DEG. Their cross-organism test showed scaled AUC

scores between 0.137 and 0.742 among 14 strains. B. subtilis

matched the highest score, which was still significantly lower than

that predicted by the Geptop (scaled AUC score of 0.904). Our

method adopted a different discriminatory function with better

results.

Figure 7. AUC scores from cross-organism tests using the integrative compositional information predictor. The range of AUC is from
0.5 to 1.
doi:10.1371/journal.pone.0072343.g007

Table 3. Comparison of features between the experimental and the Geptop groups.

CAI The percentage of leading genes Connectivity

Experimental Geptop Experimental Geptop Experimental Geptop

Abay 0.55360.064 = a 0.56560.093 56.1% ,,b 70.0% 54649 ,,a 99650

Bsub 0.52260.071 ,, 0.54460.076 83.6% ,, 97.1% 54647 ,, 111659

Ccre 0.59360.124 ,, 0.63460.099 66.1% .. 55.6% 45637 ,, 103653

Ecol 0.48160.100 ,, 0.58960.129 60.0% ,, 72.8% 52640 ,, 114654

Fnov 0.64660.056 .. 0.63360.047 65.0% = 67.2% 27626 ,, 85640

Hinf 0.52060.064 ,, 0.60160.097 52.8% ,, 62.4% 36638 ,, 114650

Hpyl 0.69860.036 ,, 0.70960.024 57.4% = 58.4% 35630 ,, 105641

Mtub 0.61960.067 = 0.62460.069 64.8% ,, 86.5% 47641 ,, 85649

Mgen 0.71560.041 = 0.71560.029 83.3% .. 63.6% 25623 ,, 55626

Mpul 0.67960.048 = 0.67960.050 66.9% .. 58.8% 21619 ,, 40625

Paer 0.63460.099 ,, 0.69260.102 58.6% ,, 72.6% 28632 ,, 100645

StypT 0.49160.116 ,, 0.53260.112 61.6% = 66.3% 46634 ,, 77647

StypL 0.45460.086 ,, 0.55160.119 64.8% ,, 70.7% 26626 ,, 89646

SaurN 0.58060.086 = 0.58560.088 80.3% ,, 90.2% 44641 ,, 65644

SaurC 0.57960.094 = 0.58660.083 82.1% ,, 87.2% 28626 ,, 68645

SpneT 0.38860.081 ,, 0.50660.170 84.6% = 88.2% 48639 ,, 106649

SpneR 0.37560.073 ,, 0.49260.167 90.2% = 89.9% 23623 ,, 85641

Ssan 0.41660.114 = 0.44760.141 76.5% ,, 91.3% 27618 ,, 88641

Vcho 0.41860.079 ,, 0.50760.112 58.3% ,, 65.4% 22633 ,, 113657

a‘‘ = ’’ denotes significance of the Mann-Whitney test was within 5%; ‘‘..’’ denotes that the experimental group was greater than the Geptop group using the Mann-
Whitney test at a 5% level; ‘‘,,’’ denotes converse case.
b‘‘ = ’’ denotes that the difference between two groups was within 5%; ‘‘..’’ denotes that the difference at a significance level of 5% for the experimental group was
greater than that for the Geptop group; ‘‘,,’’ denotes converse case.
doi:10.1371/journal.pone.0072343.t003
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Generally, the effectiveness of our method is similar to those

method integrating functional genomics data and sequence-related

features when only adopting three genomes to train the model.

Moreover, with the expansion of training genomes, we can obtain

better prediction. On the other hand, although using the multiple

genomes, the power of one-way alignment is much weaker than

that of combined evolutionary features (RBH/CV) in the field of

predicting essential genes. Since our prediction only use protein

sequence, we believe that the Geptop could be widely applied in

most bacteria rather than only in specific species.

Features of predicted essential genes
Gene essentiality always correlates to codon bias [31].

Therefore, we investigated the difference of codon usage between

essential genes predicted by Geptop across organisms and those

identified by experimental techniques. The CAI is a species-

dependent codon bias measure, and has been widely used as an

empirical measure for gene expression, particularly in microbial

genomes [52]. With this methodology, the collection of several

ribosomal protein genes are chosen as a reference set of highly

expressed genes for each genome. All genes for a given genome

were classified into four groups: essential genes uniquely identified

by experimental disruptions (experimental group); essential genes

uniquely predicted by the Geptop (Geptop group); common

essential genes; and common non-essential genes. As shown in

Table 3, codon bias of the Geptop group was greater than that of

the experimental group in 11 of 19 genomes (Mann-Whitney test,

p,0.05). Seven genomes had a similar codon bias between the two

groups. Only in Francisella novicida does the experimental group

show a greater codon bias.

Essential genes are asymmetrically distributed in leading and

lagging strands [27,28]. We extracted positions of replication

origin and terminus for each bacterium from the DoriC database

[53], and then genes were assigned to the two replication strand

types. In 11 genomes the Geptop group shows more uneven strand

distribution (the difference exceeds 5%). Only three genomes with

leading strand bias in the experimental group were greater than

5% of the Geptop group. There are still five genomes showing the

difference within the 5% level.

Connectivity refers to the number of directly-interacting

partners of a protein in protein-protein links [29]. Essential genes

are likely to link higher connectivity and to be hubs. Interaction

data were obtained from the STRING9 database [54], with a

default confidence score cutoff of 0.4. The comparison result

illustrated the identical extreme preference of the Geptop essential

genes (Mann-Whitney test, p = 1024–10247). Average numbers of

the protein-protein interaction for the Geptop groups were almost

two- to five-fold greater than the average connectivity in the

experimental groups. We obtained a very low AUC score when

predicting Vibrio cholerae by cross-organism Geptop, but the

average connectivity of Geptop group was five-fold higher than

experimental group. On the other hand, connectivity of the

Geptop group was only twice of that of the other group for another

high scoring set of Ecol.

We analyzed the correlation between AUC scores and the

multiples of Geptop features over experimental features. Among

the above three features, stepwise regression results showed that

the AUC scores only related to the feature of connectivity

difference (r = 20.533, p = 0.018). Therefore, if a prediction yields

a lower AUC score it means that the numbers of protein-protein

interactions for the Geptop groups could be significantly greater

than the average connectivity of the experimental groups. There

were three organisms, (H. influenzae, Helicobacter pylori and V.

cholerae), that yielded very low AUC scores of 0.569–0.613. The

three predictions lacked lots of essential genes identified by

experimental techniques, however, these lacked genes show

limited protein-protein interactions. As shown in Figure 8, the

distribution of connectivity for the Geptop group was more similar

to that for genes identified by both the Geptop and experimental

techniques. However, the connectivity distribution of the exper-

imental group was consistent with that of common non-essential

genes.

Large-scale systematic experiments have provided important

information about essential genes in many bacteria. Transposon

mutagenesis technique, as the major experimental approach, is

likely to mislabel short genes as essential, if insertions have been

avoided by chance [9,55]. The RNAi technique may not silence

the expression of an essential gene entirely, but rather ‘‘knock

down’’ its expression level [56]. The gene knockout method is the

least error-prone approach for identifying essential genes; but this

is expensive and time-consuming. The comparison of connectivity

between the experimental and the Geptop groups suggested that

genes uniquely predicted by the Geptop are more likely to be in

protein-protein interaction network hubs, especially in the three

organisms with low AUC scores. Moreover, another distinct

classifier based on compositional bias also yielded low AUC scores

(between 0.587 and 0.724) when predicting the three essential

groups whose essential genes had been identified by transposon

mutagenesis. In sum, we consider that the experimental identifi-

cations of essential genes for these bacteria were not quite

accurate, or these genomes have so complex genomic architectures

and evolutionary process that those simplistic features (composi-

tional or evolutionary information) did not work well for

predicting their essential genes.

In conclusion, our method yielded good AUC scores that are

higher than integrative approaches and is expected to be applied

widely in every species whose genome has been sequenced.

Moreover, the essential genes predicted by the Geptop have more

codon bias, distribution bias and abundant protein-protein

interactions, which provide further evidence for the reliability of

our method. With the availability of more reliable experimental

essential sets potentially representing major phylogenetic lineages,

the accuracy of our predicting method could be further improved.
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