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SUMMARY

We consider geostatistical models that allow the locations at which data are collected to be
informative about the outcomes. A Bayesian approach is proposed, which models the locations
using a log Gaussian Cox process, while modelling the outcomes conditionally on the locations
as Gaussian with a Gaussian process spatial random effect and adjustment for the location inten-
sity process. We prove posterior propriety under an improper prior on the parameter controlling
the degree of informative sampling, demonstrating that the data are informative. In addition, we
show that the density of the locations and mean function of the outcome process can be estimated
consistently under mild assumptions. The methods show significant evidence of informative sam-
pling when applied to ozone data over Eastern U.S.A.

Some key words: Cox process; Gaussian process; Joint model; Point pattern; Posterior consistency; Preferential
sampling.

1. INTRODUCTION

Geostatistical models focus on inferring a continuous spatial process based on data observed
at finitely many locations, with the locations typically assumed to be noninformative. As noted
by Diggle et al. (2010), this assumption is commonly violated in point-referenced spatial data, as
it is not unusual to collect data at locations thought to have a large or small value for the outcome.
For example, in monitoring of air pollution, one may place more monitors at locations believed to
have a high value of ozone or another pollutant, while in studying distribution of animal species
one may systematically look in locations thought to commonly contain the species of interest.
Diggle et al. (2010) proposed a shared latent process model to adjust for bias due to informative
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sampling locations. Their analysis was implemented using a Monte Carlo approach for maximum
likelihood estimation.

We follow a Bayesian approach using a model related to those described by R. Menezes in
an unpublished 2005 Ph.D thesis from Universidad de Santiago de Compostela, Ho & Stoyan
(2008) and Diggle et al. (2010). The locations are modelled using a log Gaussian Cox process
(Møller et al., 2001), with the intensity function included as a spatially varying predictor in the
outcome model, which also includes spatial random effects drawn from a Gaussian process. A
parameter a controls the degree of informative sampling, and the sampling locations are ignorable
in the special case in which a = 0, while a > 0 implies a tendency to take more observations at
spatial locations having relatively high outcome values. This model modifies shared random
effects models for joint modelling of longitudinal and event time data (Radcliffe et al., 2004)
and for accommodating informative missingness (Wu & Follmann, 1999).

To our knowledge, we are the first to develop a Bayesian approach to the informative locations
problem in geostatistical modelling. However, adapting recently proposed models to the Bayesian
paradigm is relatively straightforward, and our primary contribution is studying the theoretical
properties of the model. In particular, it is not obvious that the data contain information about the
informativeness of the sampling locations, and one may wonder to what extent the prior is driving
the results even in large samples. We address this concern by proving that the posterior is proper
under a noninformative prior on a. In addition, one can consistently estimate a, the density of
the sampling locations and the mean function of the outcome process. This result extends recent
work showing posterior consistency in Gaussian process regression models (Choi & Schervish,
2007; Choi, 2007). Proofs are provided in the Appendix.

2. MODEL FOR SPATIAL DATA WITH INFORMATIVE SAMPLING

Our objective is to estimate the spatial surface μ(s) ∈ R, for all s ∈D ⊂ R
2, based on obser-

vations y1, . . . , yn at locations s1, . . . , sn ∈D. We propose the joint model

yi | si ∼ N {η(si )+ aξ(si ), σ
2}, p(si )= exp{ξ(si )}∫

D exp{ξ(s)}ds
(i = 1, . . . , n), (1)

where the observations are independent across locations si given ξ(s) and η(s), and p(s) is the
location density. Assuming the locations are a realization of an inhomogeneous Poisson process
with log intensity ξ(s), the mean surface is characterized as μ(s)= η(s)+ aξ(s), where η(s) is
a baseline surface and aξ(s) is an adjustment due to informative sampling. Letting x(s) denote
a vector of spatial covariates, ξ(s)= x(s)Tβξ + ξr (s) and η(s)= x(s)Tβη + ηr (s), where βξ and
βη are regression coefficients and ξr (s) and ηr (s) are zero-mean residual processes.

The log sampling density is treated as a latent covariate to adjust for informative sampling,
with a > 0 implying that samples are more likely to be taken in areas with a large response.
Setting the coefficient in βξ corresponding to the intercept to zero for identifiability,

E(yi | si )= x(si )
Tβ∗ + aξr (si )+ ηr (si ) (i = 1, . . . , n), (2)

where β∗ = aβξ + βη. Therefore, accounting for informative sampling is only necessary when
there is an association between the spatial surface of interest and the sampling density that cannot
be explained by the shared spatial covariates x(s).
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The residuals ξr (s)∼�ξr and ηr (s)∼�ηr are assigned independent zero-mean Gaussian pro-
cess priors with Matérn covariance functions (Stein, 1999),

c(h |ψ)= τ 2

2ν−1
(ν)

(
2ν1/2h

ρ

)ν
Kν

(
2ν1/2h

ρ

)
, h = ‖s − s′‖, (3)

whereψ = (τ 2, ρ, ν) andK denotes the modified Bessel function of the second kind. The Matérn
covariance has three parameters: τ 2 > 0 controls the variance, ρ > 0 controls the spatial range
of the correlation and ν > 0 controls the smoothness of the process. Special cases include the
exponential c(h |ψ)= τ 2 exp(−21/2h/ρ) with ν = 1/2, and the squared exponential c(h |ψ)=
τ 2 exp(−2h2/ρ2) with ν = ∞.

3. THEORETICAL PROPERTIES

3·1. Weak posterior consistency

In this section, we obtain posterior consistency of the parameters of our model under fixed-
domain asymptotics. Consider the joint model defined in §2, with D = [0, 1]2 without loss of
generality and �ξr ,�ηr Gaussian processes on C(D), the space of continuous functions on D.
Letting c(h |ψξ) and c(h |ψη) denote the covariance functions for ξr and ηr , respectively, we
choose independent bounded hyperpriors for τ 2

ξ , τ 2
η , νξ and νη while letting ρξ ∼ πξ and ρη ∼

πη, where the supports of both πη and πξ are R
+. We choose a proper prior on R for a, βξ ∼

N(β0ξ , 0ξ ), βη ∼ N(β0η,0η) and σ 2 ∼ Inv-Ga(ασ , βσ ).

Assumption 1. The prior ζ ∼� satisfies the prior positivity condition �(ζ : ‖ζ − ζ0‖∞ <

ε) > 0 for all ε > 0 and for any ζ0 ∈ C(D).
van der Vaart & van Zanten (2009) showed that Assumption 1 holds for Gaussian process pri-

ors with squared exponential covariance under mild conditions and, in an unpublished 2005 Ph.D
thesis from Carnegie Mellon University, T. Choi provided a set of sufficient conditions on the
Matérn covariance kernel for the same setting.

Assumption 2. The covariates are uniformly bounded, so there exists an M > 0 such that
‖x(s)‖ � M for all s ∈D.

THEOREM 1. Under models (1)–(2) with priors chosen as described in §3 and Assumptions
1–2, the posterior distribution �[ξr , ηr , a, βξ , βη, σ | {(yi , si ), i = 1, . . . , n}] is weakly
consistent.

Theorem 1 does not imply that the hyperparameters in the covariance kernel are consistently
estimated, though we do take into account uncertainty in these parameters and do not assume that
the priors are well specified. It is typically not possible to consistently estimate all the parameters
in the Matérn covariance (Zhang, 2004).

3·2. Posterior propriety of a

Under models (1)–(2), the parameter a controls the degree of informative sampling. The uni-
form improper prior, πa(a)∝ 1, provides a noninformative choice. Theorem 2 shows that this
prior leads to a proper posterior, implying that the data are informative about a.

Letting s = (s1, . . . , sn), y = (y1, . . . , yn)
T, ξn

r = {ξr (s1), . . . , ξr (sn)}T and ηn
r = {ηr (s1), . . . ,

ηr (sn)}T, we have ξn
r ∼ N(0, n

ξ ) and ηn
r ∼ N(0, n

η), where n
ξ (s, s′)= c(‖s − s′‖ |ψξ) and
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n
η(s, s′)= c(‖s − s′‖ |ψη) for s, s′ ∈D. Let c(h |ψξ)= τ 2

ξ exp(−21/2h p/ρξ ) and c(h |ψη)=
τ 2
η exp(−21/2h p/ρη) for 0< p � 2. We assume independent bounded priors on τξ and τη and

independent discrete uniform priors on ρξ and ρη. Let βξ ∼ N(β0ξ , 0ξ ), βη ∼ N(β0η,0η) and
σ 2 ∼ π(σ 2). Here we focus on powered exponential covariance functions rather than Matérn to
simplify calculations. A similar result should hold for Matérn covariance functions if the priors
on the hyperparameters have a bounded support.

THEOREM 2. With the above prior specifications, the marginal posterior distribution of a,
p(a | y, s) is proper, provided n � 2 and Eπ(σ ) <∞.

When the conditions of Theorem 2 are satisfied, the joint posterior is also proper.

4. COMPUTATIONAL DETAILS

The exact density for the sample locations in (1) is not available analytically, so an approxima-
tion is required. In point process modelling, the integral is often approximated as the sum over a
fine grid. Letting t1, . . . , tM ∈D be a rectangular grid covering D with cell area �, we have

∫
D

exp{ξ(s)} ds ≈�

M∑
j=1

exp{ξ(t j )}. (4)

This approximation yields a tractable posterior, but requires computationally expensive matrix
inversions, which we limit using a kernel convolution approximation to the process.

Let δ(s) be a zero-mean Gaussian process with covariance c(h |ψ). A process convolution
(Higdon, 2002) lets

δ(s)=
∫
D

Kψ(s − u) dW (u), (5)

where W is the Brownian motion and Kψ is a kernel with parameters ψ . The kernel correspond-
ing to the Matérn covariance is

Kψ(u)= τ

(ν + 1)1/2νν/4+1/4|u|ν/2−1/2

π1/2
(ν/2 + 1/2)
(ν)1/2ρν/2+1/2
Kν/2+1/2

(
2ν1/2|u|
ρ

)
.

The kernel convolution representation of the Gaussian process in (5) is often used to motivate
dimension reduction for the spatial process. Let φ1, . . . , φN be a grid of spatial knots. Then, for
large N ,

δ(s)≈
N∑

j=1

Kψ(s − φ j )w j , (6)

where w j ∼ N(0, 1). Applying kernel convolution to ξ(s) and η(s) yields

yi | si ∼ N

⎧⎨
⎩x(si )

Tβ∗ +
N∑

j=1

Kψη(si − φ j )u j + a
N∑

j=1

Kψξ (si − φ j )v j , σ
2

⎫⎬
⎭ , (7)

p(si )=
exp{x(si )

Tβξ + ∑N
j=1 Kψξ (si − φ j )v j }∑M

l=1 exp{x(tl)Tβξ + ∑N
j=1 Kψξ (tl − φ j )v j }

,
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where u j , v j ∼ N (0, 1). Selecting the number of grid points M and knots N is discussed in §5
and §6.

We use a combination of Gibbs and Metropolis sampling for posterior computation. Assuming
conjugate normal and inverse gamma priors, and reparameterization so that u j ∼ N(0, τ 2

η ) and

v j ∼ N(0, τξ 2), the full conditionals for β∗, a, τ 2
η , τ 2

ξ and the vector (u1, . . . , uN )
T are conjugate

and we use Gibbs sampling. The correlation parameters ρη and ρξ and the smoothness parameters
νη and νξ are updated with Metropolis sampling, tuned to have an acceptance ratio near 0·4.
The sampling density parameters v j are updated using blocked Metropolis sampling to account
for posterior correlation between coefficients for nearby knots. We used 10 blocks, with knots
allocated to blocks using k-means clustering implemented by the kmeans package in R. For the
simulation study in §5, we generated 5000 samples and discarded the first 1000 as burn-in. For
the analysis of the ozone data in §6, we generated 20 000 samples and discarded the first 5000.
Convergence was monitored using trace plots of the deviance as well as several parameters.

5. SIMULATION STUDY

We conduct a simulation study to illustrate the effect of failing to account for informative
sampling on spatial interpolation, and determine the amount of data needed to reliably identify
informative sampling. We assume D = [0, 1]2 and no spatial covariates, x(s)= 1 for all s. We
generate data using model (7) with an equally spaced grid of N = 225 knots on [−0·2, 1·2]2 and a
Matérn kernel. We generate S = 50 datasets from each of four simulation scenarios: (i) n = 250,
a = 0, ρ = 0·2; (ii) n = 250, a = 1, ρ = 0·2; (iii) n = 250, a = 1, ρ = 0·5 and (iv) n = 500, a = 1,
ρ = 0·2, with σ = 1, E{μ(s)} = 0, ν = 2·0 and τ = 0·1 under all scenarios. For each simulated
dataset, we fit three models. The noninformative sampling model sets a = 0, the plug-in model
sets ξ(s)= ξ̂ (s) to account for informative locations and the full model implements the approach
of §4. In the plug-in analysis, the location density is estimated using kernel density estimation in
R’s KernSur function in the GenKern package with default settings. GenKern gives a bivariate
kernel density estimate that uses Gaussian kernels with bandwidth chosen using a direct plug-in
approach to approximate the asymptotically optimal bandwidth.

We use the same grid of N = 225 knots for generating the data in the kernel convolution
model, and approximate the integral using a square grid of M = 900 points t1, . . . , tM covering
[0, 1]. Motivated by Rodrigues & Diggle (2010), we used an equally spaced grid of 225 knots
on [−0·2, 1·2]2. The simulation study results show that irrespective of the number and posi-
tion of the sampling locations, the Gaussian process can be well approximated with 225 knots.
Following Lee et al. (2005), the grid spacings are chosen to be no larger than the standard devi-
ation of the kernel in the convolution representation. We use diffuse normal priors for β∗ and
a and the covariance parameters have priors σ 2, τ 2

ξ , τ
2
η ∼ Inv-Ga(0·01, 0·01), ρ2

ξ , ρ
2
η ∼ U(0, 2),

and ν2
ξ , ν

2
η ∼ U(0, 30).

Table 1 reports bias, mean-squared error, mean absolute deviation, and coverage probability,
each averaged over the grid of M spatial locations t1, . . . , tM . The coverage probability is the
proportion of the M grid locations for which the posterior 95% interval for μ(t j ) covers the true
value. For the plug-in model and the full model, we also report the power for a in Table 1 which
is defined to be the proportion of datasets for which the posterior 95% credible interval for a
excludes zero.

All three methods perform similarly, when sampling is not informative. In this case, the infor-
mative sampling methods rarely identify a as significant and reduce to the usual geostatisti-
cal model. The noninformative sampling model has high mean squared error and negative bias
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Table 1. Simulation study results
Design Model MSE (×102) MAD (×102) Bias (×102) CP (×102) Power for a (×102)

(i) NIS 33·1 (2·8) 41·3 (0·6) 2·0 (1·3) 93·0 (1·0) –
Plug-in 32·2 (1·7) 41·3 (0) 2·5 (1·3) 93·0 (1·0) 10·0
Full 31·9 (1·2) 41·5 (0·7) 2·5 (1·3) 93·0 (1·0) 10·0

(ii) NIS 49·4 (5·0) 50·0 (1·1) −25·8 (1·3) 90·0 (1·0) –
Plug-in 39·2 (5·5) 44·8 (0·9) −13·9 (1·3) 91·0 (1·0) 74·0
Full 32·9 (2·8) 43·2 (0·8) −7·5 (1·6) 93·0 (1·0) 80·0

(iii) NIS 13·2 (1·1) 28·1 (1·8) −8·3 (1·4) 94·0 (1·0) –
Plug-in 12·1 (0·8) 27·1 (1·8) −3·1 (1·4) 94·0 (1·0) 40·0
Full 10·8 (0·7) 25·3 (1·4) −2·0 (1·3) 95·0 (1·0) 50·0

(iv) NIS 25·6 (1·1) 36·9 (0·7) −15·3 (1·2) 92·0 (1·0) –
Plug-in 20·9 (0·8) 33·9 (0·5) −7·2 (1·1) 92·0 (1·0) 88·0
Full 19·1 (0·6) 32·6 (0·4) −0·8 (1·0) 94·0 (1·0) 98·0

NIS, noninformative sampling; MSE, mean squared error; MAD, mean absolute deviation; CP, convergence probability.

in the remaining designs with informative sampling. The two methods that allow for informa-
tive sampling reduce mean squared error compared with the noninformative sampling model.
The informative sampling models also reduce bias, although some bias remains, especially for
design (ii). In all cases, the full model improves on the plug-in approach. The relative mean
squared error of the noninformative sampling model to the full model is smaller for design (iii)
(0·132/0·108 = 1·222) with large spatial range and design (iv) (0·256/0·190 = 1·47), a larger
sample size than for design (ii) (0·494/0·329 = 1·502), so it seems that accounting for informa-
tive sampling is most important for small datasets with considerable spatial variation.

To analyse sensitivity to the prior for a, we redid simulation design (ii) with a = 1 and
ρ = 0·2 and used four different priors for a: N(1, 1), N(0, 1), N(0, 102) and an improper prior. In
summary, the mean-squared prediction error and predictive coverage are insensitive to the hyper-
parameters of the prior on a for n = 150 and n = 200. Even for a sample size as small as n = 50,
differences are small for different priors. However, the N (0, 102) prior and the informative prior
N (1, 1) lead to a better power for a than the others when n = 50 and 100. The minimum sample
size needed to swamp out the prior for a is ∼ 150 in this example.

6. ANALYSIS OF EASTERN UNITED STATES OZONE DATA

With the increasing concern about air pollution and climate change, building predictive mod-
els for ozone is an important area. It is often the case that the monitoring locations are informa-
tive about the ozone surface and hence it is important to account for informative sampling. We
analyse the median daily ozone for June–August 2007 for n = 631 observations in Eastern U.S.A.
The data are plotted in Fig. 1(a). There is a clear association between the sampling density and
the response, as there are more monitors placed in areas with high ozone, such as Atlanta and
New England, than in areas with low ozone, such as Mississippi and West Virginia. We fit a
generalized additive model to the median ozone values and the kernel density estimate of the log
sampling density using locally weighted scatterplot smoothing as shown in Fig. 1(b). The linear
fit is entirely contained within the generalized additive model 95% confidence intervals for all
values of the log sampling density estimate, supporting the log-linear model in (1).

To apply a stationary spatial model, we first project the spatial locations to a two-dimensional
surface using the Mercator projection, and then scale them to the unit square coordinate-wise
by subtracting the minimum and dividing by the range of the observation locations. We fit
the informative sampling model with a 30 × 30 grid of knots on [−0·2, 1·2]2 in the kernel
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Fig. 1. Plots of the ozone data. (a) The ozone data in parts per billion and the monitor
locations (points). (b) The estimated log sampling density against the response. Log
sampling density versus median ozone (circles), gamfit with 95% intervals (dashed

line), linear fit (solid line).
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Table 2. Mean and 95% intervals for the ozone data
Parameters NIS Plug-in Full

a – 4·43 (2·16, 6·46) 3·21 (2·12, 4·25)
σ 4·68 (4·37, 5·03) 4·70 (4·38, 5·04) 4·78 (4·47, 5·12)
τg 0·17 (0·14, 0·27) 0·15 (0·13, 0·19) 0·17 (0·13, 0·21)
ρg 0·06 (0·05, 0·16) 0·06 (0·04, 0·10) 0·06 (0·05, 0·10)
νg 3·95 (0·92, 6·42) 3·46 (1·53, 5·52) 12·6 (0·74, 28·8)
τ f – – 0·05 (0·04, 0·06)
ρ f – – 0·07 (0·04, 0·13)
ν f – – 10·7 (0·74, 28·77)
NIS, noninformative sampling.

convolution approximation in (6) and a 50 × 50 grid of points on [0, 1]2 in the integral approxi-
mation in the sampling density (4). Points outside the convex hull of the observation locations or
outside the continental United States were discarded from integral approximation to the sampling
density, leaving M = 1077. Kernel convolution knots not within 0·1 of an integral approximation
knot were discarded, leaving N = 490.

We include a second-order spatial trend as predictors in x(s), that is, linear and quadratic
terms for rescaled latitude and longitude and their interaction. We compare the noninformative
sampling, plug-in and full models described in §5. The posteriors for several parameters are
summarized in Table 2. The spatial process for both the mean process and sampling density
are fairly smooth. The posterior 95% intervals for νξ and νη exclude the exponential covariance
(ν = 0·5) for all the three models.

The 95% interval of a for both the plug-in model (2·16, 6·46) and fully Bayesian model (2·12,
4·25) excludes zero, indicating an informative sampling scheme. The scale of a’s posterior is not
comparable between the two models, because the plug-in density estimate has been standardized
to have zero-mean and variance one. The effect of accounting for informative sampling is illus-
trated in Fig. 2. The difference in predicted values between the noninformative sampling and full
model in Fig. 2(c) is the largest in Northern Pennsylvania and West Virginia. These areas have
relatively few monitors and are near areas with high ozone. The difference between the non-
informative sampling and plug-in predictions in Fig. 2(d) are also positive in these areas though
the differences are not nearly as large in the plug-in analysis. This may be because the plug-in
estimates do not appropriately account for uncertainty in estimation, and hence may lead to some
attenuation of the estimated surface.

Finally, we refit the model with different priors and different knot locations to test for
sensitivity to these assumptions. We fit the model with 20 × 20 and 40 × 40 initial grids of
knots in the kernel convolution approximation. After removing knots outside the domain of
interest, we obtain N = 206 and N = 876 knots, respectively. The results were fairly simi-
lar to the original 30 × 30 grid. In all cases the posterior of a was separated from zero, the
posterior median being 3·31 and 2·85 for N = 206 and N = 876 knots, respectively, and the
largest difference between the NIS and full model was in the Northern Pennsylvania and West
Virginia.

7. DISCUSSION

We have focused on a simple model for informative locations, which assumes that the out-
comes are conditionally independent of the locations, given the mean processμ(s) and the spatial
location density p(s). In addition, we include a single parameter a controlling the informativeness
of the sampling process. These simplifying assumptions certainly make the theory and computa-
tion more tractable. However, to characterize the data from a broader variety of applications more
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Fig. 2. The effect of accounting for informative sampling. (a) Posterior mean predicted values; (b) log sampling
density from the full model; (c) the difference in posterior mean predicted values of the noninformative sampling

model and full model and (d) the plug-in model.

realistically, it may be necessary to generalize the models. There are several interesting directions
in this regard. First, it is straightforward conceptually to replace the constant a with a spatially
varying coefficient a(s), which is assigned a Gaussian process prior. This generalization allows
the informativeness of the sampling locations to vary spatially; for example, in certain regions,
e.g., near cities, monitors may be placed without regard to the outcome, while in the rural areas,
monitors may be placed at sites likely to have high values of ozone. It is an open question whether
one can consistently estimate a(s) in this extended model without very restrictive assumptions.
However, a simple adjustment for informative sampling may be preferable to more complicated
models that require rich datasets for reliable estimation.
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APPENDIX

Proof of Theorem 1. Let φ = (ξr , ηr , βξ , βη, a, σ ) and φ0 = (ξ0r , η0r , βξ0, βη0, a0, σ0) be a fixed set of
parameters in C(D)× C(D)× R × R

+. Clearly (yi , si )∼ f (y, s | φ), where

f (y, s | φ)= f (y | s, φ)p(s | φ)= 1√
(2πσ 2)

exp

[
− {y − μ(s)}2

2σ 2

]
exp{x(s)Tβξ + ξr (s)}∫

D exp{x(s)Tβξ + ξr (s)}ds
.

Here μ(s)= x(s)T(aβξ + βη)+ aξr (s)+ ηr (s). Let μ0(s)= x(s)T(a0βξ0 + βη0)+ a0ξ0r (s)+ η0r (s).
Define �(φ0, φ)= log

{
f (y, s | φ0)/ f (y, s | φ)} and K (φ0, φ)= Eφ0{�(φ0, φ)}. Then following

Schwartz (1965), its enough to show that for all ε > 0,

(�ξr ×�ηr × πβξ × πβη × πσ × πa){φ : K (φ0, φ) < ε}> 0.

We calculate K (φ0, φ) using the following equation:

K (φ0, φ)= Eφ0{�(φ0, φ)} = Eφ0

{
log

f (y, s | φ0)

f (y, s | φ)
}

= 1

2
log

σ 2

σ 2
0

+ Eφ0

[
−{y − μ0(s)}2

2σ 2
0

]
− Eφ0

[
−{y − μ(s)}2

2σ 2

]

− Eφ0{x(s)T(βξ − βξ0)+ ξr (s)− ξ0r (s)} + log

[ ∫
D exp{x(s)Tβξ + ξr (s)} ds∫
D exp{x(s)Tβξ0 + ξ0r (s)} ds

]

= 1

2
log

σ 2

σ 2
0

− 1

2

(
1 − σ 2

0

σ 2

)
+ 1

2σ 2

∫
D

{μ0(s)− μ(s)}2 p(s) ds

+
∫
D

{x(s)T(βξ − βξ0)+ ξr (s)− ξ0r (s)}p(s) ds

+ log

[ ∫
D exp{x(s)Tβξ + ξr (s)} ds∫
D exp{x(s)Tβξ0 + ξ0r (s)} ds

]
.

For each δ > 0, define

Bδ = {φ : ‖ξr − ξ0r‖∞ < δ, ‖ηr − η0r‖∞ < δ, ‖βξ − β f 0‖< δ, ‖βg − βg0‖< δ,
|a − a0|< δ, |σ/σ0 − 1|< δ}.

Take b1 = ‖μ0 − μ‖∞ and b2 = σ/σ0. Let g1(b1, b2)= log b2 − (b2
2 − 1)/(2b2

2)+ b2
1/(2σ

2
0 b2

2). Clearly
g1(b1, b2) is continuous at b1 = 0 and b2 = 1 and g1(0, 1)= 0. We have

b1 � M‖(aβξ + βη)− (a0βξ0 + βη0)‖ + ‖{aξr (s)+ ηr (s)} − {a0ξ0r (s)+ η0r (s)}‖

and

K (φ0, φ)� g1(b1, b2)+
∫
D

{x(s)T(βξ − βξ0)+ ξr (s)− ξ0r (s)}p(s) ds

+ log

[ ∫
D exp{x(s)Tβξ + ξr (s)} ds∫
D exp{x(s)Tβξ0 + ξ0r (s)} ds

]
.

For ε > 0, there exists a δ1 > 0 such that for all φ ∈ Bδ1 ,

1

2
log

σ 2

σ 2
0

− 1

2

(
1 − σ 2

0

σ 2

)
+ 1

2σ 2

∫
D

{μ0(s)− μ(s)}2 p(s) ds <
ε

3
.

There also exists δ2 > 0 such that for all φ ∈ Bδ2 , {x(s)T(βξ − βξ0)+ ξr (s)− ξ0r (s)}< ε/3 uniformly for
all s ∈D. If we define hφ(s)= exp{x(s)Tβξ + ξr (s)}, then φ → ∫

D hφ(s) ds is a continuous function and
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hence φ → log{∫D hφ(s) ds} is also a continuous function. So, there exists a δ3 > 0 such that

φ ∈ Bδ3 ⇒ log

{∫
D

hφ(s) ds

}
− log

{∫
D

hφ0(s) ds

}
<
ε

3
.

Choosing δ = min{δ1, δ2, δ3}, φ ∈ Bδ implies K (φ0, φ) < ε. From T. Choi’s unpublished 2005 Ph.D thesis,
it follows that with the priors specified in §3·1

(�ξr ×�ηr × πβξ × πβη × πσ × πa)(Bδ) > 0.

Hence,

(�ξr ×�ηr × πβξ × πβη × πσ × πa){φ : K (φ0, φ) < ε}> 0. �

Proof of Theorem 2. The prior specifications on ρξ , ρη, τξ and τη enable one to bound any quadratic
forms and determinants involvingn

ξ andn
η by fixed quantities. Hence, in showing that the posterior p(a |

y, s) is proper, its enough to treat ρξ , ρη, τξ and τη as constants. Without loss of generality, we can work
withD = [0, 1]2 by the projection argument described in §6. Following Benes et al. (2003), we consider the
grid approximation of the infinite dimensional Gaussian process {ξr (s) : s ∈D}, denoted by ξr . Let D =⋃J

j=1 I j , with {I j } denoting a segmentation of D into contiguous regions of equal area �= J−1
∫
D ds.

Choose J sufficiently large such that at most one si lies within any I j . The infinite-dimensional Gaussian
process, ξr , can be approximated by a finite dimensional vector ξ J

r = (ξ ∗1
r , . . . , ξ

∗J
r )T, corresponding to

the choice of arbitrary points s∗
1 , . . . , s∗

J within I1, . . . , IJ , respectively, such that ξr (si )= ξ ∗ j
r if si ∈ I j .

Thus ξ J
r ∼ N(0, ∗J

ξ ), where (∗J
ξ )i j = c(‖s∗

i − s∗
j ‖ |ψ). Define the true posterior ptrue(ξ n

r | s) and the
approximated posterior pJ (ξ n

r | s) as follows:

ptrue(ξ n
r | s)∝ ptrue(ξ n

r , s)= E

{∫
exp{x(s)Tβξ + ξr (s)} ds | ξ n

r

}−n

exp{−0·5(ξ n
r )

T(n
ξ )

−1(ξ n
r )

T}

and

pJ (ξ n
r | s)∝ pJ (ξ n

r , s)=
⎡
⎣� J∑

j=1

exp{x(s∗
j )

Tβξ + ξr (s
∗
j )}

⎤
⎦

−n

exp{−0·5(ξ J
r )

T(∗J
ξ )

−1(ξ J
r )

T}.

Marginalizing out ηn
r , we have y | s, ξr , a, σ 2, βη, βξ ∼ N(Xβ∗ + aξ n

r , σ
2 In +n

η ), where X T =
{x(s1) · · · x(sn)}. The true posterior of (ξ n

r , a, σ 2, βξ , βη) is

ptrue(ξ n
r , a, βξ , βη, σ

2 | y, s)∝ p(y | s, ξr , a, σ 2, βξ , βη)p
true(ξ n

r , s)π(σ 2)π(βξ )π(βη).

Benes et al. (2003) showed that, under these assumptions, for a fixed s ∈Dn , the expectation of any
bounded function with respect to pJ (ξ n

r | s) converges to the corresponding expectation with respect to
ptrue(ξ n

r | s) as J tends to infinity. Hence, there exists a J such that the expectation of the bounded function
with respect to pJ (ξ n

r | s) is greater than the corresponding expectation with respect to (1/2)ptrue(ξ n
r | s).

Thus, in order to show propriety of the true posterior of (ξ n
r , a, σ 2, βξ , βg), which involves ptrue(ξ n

r | s), it is
enough to show the propriety of the approximated posterior pJ (ξ n

r , a, βξ , βη, σ 2 | y, s). The approximated
posterior of (ξ n

r , a, σ 2, βξ , βη) is

pJ (ξ n
r , a, βξ , βη, σ

2 | y, s)= C exp{−0·5(Y − Xβ∗ − aξ n
r )

T(σ 2 In +n
η )

−1(Y − Xβ∗ − aξ n
r )}

× exp{−0·5(ξ J
r )

T(∗J
ξ )

−1(ξ J
r )}π(βξ )π(βη)

× π(σ 2)
exp{∑n

i=1 x(si )
Tβξ + ξr (si )}

�n[
∑J

j=1 exp{x(s∗
j )

Tβξ + ξ
∗ j
r }]n

,
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where C is a constant. As exp{x(si )
Tβξ + ξr (si )}<

∑J
j=1 exp{x(s∗

j )
Tβξ + ξ ∗ j

r } for all i = 1, . . . , n,

exp{∑n
i=1 x(si )

Tβξ + ξr (si )}
[
∑J

j=1 exp{x(s∗
j )

Tβξ + ξ
∗ j
r }]n

< 1.

After integrating out ξ J
r , excluding ξ n

r , we are left with

p(ξ n
r , a, βξ , βη, σ

2 | Y, s)� C1 exp{−0·5(Y − Xβ∗ − aξ n
r )

T(σ 2 In +n
η )

−1(Y − Xβ∗ − aξ n
r )}

× exp{−0·5(ξ n
r )

T(n
f )

−1(ξ n
r )}π(βξ )π(βη)π(σ 2),

where C1 > 0 is a constant andn
ξ is the variance–covariance matrix of ξ n

r constructed out of∗J
ξ . Setting

Z = (y − Xβ∗)/a,  = (n
η + σ 2 In)/a2 and �η = {(n

ξ )
−1 +−1}−1 and completing quadratic forms

yield

p(ξ n
r , a, βξ , βη, σ

2 | y, s)� C2 exp{−0·5(ξ n
r −�η

−1 Z)T�−1
η (ξ

n
r −�η

−1 Z)}
× exp{−0·5(Z T−1 Z − Z T−1�η

−1 Z)}π(βξ )π(βη)π(σ 2),

where C2 > 0 is another constant. Next we state a useful lemma from matrix algebra.

LEMMA 1. If A and B are positive definite square matrices so is A − A(A + B)−1 A.

Proof. We have

A − A(A + B)−1 A = A(A + B)−1 B = {B−1(A + B)A−1}−1 = (B−1 + A−1)−1.

The conclusion follows from the fact that the sum and inverses of positive definite matrices of the same
dimension are also positive definite. �

From Lemma 1, we have (Z T−1 Z − Z T−1�η
−1 Z)� 0, so that

p(ξ n
r , a, βξ , βη, σ

2 | y, s)� C2 exp{−0·5(ξ n
r −�η

−1 Z)T�−1
η (ξ

n
r −�η

−1 Z)}
× π(βξ )π(βη)π(σ

2).

Integrating out ξ n
r first and then βξ and βη,

p(a, σ 2 | y, s)� C3|(n
ξ )

−1 + a2(n
η + σ 2 In)

−1|−(1/2).

Call n
ξ = A and n

η = B. Hence

|A−1 + a2(B + σ 2 I )−1| = |I + a2 A(B + σ 2 I )−1|
|A| = |a2 A + σ 2 I + B|

|σ 2 I + B‖A| .

Now we state a useful result from matrix algebra.

PROPOSITION 1. If A and B and nonnegative definite matrices, then |A + B| � |A| + |B| with strict
inequality holding in case of positive definite matrices.
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Using Proposition 1, we get( |a2 A + σ 2 I + B|
|σ 2 I + B|

)−(1/2)
�

( |a2 A| + |σ 2 I + B|
|σ 2 I + B|

)−(1/2)

=
{

1 + a2n|A|∏n
i=1(σ

2 + bi )

}−(1/2)

�
{

1 + a2n|A|
(σ 2 + bn)n

}−(1/2)
,

where 0< b1 � b2 � · · · � bn are the eigen values of B. By Minkowski’s inequality we get{
1 + a2n|A|(

σ 2 + bn

)n

}−(1/2)
� (σ 2 + bn)

n/2

cn

(
a2|A|(1/n) + σ 2 + bn

)n/2 .

Set |A|1/n = k1 and bn = k2. We assume n � 2. Then ignoring constants∫ ∞

−∞

(σ 2 + bn)
n/2

(a2|A|1/n + σ 2 + bn)n/2
da =

∫ ∞

−∞

1

{1 + (a2k1)/(σ 2 + k2)}n/2
da

�
∫ ∞

−∞

1

{1 + (a2k1)/(σ 2 + k2)} da

= π

(
σ 2 + k2

k1

)(1/2)

.

Now, since Eπ (σ ) <∞, ∫ ∞

0

(
σ 2 + k2

k1

)(1/2)

π(dσ 2) <∞.

By Fubini’s Theorem, p(a | Y, s) is integrable. �
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