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High-Quality Draft Genome Sequence of Pseudomonas syringae pv.
Syringae Strain SM, Isolated from Wheat
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Pseudomonas syringae is one of the most widespread plant pathogens that can cause significant damage to crop plantations.
Here, we announce a noncontiguous finished genome sequence of Pseudomonas syringae pv. syringae strain SM, isolated from
hexaploid wheat. The genome sequence revealed the smallest described complement of type III effectors.
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seudomonas syringae strains have been isolated from >180

host species across the entire plant kingdom, including many
agriculturally important crops (1). The observed wide host range
is reflected in a relatively large genetic heterogeneity among dif-
ferent pathovars. This is most pronounced in the complement of
virulence factors, which is also assumed to be the key factor defin-
ing the host specificity (2). Pseudomonas syringae pv. syringae
strain SM was isolated from hexaploid wheat (Triticum aestivum)
in the United States (3). The strain, which was also denoted D20,
has been used in several studies addressing the issue of bacterium-
induced systemic resistance in plants (3—7) but never as an infec-
tion model for wheat.

A 3-kb paired-end library was generated and sequenced at the
Functional Genomics Center Zurich on a Roche genome se-
quencer FLX+ platform. A total of 974,051 quality filtered reads
with a total of 213,333,037 bases were obtained, resulting in 34.8-
fold average sequencing coverage. The obtained reads were fur-
ther de novo assembled using Newbler 2.5.3 into 64 contigs com-
bined into one 6.08-Mb-long superscaffold and 3 smaller scaffolds
(46.5 kb, 9.09 kb, and 5.24 kb in size). The largest of the minor
scaffolds turned out to be a pPT23A family plasmid, the 9-kb
scaffold showed sequence similarity to nonribosomal peptide syn-
thase (NRPS) modules, and the smallest scaffold constituted an
rRNA operon. A portion of intrascaffold gaps was closed by se-
quencing of PCR products using Sanger technology, decreasing
the total number of contigs to 26. However, it was not possible to
precisely map the 9-kb scaffold, but due to its insignificance to the
project, it was excluded from the assembly. Initial open reading
frame (ORF) prediction and functional annotation were per-
formed using the RAST server (8). The start codons of all the
predicted ORFs were further manually verified using the position
of potential ribosomal binding sites and BLASTp (9) alignments
with homologous ORFs from other Pseudomonas strains as a ref-
erence. Functional annotations were also refined for every ORF
using BLASTp searches against the nonredundant protein se-
quence database (nr) and the NCBI Conserved Domain search
engine (10).

The estimated genome size of strain SM is 6,124,102 bp, with
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an average G+C content of 58.73%. It contains 5,072 protein-
coding sequences (excluding pseudogenes), five rRNA operons,
and 64 tRNA genes for all of the amino acids. Notably, it contains
a complete type III secretion system and seven known effector
proteins: AvrEl, HopAAl, Hopll, HopM1, HopBAl, HopA2,
and HopAZ1. In addition, there are two complete type VI secre-
tion system gene clusters and 12 putative effector proteins belong-
ing to the VgrG and Hcpl families, as well as intact gene clusters
for the biosynthesis of syringopeptin and mangotoxin. All of these
genome components have previously been demonstrated to be
involved in virulence and epiphytic fitness of P. syringae, as well as
in competition of pseudomonads with other microbial species
(11-16).

Nucleotide sequence accession numbers. This whole-genome
shotgun project has been deposited at DDBJ/EMBL/GenBank un-
der the accession no. APWT00000000. The version described in
this paper is the first version, APWT01000000.
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