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Abstract

There is increasing evidence to support the hypothesis of adaptive response, a phenomenon in
which protection arises from a low-dose radiation (<0.1 Gy) against damage induced by
subsequent exposure to high-dose radiation. The molecular mechanisms underlying such
protection are poorly understood. The goal of this study was to fill this knowledge gap. Mass
spectrometry-based proteomics was used to characterize global protein expression profiles in the
medium collected from human lymphocyte cultures given sham irradiation (0 Gy) or a priming
low dose of 0.03 Gy 137Cs +y rays 4 h prior to a challenging dose of 1 Gy 137Cs -y rays. Adaptive
response was determined by decreased micronucleus frequencies in lymphocytes receiving low
dose irradiation prior to high dose irradiation compared to those receiving only high dose
irradiation. Adaptive response was found in these experiments. Proteomic analysis of media
revealed: (&) 55 proteins with similar abundance in both groups; (6) 23 proteins in both groups, but
7 of them were high abundance in medium with adaptive environment, while 16 high abundance
proteins were in medium without adaptive environment; (¢) 17 proteins in medium with adaptive
environment only; and (d) 8 proteins in medium without adaptive environment only. The results
provide a foundation for improving understanding of the molecular mechanisms associated with
the beneficial effects of low dose radiation that, in turn, will have an important impact on radiation
risk estimation. Hence, these studies are highly relevant to radiation protection due to an increased
use of low dose radiation in daily life (e.g., medical diagnosis or airport safety) or an unavoidable
exposure to low level background radiation.
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Introduction

There is no doubt that high doses of radiation are harmful to cells or tissues. However, the
results from many studies using a variety of biological endpoints (i.e., metaphase
chromosome aberration, micronucleus, DNA damage, mutation, neoplastic transformation,
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and cancer) have shown that exposure to low doses (<0.1 Gy) of low linear energy transfer
(LET) radiation (Olivieri et al. 1984; Bond et al. 1991; Azzam et al. 1996; Wolff 1996;
Redpath et al. 2001; Feinendegen 2005; Scott and Di Palma 2006; EImore et al. 2008;
Mitchel 2010) or high LET radiation (lyer and Lehnert 2002; Varés et al. 2011) can protect
against damage induced by a subsequent exposure to a relatively high dose of radiation. This
protection phenomenon by low dose radiation (initially demonstrated many years ago in
human lymphocytes irradiated in vitro) is normally known as the “adaptive response (AR),”
the term originally coined by Sheldon Wolff and his colleagues (Olivieri et al. 1984;
Wiencke et al. 1986). It has also been found that the protective effects of low dose radiation
against the induction of cytogenetic damage by high dose radiation varied among blood
samples from different subjects (Sankaranarayanan et al. 1989) or among different
lymphoblastoid cell lines (Sorensen et al. 2002), suggesting inter-individual variation in
response to priming low dose radiation. This AR phenomenon has also been detected in in
vitro studies using other cell types such as human skin fibroblasts (Pinto et al. 2010) and
human hybrid (Hela X skin fibroblast) cells (Elmore et al. 2008).

The capability of low doses of low LET radiation, without a challenging dose, to reduce
cytogenetic damage to below the spontaneous rate has been detected in both in vivo™
(Hooker et al. 2004) and in vitro (Rithidech and Scott 2008) studies. Likewise, increases in
proliferation and survival of bone marrow cells have been detected after exposure of mice to
a single dose of 0.05 Gy of x-rays (Wang and Cai 2000). There is also evidence of a
radiation-induced AR in animal studies when the “priming” low dose is given before or after
a high “challenging” dose, with varying intervals (from 2 h to 2 wk) between the two
radiation treatments (Farooqi and Kesavan 1993; Mitchel et al. 2003; Day et al. 2006; Ito et
al. 2007). The efficiency of protection is inversely correlated to the level of the priming dose
and the duration of the interval between the priming and the challenging doses. Further, the
results from these studies showed that both acute or multiple exposures to a priming low
dose are effective in reducing the damage from subsequent exposure to high dose radiation.
However, normally priming low doses given at a low dose rate are more efficient in
protecting cells than those given at a higher dose rate (Broome et al. 2002; Mitchel 2010).

Although the manifestation of the AR has been established in varying biological systems,
the exact molecular mechanisms underlying protection against injury induced by subsequent
acute exposure to high dose radiation are poorly understood. A variety of biological
processes have been implicated in radiation-induced AR, depending on the cell type. These
include the modulation of the cell cycle (Miura 2004; Cramers et al. 2005; Feinendegen
2005), stimulation of DNA repair (Ikushima et al. 1996; Coleman et al. 2005; Hafer et al.
2007), and activation of antioxidant defense systems (de Toledo et al. 2006; Otsuka et al.
2006; Fan et al. 2007). However, no definite molecular events have been determined. Hence,
the identification of proteins potentially involved in the induction of adaptive response
would greatly enhance understanding of the molecular mechanisms associated with the
protection of low dose radiation against harmful effects of succeeding exposure to high dose
radiation. The resulting data will have a significant impact on the assessment of health risk
from exposure to radiation, which is a key component of radiation protection.

As an initial step in identifying proteins potentially involved in radiation-induced AR by
means of mass spectrometry (MS)-based proteomics, the authors characterized global
protein-expression profiles in the medium collected from lymphocyte cultures given sham-
irradiation (0 Gy) or a priming low dose of 0.03 Gy of 137Cs vy rays prior to a challenging

*Rithidech K, Udomthanakunchai C, Honikle L, Whorton EB. No evidence for the i vivo induction of genomic instability by low

doses of

37¢cs gamma rays in bone marrow cells of BALB/cJ and C57BL/6J Mice, /n press Dose Response. DOI: 10.2203/dose-

response.11-002.Rithidech, 2011

Health Phys. Author manuscript; available in PMC 2013 August 16.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Rithidech et al.

Page 3

dose of 1 Gy of 137Cs vy rays. The protection (or the induction of the hypothesized AR) by a
priming low dose irradiation was determined by a reduction in the frequencies of
micronuclei (MN) in human blood lymphocyte cultures receiving a priming low dose
radiation prior to a challenging high-dose radiation (an adaptive environment) related to
those receiving only challenging high-dose radiation (a non-adaptive environment).

The focus of this study was on proteomics analyses of secreted proteins in the media from
human lymphocyte cultures exposed to high dose radiation with or without protection by
priming low dose radiation; i.e., the adaptive and non-adaptive environment. The authors
hypothesized that the priming low dose radiation induced the synthesis of a specific subset
of proteins capable of cell protection in exposed human lymphocytes and that those proteins
were secreted into the culture medium, resulting in attenuation of the detrimental effects
induced by succeeding exposure to challenging high dose radiation. In the past, the role of
secreted soluble factors (proteins) in radiation-induced bystander effects (Mothersill and
Seymour 1997) and radiation-induced genomic instability (Sowa Resat and Morgan 2004)
has been suggested. However, information on the contribution of secreted proteins in
radiation-induced AR is lacking. Hence, the resulting data obtained from this study will fill
this knowledge gap.

In this study, a dose of 0.03 Gy of 137Cs -y rays was selected as a priming low dose radiation
because of its reported beneficial effects (Feinendegen 2005; Mitchel 2010). It also has been
established that a single dose of 1.0 Gy of low LET radiation induces a significant increase
in the frequency of MN in exposed human-lymphocytes (Fenech and Morley 1985; Balasem
and Ali 1991; Silva et al. 1994). Liquid chromatography tandem mass-spectrometry (LC-
MS/MS) with the Linear Trap Quadrupole (LTQ) mass spectrometer was used to identify
proteins potentially involved in AR in media from cultures with or without adaptive
environment. The relative abundance of each identified protein was determined by spectral
counting of peptides. Subsequently, the extensive online protein databases were used to
search for what is known about the biological function of the identified proteins. Knowing
the functions of these proteins will enhance understanding of the network of molecular
signaling pathways associated with the potential beneficial effects of the hypothesized
adaptive response of exposure to low dose radiation that, in turn, would improve the
estimation of health risk from exposure to radiation.

Materials and Methods

Cytokinesis block micronucleus (CBMN) assay

Chemicals—Chemicals for blood lymphocyte cultures (RPMI 1640, penicillin/
streptomycin, L-glutamine, phytohaemagglutinin M) were purchased from Invitrogen
Corporation (Carlsbad, CA). Heat-inactivated fetal bovine serum was purchased from
Gemini Bio-Products (Woodland, CA). Gurr-Giemsa stain was purchased from BDH (Santa
Monica, CA).

Whole blood-lymphocyte cultures—Fig. 1 shows the experimental design of the study.
Briefly, peripheral blood samples (approximately 5 mL) were collected by venipuncture into
heparinized syringes, using established bloodborne pathogen/biohazard safety protocols
from two nonsmoking healthy female volunteers who were of similar ages. These two
individuals had no known history of previous exposure to other clastogenic agents. Blood
sample collections were performed under the approved guidelines by the Institutional
Committees on Research Involving Human Subjects (CORIHS) at Stony Brook University.
The informed consents were documented. The method of culturing whole blood lymphocyte
cultures was similar to that routinely used in the authors' laboratory (Rithidech and Scott
2008). All experiments were done in duplicate for each subject. In each experiment for each
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donor, eight lymphocyte culture tubes were prepared. Cells were incubated at 37°C in
humidified 5% CO, atmosphere for 24 h. Thereafter, blood-lymphocyte culture tubes were
divided into two groups (four culture tubes in each). These included: Group A (without
adaptive environment), no priming low dose (0 Gy, sham-control irradiation) followed by a
single dose of 1 Gy of 137Cs vy rays 4 h later (at the dose rate of 0.70 Gy min~1) and Group
B (with adaptive environment), a priming low dose of 0.03 Gy of 137Cs y rays given at 4 h
before a single dose of 1 Gy of 137Cs y rays. A gamma-irradiator (Gamma Cell40, Atomic
Energy of Canada, Ltd, Ontario, Canada) located at Stony Brook University was used for
irradiation. The exposure time for the 0-Gy sham-control irradiation (prior to a challenging
high dose) was the same as that for the priming low dose of 0.03 Gy.

The protocol for the CBMN assay routinely used in this laboratory (Rithidech et al. 2005;
Rithidech and Scott 2008) was followed. Briefly, at 44 h after culture-initiation, 3 pg/mL of
Cytochalasin-B (Cyt-B) was added to each culture tube to block cytokinesis (which
normally occurs in the telophase stage of the cell cycle). Cells were harvested 28 h after the
addition of Cyt-B. The total culture time was 72 h, which resulted in the formation of many
first division binucleated (BN) cells that were scored for the induction of MN (Fenech
2000). At harvest, the medium (supernatant) from each treatment of each subject was
collected, concentrated using Agilent spin concentrators with 5 kDa cut-off (Agilent
Technologies, Inc, Wilmington, DE), lyophilized, and stored at —80°C until shipment in dry
ice by overnight carrier to Indiana University School of Medicine for proteomic analysis.

Micronucleus analysis—The slides were coded before scoring (under a light microscope
with a 40 x 10 magnification). The criteria for selection of BN cells and identification of
MN given in the HUMN project website [http://HUMN.org] and routinely used in this
laboratory (Rithidech et al. 2005; Rithidech and Scott 2008) were applied. The numbers of
BN cells with one, two, three, or more MN were then tabulated.

Statistical analysis—Generally, cytogenetic data, particularly in control animals and in
those induced by low doses of toxic agents, contain a large number of cells (i.e., BN
lymphocytes in this study) with zero or very few aberrations (i.e., MN in this study). Hence,
the frequencies of aberrations are not normally distributed, and the variances are not
homogeneous. Therefore, it is important to transform the data prior to statistical analysis to
achieve reasonable normality and reasonably homogeneous inter-individual variability
within experiment groups. In this study and before the statistical analysis, the average square
root transformation [ASQRT, VX + V(X+1) where X is the observed MN frequency]
(Whorton 1985; Albertini et al. 2000) was applied to each replication of each subject's
measured MN frequency. The ASQRT has been routinely used in this laboratory for
conducting statistical analyses of cytogenetic data using parametric statistical analysis
methods (Rithidech et al. 1988, 2007). The frequencies of MN per 1,000 BN cells in human
lymphocyte cultures exposed to 1.0 Gy of 137Cs -y rays with or without receiving
preexposure to priming low dose radiation were evaluated statistically using Student's #test
with a significance value of p< 0.05.

Proteomic analysis—Materials—Ilodoethanol (>99% purity), triethylphosphine (TEP,
>99% purity), and ammonium bicarbonate (ReagentPlus® grade) were obtained from
Sigma-Aldrich (St. Louis, MO). Acetonitrile (ACN) and MS grade water were purchased
from EMD Chemicals (Gibbstown, NJ, USA). Modified sequencing grade porcine trypsin
was obtained from Princeton Separations (Freehold, NJ).

Protein reduction, alkylation, and digestion—Proteins (from concentrated samples
mentioned above) in 200 L of 4 M urea were reduced and alkylated using TEP and
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iodoethanol as described previously (Lai et al. 2008). Briefly, 200 L of the reduction/
alkylation cocktail were added to the protein solution. The sample was incubated at 37°C for
90 min, dried by SpeedVac, and reconstituted with 100 pL of 100 mM NH4HCO3 at pH 8.0.
A 150-p.L aliquot of a 20 pg/mL trypsin solution was added to the sample and incubated at
37°C for 3 h, after which another 150 p.L of trypsin were added, and the solution was
incubated at 37°C overnight.

LC-MS/MS—The digested samples were analyzed using a Thermo-Finnigan linear ion-trap
(LTQ) mass spectrometer coupled with a Surveyor autosampler and MS HPLC system
(Thermo-Finnigan). Tryptic peptides were injected onto the C18 microbore RP column
(Zorbax SB-C18,1.0 mm x 150 mm) at a flow rate of 50 p.L/min. The mobile phases A, B,
and C were 0.1% formic acid in water, 50% ACN with 0.1% formic acid in water, and 80%
ACN with 0.1% formic acid in water, respectively. The gradient elution profile was as
follows: 10% B (90% A) for 5 min, 10-95% B (90-5% A) for 120 min, 100% C for 5 min,
and 10% B (90% A) for 12 min. The data were collected in the “Triple-Play” (MS scan,
Zoom scan, and MS/MS scan) mode with the ESI interface using normalized collision
energy of 35%. Dynamic exclusion settings were set to repeat count 1, repeat duration 30 s,
exclusion duration 120 s, and exclusion mass width 0.75 m/z (low) and 2.0 m/z (high). Each
sample was injected twice.

Protein identification and classification—The acquired data were searched against
the International Protein Index (IPI) human database (ipi. HUMAN.v3.37) using SEQUEST
(v. 28 rev. 12) algorithms in Bioworks (v. 3.3). General parameters were set as follows:
peptide tolerance 2.0 amu, fragment ion tolerance 1.0 amu, enzyme limits set as “fully
enzymatic—cleaves at both ends,” and missed cleavage sites set at 2. The searched peptides
and proteins were validated by PeptideProphet (Keller et al. 2002) and ProteinProphet
(Nesvizhskii et al. 2003) in the Trans-Proteomic Pipeline (TPP, v. 3.3.0, http://
tools.proteomecenter.org/software.php). Quantitative analysis of proteins' relative
abundances was performed using spectral counting of peptides (Liu et al. 2004), whose data
were from TPP. Significant difference analysis was completed using the #test in Microsoft
Excel.

Following identification by LC-MS/MS, proteins were classified into different categories
based upon their distribution in cellular compartments and their biological function by
searching the gene ontology (GO) database (http://www.geneontology.org/), the public
Swiss-Prot-TrEMBL (http://www.expasy.org), and NCBI (protein, http://.ncbi.nlm.nih.gov)
servers.

Frequencies of MN in human-lymphocyte cultures with or without treatment of 0.03 Gy
of 137Cs y rays prior to 1 Gy of 137Cs y rays

Fig. 2 shows the frequencies of MN in BN-lymphocytes induced by a single dose of 1 Gy

of 137Cs v rays alone or in combination with pre-exposure to a priming low dose of 0.03 Gy
of 137Cs v rays. Table 1 shows the information on the total number of BN-cells scored in
each treatment from each subject and the distribution of MN. While the resulting data were
presented as original unit rates, statistical significance was assessed using the ASQRT-
transformation numbers. The current data showed a significant reduction in MN frequencies
when a priming low dose was given to human lymphocyte cultures at 4 hr before a high dose
of 1 Gy of 137Cs vy rays (p < 0.05), illustrating the induction of AR by a priming low dose
radiation. Further, such AR was detected in lymphocytes from both subjects.
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Protein identification and classification

In total, 103 proteins with 290.00% confidence were identified by peptides with >90.00%
confidence via TPP validation. The lists of these proteins are presented in Tables 2 to 4 with
the following information for individual proteins: the IPI number, the common name of the
protein, the biological function, the cellular component, the TPP confidence, the percent
sequence coverage, and the number of peptides detected. Table 2 shows a list of 55 proteins
with similar abundance in media with and without adaptive environments. Table 3a and b
provide the lists of proteins found in media from both groups showing high abundance
proteins in media with adaptive environment (seven proteins, Table 3a) and those with high
abundance in media without adaptive environment (16 proteins, Table 3b). Table 4a and b
present secreted proteins found only in media with an adaptive environment (17 proteins,
Table 4a) and only in media without an adaptive environment (eight proteins, Table 4b).

Discussion

This data indicated differential expression, both qualitatively and quantitatively, of human
proteins in media from lymphocyte cultures exposed to high dose radiation with or without
adaptive environment; i.e., pre-exposure to 0 Gy (sham control, without an adaptive
environment) or 0.03 Gy (with an adaptive environment). However, there were several
secreted proteins with similar abundance (such as immunoglobulin and actin) in the media
from both groups. These proteins are presumably responsible for normal regulatory
processes of cells. The authors reported only secreted human proteins since the medium for
growing human lymphocytes in cultures contained fetal bovine serum. The data indicated
that human lymphocytes exposed to low dose radiation secreted a subset of proteins capable
of altering the consequences of subsequent high dose irradiation. Hence, these proteins may
act as a molecular switch that regulates the protection against damage induced by
succeeding high-dose irradiation. This study is novel in that the samples used for proteomics
and determining, as asserted, the biological evidence for AR (a decrease in MN frequency in
cultures given priming low dose radiation) were obtained from the same culture of primary
human cells, not that of human cell-lines. The results also demonstrated that the MS-based
proteomic approach used in this study is highly sensitive not only in the identification of
secreted proteins potentially involved in the radiation-induced AR but also in the
determination of their abundances in the human lymphocyte system. Previously, a similar
proteomic approach was used to characterize secreted proteins after an in vitro -y-irradiation
(0.1 Gy) of human mammary epithelial cell lines, in which significant alterations (related to
a sham-control exposed group) in the abundance of proteins were undetected (Springer et al.
2005). Differences in cell types (human mammary epithelial cells vs. human lymphocytes),
radiation dose (0.1 Gy vs. 0.05 Gy y-irradiation), and experimental design (single dose of
low dose -y-irradiation vs. priming low dose prior to high dose y-irradiation) used in that
study may contribute to obtaining dissimilar results from this study. Of note, although the
protective effects of low dose radiation against the damage induced by subsequent exposure
to high dose radiation have been shown in human lymphocytes or human skin fibroblasts,
such a phenomenon in human mammary epithelial cells has yet to be reported. Further,
proteomics is a relatively new technique and still under development. Different instruments
and software applied often generate dissimilar results. It has previously been observed that
the LTQ (Linear Trap Quadrupole, linear ion trap) mass spectrometer (used in this study)
has several advantages in protein identification over the LCQ (Liquid Chromatography
Quadrupole, 3D ion trap) mass spectrometer used in a study conducted by another group of
investigators (Springer et al. 2005). The advantages of LTQ over LCQ include: (a) increased
ion-trapping efficiency, and (b) quicker ion-ejection rate, resulting in greater than five-fold
more protein identifications, better identification of low-abundance proteins, and higher
confidence protein identifications (Blackler et al. 2006).
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Based upon biological function, the unique 17 proteins found only in the media with
adaptive environment (Table 4a) were classified into six groups. These include proteins
involved in: (1) activation of anti-oxidant defense system (35%), (2) cell-cycle control
(29%), (3) immune response (18%), (4) DNA repair (6%), (5) oxidation reduction (6%), and
(6) cytoskeleton (6%). The potential involvement of the first five groups of proteins in AR
has been suggested (Luckey 1982; James et al. 1990; Ikushima et al. 1996; Matsubara et al.
2000; Wang and Cai 2000; Miura 2004; Scott 2004; Cramers et al. 2005; Feinendegen 2005;
de Toledo et al. 2006; Otsuka et al. 2006; Bauer 2007; Fan et al. 2007; Hafer et al. 2007; Liu
et al. 2007; Portess et al. 2007). This study is the first to identify the contribution of
cytoskeleton protein, namely myosin-10, to what the authors argue is radiation-induced AR.
It is known that cellular myosin is a microtubule binding protein and that it has a crucial role
not only in spindle-fiber assembly during cell division for proper cytokinesis but also in
maintaining cell shape and movement for homeostasis of the cell/tissue (Wu et al. 1998;
Weber et al. 2004). Currently, the exact molecular function of myosin-10 contributing to
what is believed to be radiation-induced AR remains unclear. However, it has been
suggested that microtubules may mediate the AR to the low phosphate of Na/Pi (Hansch et
al. 1993; Lottscher et al. 1997). Hence, this finding of myosin abundance in media from the
adaptive environment warrants further investigation on the involvement of cytoskeleton in
this phenomenon.

It is clear that the majority of proteins observed in this phenomenon (which may be
radiation-induced AR) found in the cell culture system used in this study were those capable
of activating the antioxidant defense system. Among the unique 17 proteins found only in
media with adaptive environment (Table 4a), secreted clusterin has previously been
suggested to play an important role in radiation-induced AR both in human skin cells in
culture and in mouse bone marrow cells in vivo (Klokov et al. 2004). Consequently, these
findings presented information on a new subset of secreted proteins that may be associated
with radiation-induced AR. Protective effects of these proteins have been reported in other
cell systems. For examples, neuroprotective effects of afamin (Vitamin E-binding protein)
have previously been found (Heise et al. 2002), antioxidative activity of ApoE has been
reported in the brain (Ramassamy et al. 2001), and enhanced kininogen synthesis has a
protective role for the cardiovascular system (Chao et al. 1996). The results also showed that
a specific subset of secreted proteins (involved in activation of the antioxidant defense
system, or immune response, or anti-apoptosis) was higher in abundance in the medium with
an AR environment than that without (Table 3a). Of note, protective effects of gelsolin and
Vitamin D-binding protein after irradiation have previously been suggested in a study using
a mouse model (Rithidech et al. 2009). In that study, a striking depletion of these two
proteins was found in plasma samples collected at 3 and 7 d after exposure of mice to a
single dose of 3 Gy of 137Cs v rays, as compared to those in plasma samples of the
corresponding sham controls. Gelsolin and Vitamin D-binding protein are known to be
responsible for removal of actin (i.e., actin scavenging system) that is released from dying
cells to prevent cell death (Dahl 2005; Bucki et al. 2008). Hence, prolonged depletion of
gelsolin and Vitamin D-binding protein may ultimately lead to cell death (Osborn et al.
2008). Taken together, the abundance of gelsolin and Vitamin D-binding protein appears to
be associated with cell survival.

In contrast, the majority of proteins found in medium without AR was a specific subset of
stress and inflammatory proteins (Table 4b). The finding of a protein involved in the
inhibition of Ca**-influx (stromal interaction molecule-2 protein) only in the medium
without an AR pretreatment suggests that a balance in Ca++-concentration is important in
cell protection. A transient increase in Ca++-influx has been linked to what others have
speculated to be AR induction (Mattson 2008). However, prolonged accumulation of Ca+ +
can cause cell damage (Lyng et al. 2006). The abundance of another subset of stress and
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inflammatory proteins was higher in medium without AR (Table 3b), although they were
detected in media from both groups. High levels of some of these proteins (e.g.,
Apolipoprotein A-11 precursor, Beta-2-glycoprotein, and Fetuin A) were previously detected
in plasma of 3-Gy -y-irradiated mice (Rithidech 2009). Although further validation is
required, these findings suggest that high expression levels of a specific subset of stress and
inflammatory proteins may be indicative of exposure to high dose radiation.

It is, however, important to emphasize that proteomics is a relatively new and challenging
technique that engenders as many questions as it answers. Fundamentally, researchers may
be identifying the presence of proteins in different environments, but it is not certain what
the function of those proteins actually is at this point in time. Moreover, the identification of
the proteins really depends on the accuracy of the software involved. For these reasons, the
authors validated identification using PeptideProphet (Keller et al. 2002) and ProteinProphet
(Nesvizhskii et al. 2003) in the Trans-Proteomic Pipeline (TPP, v. 3.3.0, http://
tools.proteomecenter.org/software.php), the two methods widely used worldwide in
proteomics. It is recognized that the results from this study were derived from two human
subjects (with two replications per subject for each experimental group) and that a false
negative result may occur with this small sample size. However, the true positive results are
still reliable (Eng 2003). As indicated in the results section, the protective effects of a
priming low dose radiation against cytogenetic damage induced by a subsequent high dose
irradiation were detected in lymphocytes from both subjects included in this study. Hence,
the true-positive result was used to obtain the conclusions, making the outcome of this study
trustworthy. In the future, it is likely that more new subsets of proteins potentially associated
with the protection effects of low dose radiation will be discovered when a larger sample
size and newly improved software for protein identification are applied.

Conclusion

The data reported here demonstrated that when using a proteomic approach with the LC-
MS/MS system, the global expression profiles of secreted proteins strongly supported the
induction of AR by low dose radiation given to human lymphocytes (obtained from freshly
drawn blood) before subsequent exposure to high dose radiation. The data also suggested
that a specific subset of proteins (with defense mechanisms) was secreted by 0.03-Gy
irradiated lymphocytes within 4 h and that such proteins altered cell response to injury
induced by succeeding high dose irradiation. These data indicated that the majority of
secreted proteins found in the medium from cultures without an adaptive response are those
frequently associated with stress and inflammatory response. It is recognized that the level
of background radiation is much lower than the priming low dose used in this study and that
exposure to low dose background radiation is chronic. The authors intend to use the findings
obtained from this study as the starting point for future investigation on the potential
mechanisms associated with the beneficial effects of low dose background radiation or those
encountered in daily life such as medical diagnosis or airport safety. Hence, to better mimic
human exposure to low dose radiation in daily life and to improve the understanding of
mechanisms for protection mediated by the possible radiation-induced AR, further
investigation should be conducted to determine the effects of dose series of the priming dose
(as a single or a repeated application, or chronic or fractionated exposure), dose rate series of
the priming dose, and time series (the interval between the priming and the challenging
doses) both in vitro and in vivo.
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