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Visfatin induces cholesterol accumulation in macrophages
through up-regulation of scavenger receptor-A and CD36
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Abstract As a new potential inflammatory mediator,
visfatin plays an important role in inflammation and athero-
sclerosis. The formation of macrophage-derived foam cells
occurs at the early stage of atherosclerosis and underlies the
visible fatty streak. Recent studies have indicated that
visfatin may be associated with the development of foam
cells, but its exact effect and molecular mechanism remain
unknown. This study aims to study the effect of visfatin on
foamy cell formation and its underlying molecular mecha-
nism. Visfatin levels were determined in apolipoprotein E
(ApoE) knockout (KO) mice on a western diet for 16 weeks.
Effects of visfatin in cholesterol accumulation were studied
both in vivo and in vitro. The levels of scavenger receptors
located in macrophage surface were measured in RAW264.7
cells after treatment with visfatin. Visfatin levels were much
higher in ApoE KO mice than that in the control mice.
Meanwhile, oxidized low-density lipoprotein induces both

visfatin release from RAW264.7 cells and its cellular levels
within 24 h. Visfatin promotes lipid accumulation mainly
through excessive cholesterol uptake not only in RAW264.7
cells but also in peritoneal macrophages isolated from ApoE
KO mice. Furthermore, visfatin induces the activation of
scavenger receptors (SR)-A and cluster of differentiation
(CD)36, but not that of SR-BI, ATP-binding cassette trans-
porter (ABC)A1, or ABCG1 in RAW264.7 cells. Both tran-
scriptional and posttranscriptional regulation may work in
concert to mediate the expression of SR-A and CD36 in
visfatin-treated cells. Visfatin induces cholesterol accumu-
lation in macrophages and accelerates the process of athero-
sclerosis mainly through modulating the expression of SR-A
and CD36.
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Introduction

Atherosclerosis, the most common causes of death from
coronary artery disease and cerebrovascular disease in de-
veloped countries, is characterized by chronic inflammation
and redundant cholesterol accumulation within the artery
wall, especially in the coronary artery and aorta (Glass and
Witztum 2001; Lusis 2000). The fatty streak is the earliest
visible atherosclerotic lesion and plays a key role in the
development of atherosclerosis (Berliner and Heinecke
1996). The atherosclerotic plaque progression, rupture, and
thrombosis always lead to acute coronary syndrome and
stoke (Lusis 2000; Ross 1999; Kleemann et al. 2008). The
functional disorder of arterial intima induced by kinds of
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impaired factors, following the migration and differentiation
of monocytes here, is a crucial step in the initiation of
atherosclerosis (Lusis 2000; Wu et al. 1992; Castagna et
al. 2012). The monocyte-derived macrophages swallow
unwanted self-modified lipoprotein via scavenger receptors
(SRs) located on its surface resulting in foamy cell forma-
tion, which underlies the visible fatty streak (Kleemann et
al. 2008; Li and Glass 2002). Cholesterol accumulation in
macrophage-derived foam cells is due to the broken balance
between uptake and reverse transport of cholesterol, which
is mainly because of uncontrolled lipid uptake and reduced
cholesterol efflux (Kleemann et al. 2008; Collot-Teixeira et
al. 2007; Cheng et al. 2011). There are several classes of
SRs on macrophage membrane, in which class A (SR-A)
and B (SR-B) attract more attention. SR-A and cluster of
differentiation (CD)36 are mainly responsible for the
uptake of oxidized low-density lipoprotein (ox-LDL)
(Collot-Teixeira et al. 2007; Kunjathoor et al. 2002),
while SR-B type I (SR-BI) mediates reverse cholesterol
transport (Ji et al. 2011). Meanwhile, both ATP-binding
cassette transporter A1 and G1 (ABCA1 and ABCG1)
participate in the process of efflux of intracellular cho-
lesterol to high-density lipoprotein (HDL) (Cheng et al.
2011; Chen et al. 2011). Thus, the formation of foam
cells is predominantly regulated by these SRs and re-
verse cholesterol transporters (RCTs). Recently, a grow-
ing body of evidences has shown that some kinds of
adipokine, such as adiponectin, leptin, and vaspin, may
affect cholesterol accumulation in macrophages and,
thus, accelerate or retard the process of atherosclerosis
through modulation of SRs or RCTs (Chen et al. 2010;
Spiroglou et al. 2010; Kopff and Jegier 2005; Kjerrulf et
al. 2006).

Visfatin (also known as pre-B cell-enhancing factor or
PBEF) is an adipokine of which early studies have mainly
focused on the metabolic-associated diseases (e.g., obesity
and diabetes) (Paschou et al. 2010; De Luis et al. 2008).
With the discovery of pro-inflammatory role of visfatin, its
potential effect in inflammation has gradually attracted
much attention, especially in atherosclerosis, which is close-
ly related with both lipid metabolism and inflammation (Yan
et al. 2010; Liu et al. 2009). One of the most related studies
has reported that visfatin should be considered as an inflam-
matory mediator, localized to foam cell macrophages within
unstable atherosclerotic lesions, which potentially plays a
role in plaque destabilization (Dahl et al. 2007). Although it
has been reported that visfatin is participated in the patho-
genesis of atherosclerosis and may be involved in the
early formation of foam cells, its exact effect is largely
unknown. There are still no reports whether visfatin could
regulate SRs or RCTs.

The present study aimed to investigate the expression of
visfatin in macrophage foam cells in vivo and in vitro. We

also studied the impact of visfatin on foamy cell formation
and further explored its molecular mechanism.

Materials and methods

Reagents

The reagents used were human-recombined visfatin
(Peprotech, USA), anti-CD36, SR-BI, SR-A, ABCG1
(Santa Cruz, USA), anti-visfatin, ABCA1 (Abcam,
USA), secondary antibody (Cell Signaling, USA), visfatin
ELISA Kit (Raybiotech, USA), Oil red O (ORO; Sigma,
USA), fetal bovine serum (FBS), Dulbecco’s modified
Eagle’s medium (DMEM), penicillin, streptomycin (Gibco,
USA), ox-LDL (Yiyuan Biotech, China), Amplex Red
Cholesterol Assay Kit, BCA Protein Assay Kit, total choles-
terol (TC), triglycerides (TG), high density lipoprotein cho-
lesterol (HDL-C), and low-density lipoprotein cholesterol
(LDL-C) Reagent Kits (Invitrogen, USA), SYBR Green
qPCR Supermix (Takara, Japan), small interfering RNA
(siRNA) against mouse visfatin, and Transfection Reagent
(Ambion, USA).

Animal experiments

Animals Six-week-old male apolipoprotein E (ApoE)
knockout (KO) mice and C57BL/6 J mice from Vital
River, which were introduced from Jackson Laboratory,
were housed at 22±2 °C, 55±5 % relative humidity, with
a 12-h light/dark cycle. ApoE KO mice were fed with a
western diet (21 % fat and 0.15 % cholesterol) for 16 weeks
to establish atherosclerosis model, while C57BL/6 J mice on
a common diet as a control group. All experimental mice
were allowed access to food and water ad libitum and
weighed every 4 weeks.

Serum lipid measurement The mice were anesthetized by
intraperitoneal injection with 10 % chloral hydrate
(350 mg/kg), following eyeball extirpation to collect their
blood after a 16-week experiment. Serum was prepared by a
conventional method and subjected to measure the concen-
trations of TC, TG, HDL-C, and LDL-C by enzymatic
procedures.

The protein levels of visfatin in mice To determine the
circulating levels of visfatin, mice plasma was prepared and
then analyzed using an enzyme-linked immunosorbent as-
say (ELISA) method according to the operating instructions
of visfatin ELISA kit. Meanwhile, the proteins of mice aorta
were isolated and measured using Western blotting methods.

Assessment of atherosclerotic lesion area After feeding
on a fat-rich diet for 16 weeks, all mice were sacrificed, and
hearts were perfused with iced phosphate-buffered saline
(PBS) for 5 min. The aortic sinus was embedded and then
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made into serial cryosections of 7-μm thickness. The ath-
erosclerotic lesions at aortic sinus were stained with ORO as
previously described (Van Eck et al. 2000). The mean lesion
area for each mouse was calculated from four sections.
Whole aortic atherosclerotic lesions were determined by en
face preparation followed by ORO staining as previously
described (Kamari et al. 2011).

All animal experiments were carried out in accordance
with the international guidelines and approved by the Ethics
Committee of Southern Medical University.

Cell culture

To check foamy cell formation in vivo, peritoneal macro-
phages were isolated from ApoE KO mice after a 4-week
high-fat diet as previously described (Takahashi et al. 2003).
Briefly, the mice were injected intraperitoneally with 3 %
thioglycollate, and peritoneal exudates were collected after
4 days. Macrophages were cultured in DMEM containing
10 % FBS. The nonadherent cells were removed after incuba-
tion for 3 h at 37 °C. The adherent cells were collected forORO
staining and cholesterol measurement. Murine macrophage
RAW264.7 cells were cultured in DMEM supplemented with
10 % FBS, 1 % penicillin, and streptomycin.

Transfection of small interfering RNA

The sequences of siRNA against mouse visfatin were as
follows: siRNA forward 5 ′-GGCACCACUAAUC
AUCAGAtt-3 ′ and reverse5 ′-UCUGAUGAUUAG
UGGUGCCtc-3′. Transfections of siRNA were performed
as described for manual of transfection reagent. RAW264.7
cells were incubated for 24 h with siRNA and transfection
reagent. Efficiency of visfatin silencing was analyzed at
protein levels 2 days after transfection of siRNA.

ORO staining

Cells were washed by PBS and then fixed with 4 % para-
formaldehyde for 15 min. After the removal of paraformal-
dehyde, cells were pretreated with 60 % isopropanol for
several seconds and then stained with 0.3 % ORO for
10 min to visualize cellular lipid accumulation. Hematoxylin
was used as counterstaining. Staining was recorded on a
Nikon microscope equipped with a digital camera. The den-
sity of lipid content was evaluated by alcohol extraction after
ORO staining. The absorbance at 540 nm was determined
with a microplate reader.

Cholesterol measurement

RAW264.7 cells were treated with various concentrations of
visfatin for 24 h and then washed twice with PBS. The

cellular TC was extracted by hexane/isopropanol. After
centrifuging at 12,000×g, the supernatants were captured
and then dried under nitrogen flush and redissolved in
isopropanol. The content of TC was determined with cho-
lesterol assay kit. The cellular total protein was measured by
BCA assay kit.

Western blotting

The mice aorta or cultured cells were lysed in a lysis
buffer containing 50 mM Tris (pH7.4), 150 mM NaCl,
1 % NP-40, and 1 mM PMSF for 30 min on ice. After
centrifugation at 12,000×g for 15 min at 4 °C, the super-
natants were collected as total proteins in aorta or cells.
The protein concentrations were also determined with a
BCA assay kit. Aliquots (50 μg) of protein samples were
separated on 10 % SDS-PAGE and electro-transferred to
polyvinylidene fluoride membranes (PVDF, Millipore,
Bedford, MA). The PVDF membranes were incubated
with primary antibodies (Abs) overnight at 4 °C after
being blocked with 5 % nonfat milk and then subjected
to secondary Abs for 1~2 h at 37 °C. The protein bands
were detected with an enhanced chemiluminescence sys-
tem (ECL, CST) on Kodak 2000MM. Densitometric anal-
ysis was conducted by Molecular Imaging Software
Version 4.0. Actin proteins were detected as a control.

Quantitative real-time PCR

Total cellular RNAwas isolated from RAW264.7 cells using
TRIzol reagent and converted into cDNAs by Thermoscript
reverse transcriptase PCR system. cDNAs were quantified
using SYBR Green qPCR Supermix supplemented with
specific primers for mouse SR-A (5′-TGGTCCACCT
GGTGCTCC-3 ′ forward and 5 ′-ACCTCCAGGGA
AGCCAAT TT-3′ reverse), CD36 (5′-CAGTTGGAG
ACCTGCTTATCC-3′ forward and 5′-GCGTCCTGGGT
TACATTTTC-3′ reverse) and mouse β-actin (5′-TTGTC
CCTGTATGCCTCTGG-3 ′ forward and 5 ′-GAGGT
CTTTACGGATGTCAACG-3′ reverse) on MX3005P quan-
titative real-time PCR (qRT-PCR) system. Expression of
target genes was measured in triplicate and then normalized
to the level of the housekeeping gene β-actin. All the data
were analyzed by MXPro 4.01 software.

Statistical analysis

All values are reported as mean ± SEM values and analyzed
with SPSS 13.0 version. Student t test was used to compare
two independent groups, while one-way analysis of variance
followed by student Newman–Keuls q post hoc analyses for
multiple groups. Differences were considered significant at
P<0.05.
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Results

Expression of visfatin in plasma and atherosclerotic lesions
in ApoE KO mice

As we know, ApoE KO mouse is a well-established animal
model to study atherosclerosis. The mice placed on a west-
ern diet gradually develop all the phases of atherosclerotic
lesions from fatty streak to atheromatous plaque, which
simulates the atherogenesis of humans under the nature state
(Plump et al. 1992; Nakashima et al. 1994). After fed with
high-fat diet for 16 weeks, the levels of serum lipids in
ApoE KO mice, such as TC, TG, HDL-C, and LDL-C, were
much higher than that in C57BL/6 J mice (Fig. 1a), while
the body weight was not significantly different in these two
groups (Fig. 1b). To evaluate the atherosclerotic lesion,
whole aorta and aortic sinus were stained with ORO
simultaneously and then quantitative analyzed by Image-
Pro plus 6.0. The atherosclerotic plaques were much

noticeable in both whole aorta and aortic sinus in ApoE
KO mice, while there was no obvious lesion in control
group (Fig. 1c, d).

To analyze visfatin expression in mouse atherosclerosis
model, we determined its level in both plasma and athero-
sclerotic lesions, respectively, by ELISA and Western blot-
ting assay. In Fig. 2, we found that both plasma visfatin level
and visfatin protein in aorta in the model group were much
higher than that in control group. The protein level of
visfatin in ApoE KO mice was almost 2.31 times that in
C57BL/6 J mice (Fig. 2c). These results indicate that
visfatin may play a role in the pathogenesis of atherosclero-
sis, which is also consistent with the previous research (Dahl
et al. 2007).

Effect of ox-LDL on visfatin expression in RAW264.7 cells

It is well known that modified LDL is pro-atherogenic
in the development of atherosclerosis, particularly the

Fig. 1 The serum concentrations of cholesterol and atherosclerotic
plaques in ApoE KO mice. a Serum cholesterol including total cho-
lesterol, triglycerides, HDL-C, and LDL-C were determined in both
ApoE KO mice with a western diet (M, model) and C57BL/6 J mice
with a common diet (C, control) for 16 weeks (n=6). ***P<0.0001 vs
control group. b Body weight of mice was measured at the beginning
on a western diet (W0) and every 4 weeks (W4,W8,W12) till the whole
experiment period (W16). The results are the average of eight

measurements. P>0.05 vs control group. c Atherosclerotic plaques in
whole aorta both in ApoE KO mice and C57BL/6 J mice after a 16-
week experiment. Whole aorta was stained with 0.5 % ORO for 5 min
after washing with iced saline. Then the aorta was exposed to 60 %
isopropanol for another 5 min and photographed by a digital camera
after staining. d Atherosclerotic lesions in mice aorta sinus after a 16-
week experiment. Cryosections of aortic sinus was stained with ORO.
Representative photographs are shown. Magnification×200
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important role of ox-LDL in cytokine secretion (Stemme
et al. 1995). In this study, we examined for the first
time whether ox-LDL could regulate visfatin expression
in RAW264.7 cells. Mouse RAW264.7 cells are a
macrophage-like cell line and also can be induced to
form foam cells by ox-LDL (Li et al. 2009). Moreover,
this cell line is more feasible for mechanistic studies
compared with primary macrophages. We, thus, used
RAW264.7 cells to form foam cells for further studies
here. After pretreatment with ox-LDL (25, 50, or
100 μg/ml) for 24 h, the cell supernatant and protein
were subjected to ELISA and Western blotting, respec-
tively. In Fig. 3a, we saw that ox-LDL could dose-
dependently increase visfatin release from cellular into
supernatant culture. Furthermore, Western blotting of the
protein samples also revealed a significant increase in
visfatin expression by ox-LDL in a dose-dependent
manner (Fig. 3b, c).

Visfatin induces cholesterol accumulation in macrophages
both in vivo and in vitro

Though the study has indicated that visfatin may play a role
in plaque destabilization, whether visfatin involved in the
early foamy cell formation is largely unknown. As we have
showed above, visfatin expression was markedly enhanced
both in ApoE KO mice and ox-LDL-treated RAW264.7
cells. The molecular mechanism of visfatin in the formation
of foam cells remains elusive. In our study, we found that
visfatin could induce cholesterol accumulation in RAW264.7
cells (Fig. 4a, b). To evaluate the effect of visfatin in vivo
foamy cells, six ApoE KO mice were treated with visfatin
(15 μgday−1mouse−1 sc for 8 days) after feeding with high-fat
diet for 4 weeks. Notably, in accordance with excessive cho-
lesterol accumulation induced by visfatin in RAW264.7 cells,
we found that pretreatment with visfatin showed more lipids
loaded in peritoneal macrophages than that in mice without

Fig. 2 Visfatin expression is markedly increased in ApoE KO mice. a
Plasma level of visfatin in ApoE KOmice with a western diet (M, model)
and C57BL/6 J mice with a common diet (C, control) for 16 weeks was
determined by ELISA assay (n=6). *P<0.05 vs control group. b The

protein expression of visfatin in mice aorta was determined by Western
blot analysis. c Protein bands of visfatin and actin as a control were
quantified by Molecular Imaging Software (n=3). *P<0.05 vs control
group

Fig. 3 ox-LDL could dose-dependently increase visfatin expression in
RAW264.7 cell line. RAW264.7 cells were exposed to different con-
centrations of ox-LDL (25, 50, or 100 μg/ml) for 24 h. a The level of
visfatin secretion into the culture medium was measured by ELISA

assay (n=3), P<0.0001 vs untreated group. b and c Western blot
analysis of visfatin expression in RAW264.7 cells incubated with ox-
LDL. n=3, ***P<0.0001 vs untreated group
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visfatin treatment (Fig. 4c). Moreover, the content of TC in
visfatin-treated mice was higher than that in the control mice,
which is consistent with the result in RAW264.7 cells
(Fig. 4d). All of these results suggest that visfatin promotes
the formation of foam cells both in vivo and in vitro,
which is mainly due to increasing cholesterol uptake in
macrophages.

Cholesterol uptake was reduced in RAW264.7 cells
after visfatin downregulation by RNAi

To study whether cholesterol accumulation in the treatment
of ox-LDL is visfatin-dependent, we downregulated visfatin
expression in RAW264.7 cells using RNA interference.
After pretreatment with ox-LDL (50 μg/ml) for 24 h, we
found that RAW264.7 cells with downregulated visfatin
expression exhibited significantly lower levels of cholester-
ol uptake (Fig. 5a–c). The efficiency of silencing of visfatin
gene expression by RNAi was evaluated at the protein level

by Western blot analysis. Levels of visfatin protein was
significantly downregulated after RNAi treatment compared
to cells transfected with a nonsense sequence as negative
control (Fig. 5d, e). These results indicate that cholesterol
uptake of RAW264.7 cells in ox-LDL treatment was largely
regulated by the effects of visfatin.

Visfatin induces lipid uptake by activation of SR-A
and CD36

To further clarify the underlying mechanism of visfatin in
promoting foamy cell formation, the macrophages SR and
RCT were evaluated after treatment with visfatin. As we all
know, SR-A, CD36, SR-BI, ABCA1, and ABCG1 have
been established to play crucial keys in cholesterol homeo-
stasis during formation of foam cells (Kunjathoor et al.
2002; Van et al. 2004; Wang et al. 2001; Out et al. 2006 ).
As shown in Fig. 5a, visfatin could induce the activation of
SR-A and CD36, which are responsible for the lipid uptake

Fig. 4 Visfatin induces lipid accumulation in macrophages both in
vivo and in vitro. a and b RAW264.7 cells were incubated with
different doses of visfatin (50, 100, or 200 ng/ml) for 24 h. After
fixation by 4 % paraformaldehyde, cells were stained with 0.5 %
ORO to detect lipid accumulation. Cellular nuclei were stained with
hematoxylin. n=6, ***P<0.0001 vs untreated group. Magnification×
400. c Visfatin accelerates lipid accumulation in peritoneal macro-
phages in visfatin-treated mice. After feeding with high-fat diet for

4 weeks, ApoE KO mice were treated with visfatin at the concentration
of 15 μgday−1 (V) or not (C) for another 8 days, and then peritoneal
macrophages were collected to detect lipid accumulation by staining
with ORO (n=6). d Cellular cholesterol content was determined by an
enzymatic method in RAW264.7 cells and peritoneal macrophages.
The results are the average of six mice. *P<0.05, ***P<0.0001 vs
untreated group

648 F. Zhou et al.



by macrophages. On the other hand, visfatin showed no
effect in expression of SR-BI, ABCA1, or ABCG1, which
mainly maintain the course of reverse cholesterol transport
(Fig. 6a, b). Furthermore, to better understand the effect of
visfatin on the expression of SR-A and CD36, RAW264.7
cells were exposed to visfatin (100 ng/ml) for 3, 6, 12, and
24 h. In accordance with the promotion in protein level, we
found that visfatin also markedly increased mRNA levels of
SR-A and CD36, reaching a maximum at 6 and 12 h,
respectively (Fig. 6c). These data indicate that visfatin ac-
celerates foamy cell formation through modulating expres-
sion of SR-A and CD36.

Discussion

Visfatin (also known as PBEF) was first reported to be
secreted by activated lymphocytes in bone marrow stromal
cells (Samal et al. 1994). Over the past several years, a series
of evidence has indicated that it is also ubiquitously present
in most other tissues, such as adipose tissue, skeletal muscle,
spleen, and liver (Sethi and Vidal-Puig 2005). Visfatin could
stimulate the release of cytokines and is induced by

inflammatory stimuli such as TNF-α, LPS, and IL-6 (Jia et
al. 2004; Nowell et al. 2006). As a multifunctional
adipokine, visfatin has also been implicated in the patho-
genesis of obesity, diabetes mellitus, hyperlipidemia, and
such atherosclerosis-related diseases. Due to the close asso-
ciation between visfatin and inflammation, Dahl and his
colleagues studied the effect of visfatin in macrophages of
humans with unstable carotid and coronary atherosclerosis.
They have identified that visfatin is a potential inflammatory
mediator in plaque destabilization. Another study has fur-
ther demonstrated that the regulation of visfatin in macro-
phages is related to pro-atherogenic stimuli, including
hypoxia, TNF-α and ox-LDL (Dahl et al. 2011). The pro-
inflammatory effect of visfatin in macrophages has been
well established. However, the effect of visfatin and its
possible mechanism involved in cholesterol metabolism of
macrophage-derived foam cells remained elusive.

In the present study, we revealed the novel molecular
mechanisms underlying the pro-atherogenic action of
visfatin in foamy cell formation during development of
atherosclerosis. Firstly, we found that plasma visfatin con-
centrations were significantly increased in atherosclerotic
mice with the elevation of serum lipid level (Figs. 1 and 2).

Fig. 5 Cholesterol uptake was reduced in RAW264.7 cells after
visfatin downregulation by RNAi. Cells were divided into four groups
as follows: control group (C), ox-LDL group (O), transfection of
siRNA group (T), and negative control group (NC). Cells in the latter
three groups were pretreated with ox-LDL (50 μg/ml) for 24 h, then
were subjected to transfection or not. a and b Lipid accumulation in
RAW264.7 cells were analyzed by ORO staining after transfection of
siRNA. Hematoxylin was used as counterstaining. n=6, *P<0.05,

***P<0.0001 vs control group, #P<0.05 vs ox-LDL group. Magnifi-
cation×400. c Cellular cholesterol content was determined after
visfatin downregulation in RAW264.7 cells. ***P<0.0001 vs control
group, #P<0.05 vs ox-LDL group. d and e The efficiency of visfatin
silencing was analyzed 48 h after transfection of siRNA by Western
blotting. The actin was used as the quantitative standard. n=3, **P<
0.01 vs control group, #P<0.05 vs ox-LDL group
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This finding indicates that circulating levels of visfatin are
increased during hyperlipidemia state. Western blotting of
protein samples in mouse aorta also showed a similar in-
crease in visfatin expression, which is consistent with pre-
vious studies in patients with carotid atherosclerosis. In this
study, to our best knowledge, we demonstrate for the first
time that both circulating and protein levels of visfatin are
markedly promoted in atherosclerotic mice. Our finding
further implies that visfatin may play an important role in
the pathogenesis of atherosclerosis.

Accumulation of modified LDL such as ox-LDL in mac-
rophages is a key event in all stages of atherogenesis.
Previous studies have reported that cholesterol accumulation
in macrophages could be regulated by mediating expression
of SRs and RCTs or inflammatory responses by cytokine
induction (Glass and Witztum 2001; Berliner and Heinecke
1996). Here, we found that ox-LDL pretreatment increased
visfatin expression both in a supernatant culture and within
RAW264.7 cells in a dose-dependent manner (Fig. 3). This
finding is consistent with the previous report in THP-1 cells
(Dahl et al. 2007, 2011). On the basis of our findings in
vitro, such a pro-atherogenic factor could be a potent stim-
ulus for visfatin expression, potentially explaining its en-
hanced expression in plasma and atherosclerotic plaques. In
addition, to clarify the effect of visfatin on lipid metabolism
in macrophages, we determined the level of cellular choles-
terol induced by visfatin both in cultured cells and in mice
(Fig. 4). Lipid accumulation in RAW264.7 cells was induced
by visfatin in a dose-dependent manner. Furthermore, RNA

interference against visfatin significantly reduced the lipid
uptake of RAW264.7 cells (Fig. 5). Peritoneal macrophages
from ApoE KO mice treated with visfatin for 8 days were
more lipid-loaded than did that from the control mice.
Although some of our findings were rather modest, our data
may suggest that exogenous visfatin promotes accumulation
of unwanted self-lipids in macrophages and accelerates foamy
cell formation induced by ox-LDL and other pro-atherogenic
stimuli in vivo, further supporting a link between visfatin and
atherogenesis.

SR-modulated ox-LDL internalization and RCT-dependent
cholesterol efflux have been demonstrated to be crucial events
in the maintenance of intracellular cholesterol homeostasis of
macrophages (Kleemann et al. 2008; Cheng et al. 2011;
Kunjathoor et al. 2002; Ji et al. 2011). Therefore, we examined
the regulatory effect of visfatin on SRs and RCTs. Our data
show that visfatin induced a marked increase in SR-A and
CD36, but not SR-BI, ABCA1, and ABCG1 (Fig. 6). Here,
we may be the first to report that acceleration of cholesterol
accumulation by visfatin during formation of foam cell is
mainly associated with ox-LDL uptake. Both SR-A and
CD36 play a key role in the uptake of ox-LDL during the
development of atherosclerosis (Kunjathoor et al. 2002). It
was reported recently that antiatherogenic antioxidants could
ameliorate the formation of foam cells through transcriptional
regulation of SR-A (Tsai et al. 2010). In the current study, our
observations suggest that both transcriptional and posttran-
scriptional regulation may work in concert to mediate the
expression of SR-A and CD36 in visfatin-treated cells,

Fig. 6 Effects of visfatin on the expression of SR-A, CD36, SR-BI,
ABCA1, and ABCG1. a RAW264.7 cells were incubated with visfatin
(50, 100, or 200 ng/ml) for 24 h. Cell samples were then subjected to
Western blotting to detect the protein levels of SR-A, CD36, SR-BI,
ABCA1, ABCG1, and actin. b Protein bands of SR-A, CD36, SR-BI,
ABCA1, ABCG1, and actin as a control were analyzed by quantified

Software. Data are mean ± SEM from three independent experiments.
*P<0.05 vs untreated group. c Effects of visfatin on mRNA level of
SR-A and CD36. RAW264.7 cells were exposed to visfatin (100 ng/
ml) at different time points (0, 3, 6, 12, or 24 h). Total cellular RNA
was collected and then subjected to qRT-PCR to determine mRNA
level of SR-A and CD36 (n=3). *P<0.05 vs untreated group
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indicating that the pro-atherogenic action of visfatin is mainly
due to regulation of the expression of these two receptors.

Accumulating evidences have shown that some signaling
pathway may be implicated in the uptake of ox-LDL by SR-
A and CD36, including MAPK, PPAR, PI3K, and so on
(Rahaman et al. 2006; Xie et al. 2011; Li et al. 2009). CD36
was found to be mediated by Lyn and MEKK2 signaling
pathway that were activated by ox-LDL specifically in mac-
rophages. In view of the function of these two receptors, the
increase in their expression in visfatin-induced macrophages
likely contributes to elevating ox-LDL uptake and subse-
quently promoting the development of foam cells. Although
the current study has some limitations (e.g., some of the
findings were rather modest, we did not test visfatin inhib-
itor in all experiments), our findings may suggest that
visfatin promotes cholesterol accumulation in macrophages
and atherogenesis through modulating expression of SR-A
and CD36. The signaling pathway implicated in the activa-
tion of SR-A and CD36 induced by visfatin is under
investigation.

In summary, we propose new insights into the pro-
atherogenic effect of visfatin in promoting cholesterol accu-
mulation during the development of foam cells by up-
regulating the expression of SR-A and CD36 in macro-
phages. We are willing to provide some new information
for better understanding on the potential effect of visfatin in
accelerating foamy cell formation in atherosclerosis.
However, whether visfatin will eventually become a thera-
peutic target warrants further investigation.
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