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Abstract Butyric acid (BA) is a major extracellular
metabolite produced by anaerobic periodontopathic bac-
teria and is commonly deposited in the gingival tissue.
BA induces mitochondrial oxidative stress in vitro;
however, its effects in vivo were never elucidated.
Here, we determined the effects of butyric acid retention
in the gingival tissues on oxidative stress induction in
the jugular blood mitochondria. We established that BA
injected in the rat gingival tissue has prolonged reten-
tion in gingival tissues. Blood taken at 0, 60, and
180 min after BA injection was used for further analy-
sis. We isolated blood mitochondria, verified its purity,
and measured hydrogen peroxide (H2O2), heme, super-
oxide (SOD), and catalase (CAT) to determine BA
effects. We found that H2O2, heme, SOD, and CAT
levels all increased after BA injection. This would in-
sinuate that mitochondrial oxidative stress was induced
ascribable to BA.
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Introduction

Butyric acid (BA) is one of the short-chain fatty acids
produced by anaerobic bacteria and is present in the normal
flora of gut, mouth, and vagina produced through either the
butyrate kinase or butyryl-CoA: acetate CoA-transferase
pathways (Louis et al. 2010). BA is an extracellular metab-
olite that helps the intestine maintain colonic health, serves
as an energy source for colorectal cells, and positively
influence immune responses (Hu et al. 2011; Maslowski et
al. 2009; Wong et al. 2006). However, high BA concentra-
tions have been reported to be involved in reactivation of
latent viral infection (Imai et al. 2012, 2009) and induction
of periodontal pathogenesis (Chen and Zychlinsky 1994;
Kurita-Ochiai et al. 2003; Kurita-Ochiai and Ochiai 2010).

Periodontopathic bacterial pathogens, such as
Porphyromonas gingivalis and Fusobacterium nucleatum,
play a significant role in producing a variety of virulence
factors, like BA, which in high amounts lead to the devel-
opment of periodontal diseases (Socransky and Haffajee
1991; Soder et al. 1993; Teng et al. 2002). Previous pub-
lished works related to our group have shown that BA
induces apoptosis in inflamed fibroblasts (Kurita-Ochiai et
al. 2008), Jurkat T cells (Kurita-Ochiai et al. 1997; Kurita-
Ochiai and Ochiai 2010), human peripheral blood mononu-
clear cells (Kurita-Ochiai et al. 1999), WEHI 231 and RAJI
B-lymphoma cells (Kurita-Ochiai et al. 1998), splenic T
cells and B cells (Kurita-Ochiai et al. 1997, 1998), and
murine thymocytes (Kurita-Ochiai et al. 1997).

Apoptosis occurs concurrently with reactive oxygen spe-
cies (ROS) generation and mainly involves the mitochon-
dria (Chandra et al. 2000). The mitochondria is the site of
heme biosynthesis (Ponka 1997) and its product, heme,
serves as a prosthetic group in many essential enzymes
involved in electron transport, detoxification, antioxidant
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activity, nitrogen monoxide synthesis, oxygen transport, and
apoptosis (Ajioka et al. 2006). In addition, the mitochondria
play an important role in redox signaling (Daiber 2010) and
utilize several mechanisms to amplify ROS formation need-
ed for ROS-dependent signaling (Brandes 2005;
MacMillan-Crow et al. 1998; Radi et al. 2002). It is impor-
tant, however, to maintain ROS homeostasis in order to
avoid excessive ROS accumulation which would eventually
lead to oxidative stress and, subsequently, apoptosis.

ROS homeostasis is established when there is a balance
between ROS amounts and the antioxidant activity (Mittler
et al. 2004; Takada et al. 2002). If there is a disruption in
ROS homeostasis, then oxidative stress is achieved.
Oxidative stress represents an imbalance between excessive
ROS and low antioxidant activity (Arora et al. 2002;
Scandalios 2002; Torres et al. 2006). Previous works done
in vitro have shown that BA-induced apoptosis is ascribable
to mitochondrial oxidative stress induction (Kurita-Ochiai et
al. 2003; Kurita-Ochiai and Ochiai 2010), however, BA
effects in vivo were never fully elucidated in blood
mitochondria.

Here, we showed that BA has prolonged retention in the
gingival tissues. Moreover, we found that BA induced an
increase in mitochondrial hydrogen peroxide (H2O2), heme,
superoxide dismutase (SOD), and catalase (CAT) levels
which we suspect would insinuate that BA causes oxidative
stress in the jugular blood mitochondria.

Results and discussion

BA has prolonged retention in the rat gingival tissue

To establish BA retention in the gingival tissues, we injected
BA into rat gingival tissues and collected blood from the
jugular in 30-min intervals for 180 min. Blood funnels and
exit the head and neck through the jugular vein which makes
this the ideal site for blood extraction. As seen in Fig. 1, BA
was detected in the isolated blood where BA concentrations
peak at 60 min after BA injection and gradually decreased
from 90 to 180 min after BA injection. We attributed this
observation to the gradual diffusion of BA into the blood
stream. Nevertheless, we would like to emphasize that even
though BA levels were gradually decreased, BA was still
detected 180 min after BA injection which would suggest that
BA has a longer retention time in the gingival tissues. This
would insinuate that high BA amounts could accumulate in
the gingival tissues (Kurita-Ochiai and Ochiai 2010;
Maslowski et al. 2009). Gingival tissues are composed of
stratified squamous epithelial cells which have keratinized
regions that exhibit low permeability (Sasaki et al. 2011;
Squier 1991). We suspect that due to the low permeability

found within the gingival tissues, this would consequentially
result into prolonged BA retention and, subsequently, allow
high BA levels to accumulate.

High BA levels have been correlated with diseases (Imai
et al. 2012; Imai et al. 2009; Margolis et al. 1988) and
apoptosis induction (Kurita-Ochiai and Ochiai 2010),
whereas, low BA levels have been correlated with colonic
health (Maslowski et al. 2009; Wong et al. 2006). BA levels
detected in this study were relatively low as compared to
those that are related to diseases (Imai et al. 2012, 2009;
Margolis et al. 1988), however, we hypothesize that cells
exposed to low BA levels but with prolonged exposure time
could still affect cellular function, in particular, mitochon-
drial function.

BA influences mitochondrial function by increasing
both mitochondrial H2O2 and heme amounts

To confirm BA effects on mitochondrial function, H2O2

amounts were measured. We used blood obtained from 0,
60, and 180 min after BA injection and isolated blood mito-
chondria. Purity of the mitochondria was confirmed using
Western blotting (Fig. 2a). We found that in mitochondrial
H2O2, the amounts gradually increased 60 and 180 min after
BA injection (Fig. 2b), and we correlated the gradual increase
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Fig. 1 Butyric acid has prolonged retention in rat gingival tissues.
Male Wistar rats (10 weeks old, Japan SLC, Shizuoka, Japan) were
housed in individual stainless steel cages with wire-mesh bottoms. The
cages were placed in a room under controlled temperature (23–25 °C),
relative humidity (40–60 %), and lighting (12 h). The rats had free
access to water and a semi-purified diet based on the AIN93G formu-
lation for an acclimation period of 7 days. They were handled in
accordance with the guidelines for animal studies of the Kyoto Institute
of Nutrition and Pathology. Six acclimated rats were implanted with
jugular cannulae under sodium pentobarbital anesthesia (40 mgkg−1

body weight). Lowest possible nonlethal butyric acid concentration
was determined based on the rat body weight. Ten microliters of 13C
n-butyrate solution (1 M) was injected in several batches into gingival
tissues. The jugular blood was collected at 0, 30, 60, 90, 120, 150, and
180 min after injection, and blood serum was analyzed using liquid
chromatography–mass spectrometry. Arrows indicated blood samples
used for further analysis
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in mitochondrial H2O2 amounts to BA. Moreover, this would
further imply that prolonged BA retention in the gingival
tissues could cause mitochondrial H2O2 buildup leading to
oxidative stress. Moreover, our results would imply that BA
effects in vitro and in vivo are consistent (Kurita-Ochiai and
Ochiai 2010).

ROS (like H2O2) are generated as either as cellular prod-
ucts or by-products (Liu et al. 2008; Valko et al. 2006). ROS is
commonly related to pathophysiological processes and has
long been proposed to function in cell signaling (Suzuki et
al. 1997; Valko et al. 2006; Zitomer and Lowry 1992). One
primary source of ROS is the mitochondria wherein several
mechanisms including oxidative damage (Radi et al. 2002),
manganese SOD inactivation (MacMillan-Crow et al. 1998),

and changes in mitochondrial membrane potential (Brandes
2005; Kurita-Ochiai and Ochiai 2010) signal ROS formation.
Interestingly, heme which is synthesized in the mitochondria
has also been associated with ROS formation.

Heme is a biomolecule that plays an essential role in
various biological reactions and interacts with various
apoproteins giving rise to functional heme-proteins
(Ponka 1999). However, free heme and heme-proteins
have been associated with ROS formation and, subse-
quently, toxicity (Balla et al. 2000; Hasan and Schafer
2008). This would suggest that heme concentration is
likewise affected by BA. To determine BA effects on
mitochondrial heme concentrations, total heme levels in
the blood mitochondria were measured. As seen in
Fig. 2c, we found that total heme levels increased at 60
and 180 min after BA injection in blood mitochondria.
This would imply that BA could affect mitochondrial
heme concentrations. We hypothesize that BA-associated
increase in mitochondrial H2O2 amounts is somehow as-
sociated to an increase in mitochondrial heme levels and,
similarly, may influence the mitochondria-related section
of the heme biosynthesis pathway. Further studies are
recommended to elucidate this observation.

BA similarly induces an increase in mitochondrial SOD
and CAT activities

An increase in mitochondrial H2O2 amounts would insinu-
ate that mitochondrial oxidative stress was attained.
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�Fig. 2 Butyric acid-induced increase in mitochondrial H2O2 amounts
is correlated to increased heme levels. a Isolated blood mitochondria
from 0, 60, and 180 min after butyric acid injection. QproteomeTM

Mitochondria Isolation Kit (Qiagen) was used to isolate blood mito-
chondria. Pierce® Detergent Removal Spin Columns (Thermo Scien-
tific) was used to purify samples from traces of detergents. Pierce®
Microplate BCA Protein Assay Kit-Reducing Agent Compatible Kit
(Thermo Scientific) was used to standardize the protein concentration
in all samples used. All kits were used according to manufacturer’s
recommendation. Anti-MTC02 (Novus Biologicals) is a mitochondria-
specific antibody used to verify the purity of the isolated blood mito-
chondria. Anti-HSP60 (StressMarq Biosciences Inc., Canada) is used
to detect cytoplasmic heat-shock protein 60 in the blood mitochondria
to further confirm the purity of the mitochondrial samples. Anti-
GAPDH (GeneTex) is used to detect the glyceraldehydes-3-phosphate
in the blood mitochondria to serve as control. b H2O2 amounts in blood
mitochondria samples. Red Hydrogen Peroxide Assay Kit (Enzo Life
Sciences) was used to measure mitochondrial H2O2 amounts according
to manufacturer’s recommendation. c Total heme levels in blood mi-
tochondria samples. QuantiChromTM Heme Assay Kit was used to
measure total mitochondrial heme levels (free heme and heme-pro-
teins) according to manufacturer’s recommendation. In all assays per-
formed, results shown are mean ± SE, n=5 replicates of six
independent samples. Statistical analyses were performed using Stu-
dent’s t test (**represents p value<0.01compared to normal)
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Consequentially, an increase in antioxidant activities is a
common occurrence during oxidative stress (Bhandari et
al. 2000). To verify whether mitochondrial antioxidant ac-
tivities were similarly increased, SOD and CAT activities
were measured. SODs are metalloenzymes involved in cat-
alyzing dismutation of superoxide radicals to H2O2 (Alscher
et al. 2002), whereas, CATs are ubiquitous antioxidant
enzymes that catalyze the breakdown of H2O2 to water
and oxygen (Du et al. 2008). Both enzymes serve as anti-
oxidants that help maintain and protect intracellular redox
homeostasis (Valko et al. 2007; Valko et al. 2006). Any shift
in the balance between pro-oxidants and antioxidants to-
ward oxidation leads to oxidative stress (Arora et al. 2002)
which may cause DNA mutations, protein oxidation, and
lipid peroxidation which eventually may lead to loss of
molecular function (Giorgio et al. 2007; Liu et al. 2008;
Valko et al. 2006). We found that SOD and CAT activities in
blood mitochondria were increased 60 and 180 min after BA
injection (Fig. 3a, b, respectively). This would imply that
BA-induced mitochondrial oxidative stress is accompanied
by an increase in antioxidant activities (SOD and CAT).

In conclusion, we established that BA has prolonged
retention in gingival tissues. We found that BA retention
in the blood mitochondria affected mitochondrial function
by increasing both mitochondrial H2O2 and heme levels.
Moreover, the increase in mitochondrial H2O2 amounts
would suggest that mitochondrial oxidative stress was
achieved. Furthermore, we observed that BA-induced mito-
chondrial oxidative stress is accompanied by an increase in
mitochondrial SOD and CAT activities.
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