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Abstract
Deformable image registration is a fundamental task in medical image processing. Among its most
important applications, one may cite: i) multi-modality fusion, where information acquired by
different imaging devices or protocols is fused to facilitate diagnosis and treatment planning; ii)
longitudinal studies, where temporal structural or anatomical changes are investigated; and iii)
population modeling and statistical atlases used to study normal anatomical variability. In this
paper, we attempt to give an overview of deformable registration methods, putting emphasis on
the most recent advances in the domain. Additional emphasis has been given to techniques applied
to medical images. In order to study image registration methods in depth, their main components
are identified and studied independently. The most recent techniques are presented in a systematic
fashion. The contribution of this paper is to provide an extensive account of registration
techniques in a systematic manner.

Index Terms
Deformable registration; medical image analysis; bibliographical review

I. Introduction
Deformable registration [1]–[10] has been, along with organ segmentation, one of the main
challenges in modern medical image analysis. The process consists of establishing spatial
correspondences between different image acquisitions. The term deformable (as opposed to
linear or global) is used to denote the fact that the observed signals are associated through a
non-linear dense transformation, or a spatially varying deformation model.

In general, registration can be performed on two or more images. In this paper, we focus on
registration methods that involve two images. One is usually referred to as the source or
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moving image, while the other is referred to as the target or fixed image. In this paper, the
source image is denoted by S, while the target image is denoted by T. The two images are
defined in the image domain Ω and are related by a transformation W.

The goal of registration is to estimate the optimal transformation that optimizes an energy of
the form:

(1)

The previous objective function (1) comprises two terms. The first term, , quantifies the
level of alignment between a target image T and a source image S. Throughout this paper,
we interchangeably refer to this term as matching criterion, (dis)similarity criterion or
distance measure. The optimization problem consists of either maximizing or minimizing
the objective function depending on how the matching term is chosen.

The images get aligned under the influence of transformation W. The transformation is a
mapping function of the domain Ω to itself, that maps point locations to other locations. In
general, the transformation is assumed to map homologous locations from the target
physiology to the source physiology. The transformation at every position x ∈ Ω is given as
the addition of an identity transformation with the displacement field u, or W(x) = x+u(x).
The second term, , regularizes the transformation aiming to favor any specific properties
in the solution that the user requires, and seeks to tackle the difficulty associated with the ill-
posedness of the problem.

Regularization and deformation models are closely related. Two main aspects of this relation
may be distinguished. First, in the case that the transformation is parametrized by a small
number of variables θ and is inherently smooth, regularization may serve to introduce prior
knowledge regarding the solution that we seek by imposing task-specific constraints on the
transformation. Second, in the case that we seek the displacement of every image element
(i.e., non-parametric deformation model), regularization dictates the nature of the
transformation.

Thus, an image registration algorithm involves three main components: (i) a deformation
model, (ii) an objective function, and (iii) an optimization method. The result of the
registration algorithm naturally depends on the deformation model and the objective
function. The dependency of the registration result on the optimization strategy follows from
the fact that image registration is inherently ill-posed. Devising each component so that the
requirements of the registration algorithm are met is a demanding process.

Depending on the deformation model and the input data, the problem may be ill-posed
according to Hadamard’s definition of well-posed problems [11]. In probably all realistic
scenarios, registration is ill-posed. To further elaborate, let us consider some specific cases.
In a deformable registration scenario, one seeks to estimate a vector for every position
given, in general, scalar information conveyed by image intensity. In this case, the number
of unknowns is greater than the number of constraints. In a rigid 2D setting, let us consider a
consider a scenario where two images of a disk (white background, gray foreground) are
registered. Despite the fact that the number of parameters is only 6, the problem is ill-posed.
The problem has no unique solution since a translation that aligns the centers of the disks
followed by any rotation results in a meaningful solution.

Given non-linear and non-convex objective functions, in general, no closed-form solutions
exist to estimate the registration parameters. In this setting, the search methods reach only a
local minimum in the parameter space. Moreover, the problem itself has an enormous
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number of different facets. The approach that one should take depends on the anatomical
properties of the organ (for example, the heart and liver do not adhere to the same degree of
deformation), the nature of observations to be registered (same modality versus multimodal
fusion), the clinical setting in which registration is to be used (e.g., off-line interpretation
versus computer assisted surgery).

An enormous amount of research has been dedicated to deformable registration towards
tackling these challenges due to its potential clinical impact. During the past few decades,
many innovative ideas regarding the three main algorithmic registration aspects have been
proposed. General reviews of the field may be found in [1]–[7], [9]. However due to the
rapid progress of the field such reviews are to a certain extent outdated.

The aim of this paper is to provide a thorough overview of the advances of the past decade
in deformable registration. Nevertheless, some classic papers that have greatly advanced the
ideas in the field are mentioned. Even though our primary interest is deformable registration,
for the completeness of the presentation, references to linear methods are included as many
problems have been treated in this low-degree-of-freedom setting before being extended to
the deformable case.

The main scope of this paper is focused on applications that seek to establish spatial
correspondences between medical images. Nonetheless, we have extended the scope to
cover applications where the interest is to recover the apparent motion of objects between
sequences of successive images (optical flow estimation) [12], [13]. Deformable registration
and optical flow estimation are closely related problems. Both problems aim to establish
correspondences between images. In the deformable registration case, spatial
correspondences are sought, while in the optical flow case, spatial correspondences, that are
associated with different time points, are looked for. Given data with a good temporal
resolution, one may assume that the magnitude of the motion is limited and that image
intensity is preserved in time, optical flow estimation can be regarded as a small deformation
mono-modal deformable registration problem.

The remainder of the paper is organized by loosely following the structural separation of
registration algorithms to three components: 1) deformation model, 2) matching criteria, and
3) optimization method. In Sec. II, different approaches regarding the deformation model are
presented. Moreover, we also chose to cover in this section the second term of the objective
function, the regularization term. This choice was motivated by the close relation between
the two parts. In Sec. III, the first term of the objective function, the matching term, is
discussed. The optimization methods are presented in Sec. IV. In every section, particular
emphasis was put on further deepening the taxonomy of registration method by grouping the
presented methods in a systematic manner. Sec. V concludes the paper.

II. Deformation Models
The choice of deformation model is of great importance for the registration process as it
entails an important compromise between computational efficiency and richness of
description. It also reflects the class of transformations that are desirable or acceptable, and
therefore limits the solution to a large extent. The parameters that registration estimates
through the optimization strategy correspond to the degrees of freedom of the deformation
model1. Their number varies greatly, from 6 in the case of global rigid transformations, to
millions when non-parametric dense transformations are considered. Increasing the
dimensionality of the state space results in enriching the descriptive power of the model.

1Variational approaches in general attempt to determine a function, not just a set of parameters.
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This model enrichment may be accompanied by an increase in the model’s complexity
which, in turns, results in a more challenging and computationally demanding inference.
Furthermore, the choice of the deformation model implies an assumption regarding the
nature of the deformation to be recovered.

Before continuing, let us clarify an important, from implementation point of view, aspect
related to the transformation mapping and the deformation of the source image. In the
introduction, we stated that the transformation is assumed to map homologous locations
from the target physiology to the source physiology (backward mapping). While from a
theoretical point of view, the mapping from the source physiology to the target physiology is
possible (forward mapping), from an implementation point of view, this mapping is less
advantageous.

In order to better understand the previous statement, let us consider how the direction of the
mapping influences the estimation of the deformed image. In both cases, the source image is
warped to the target domain through interpolation resulting to a deformed image. When the
forward mapping is estimated, every voxel of the source image is pushed forward to its
estimated position in the deformed image. On the other hand, when the backward mapping
is estimated, the pixel value of a voxel in the deformed image is pulled from the source
image.

The difference between the two schemes is in the difficulty of the interpolation problem that
has to be solved. In the first case, a scattered data interpolation problem needs to be solved
because the voxel locations of the source image are usually mapped to non-voxel locations,
and the intensity values of the voxels of the deformed image have to be calculated. In the
second case, when voxel locations of the deformed image are mapped to non-voxel locations
in the source image, their intensities can be easily calculated by interpolating the intensity
values of the neighboring voxels.

The rest of the section is organized by following coarsely and extending the classification of
deformation models given by Holden [14]. More emphasis is put on aspects that were not
covered by that review.

Geometric transformations can be classified into three main categories (see Fig. 1): i) those
that are inspired by physical models, ii) those inspired by interpolation and approximation
theory, iii) knowledge-based deformation models that opt to introduce specific prior
information regarding the sought deformation, and iv) models that satisfy a task-specific
constraint.

Of great importance for biomedical applications are the constraints that may be applied to
the transformation such that it exhibits special properties. Such properties include, but are
not limited to, inverse consistency, symmetry, topology preservation, diffeomorphism. The
value of these properties was made apparent to the research community and were gradually
introduced as extra constraints.

Despite common intuition, the majority of the existing registration algorithms are
asymmetric. As a consequence, when interchanging the order of input images, the
registration algorithm does not estimate the inverse transformation. As a consequence, the
statistical analysis that follows registration is biased on the choice of the target domain.

Inverse consistency—Inverse consistent methods aim to tackle this shortcoming by
simultaneously estimating both the forward and the backward transformation. The data
matching term quantifies how well the images are aligned when one image is deformed by
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the forward transformation, and the other image by the backward transformation.
Additionally, inverse consistent algorithms constrain the forward and backward
transformations to be inverse mappings of one another. This is achieved by introducing
terms that penalize the difference between the forward and backward transformations from
the respective inverse mappings. Inverse consistent methods can preserve topology but are
only asymptotically symmetric. Inverse-consistency can be violated if another term of the
objective function is weighted more importantly.

Symmetry—Symmetric algorithms also aim to cope with asymmetry. These methods do
not explicitly penalize asymmetry, but instead employ one of the following two strategies. In
the first case, they employ objective functions that are by construction symmetric to estimate
the transformation from one image to another. In the second case, two transformation
functions are estimated by optimizing a standard objective function. Each transformation
function map an image to a common domain. The final mapping from one image to another
is calculated by inverting one transformation function and composing it with the other.

Topology preservation—The transformation that is estimated by registration algorithms
is not always one-to-one and crossings may appear in the deformation field. Topology
preserving/homeomorphic algorithms produce a mapping that is continuous, onto, and
locally one-to-one and has a continuous inverse. The Jacobian determinant contains
information regarding the injectivity of the mapping and is greater than zero for topology
preserving mappings. The differentiability of the transformation needs to be ensured in order
to calculate the Jacobian determinant. Let us note that Jacobian determinant and Jacobian
are interchangeably used in this paper and should not be confounded with the Jacobian
matrix.

Diffeomorphism—Diffeomoprhic transformations also preserve topology. A
transformation function is a diffeomorphism, if it is invertible and both the function and its
inverse are differentiable. A diffeomorphism maps a differentiable manifold to another.

In the following four subsections, the most important methods of the four classes are
presented with emphasis on the approaches that endow the model under consideration with
the above desirable properties.

A. Geometric Transformations Derived From Physical Models
Following [5], currently employed physical models can be further separated in five
categories (see Fig. 1): i) elastic body models, ii) viscous fluid flow models, iii) diffusion
models, iv) curvature registration, and v) flows of diffeomorphisms.

1) Elastic Body Models
a) Linear Models: In this case, the image under deformation is modeled as an elastic body.
The Navier-Cauchy Partial Differential Equation (PDE) describes the deformation, or

(2)

where F(x) is the force field that drives the registration based on an image matching
criterion, μ refers to the rigidity that quantifies the stiffness of the material and λ is Lamé’s
first coefficient.

Broit [15] first proposed to model an image grid as an elastic membrane that is deformed
under the influence of two forces that compete until equilibrium is reached. An external
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force tries to deform the image such that matching is achieved while an internal one enforces
the elastic properties of the material.

Bajcsy and Kovacic [16] extended this approach in a hierarchical fashion where the solution
of the coarsest scale is up-sampled and used to initialize the finer one. Linear registration
was used at the lowest resolution.

Gee and Bajscy [17] formulated the elastostatic problem in a variational setting. The
problem was solved under the Bayesian paradigm allowing for the computation of the
uncertainty of the solution as well as for confidence intervals. The Finite Element Method
(FEM) was used to infer the displacements for the element nodes, while an interpolation
strategy was employed to estimate displacements elsewhere. The order of the interpolating
or shape functions, determines the smoothness of the obtained result.

Linear elastic models have also been used when registering brain images based on sparse
correspondences. Davatzikos [18] first used geometric characteristics to establish a mapping
between the cortical surfaces. Then, a global transformation was estimated by modeling the
images as inhomogeneous elastic objects. Spatially-varying elasticity parameters were used
to compensate for the fact that certain structures tend to deform more than others. In
addition, a non-zero initial strain was considered so that some structures expand or contract
naturally.

In general, an important drawback of registration is that when source and target volumes are
interchanged, the obtained transformation is not the inverse of the previous solution. In order
to tackle this shortcoming, Christensen and Johnson [19] proposed to simultaneously
estimate both forward and backward transformations, while penalizing inconsistent
transformations by adding a constraint to the objective function. Linear elasticity was used
as regularization constraint and 3D Fourier series were used to parametrize the
transformation.

Leow et al. [20] took a different approach to tackle the inconsistency problem. Instead of
adding a constraint that penalizes the inconsistency error, they proposed a unidirectional
approach that couples the forward and backward transformation and provides inverse
consistent transformations by construction. The coupling was performed by modeling the
backward transformation as the inverse of the forward. This fact was also exploited during
the optimization of the symmetric energy by only following the gradient direction of the
forward mapping.

He and Christensen [21] proposed to tackle large deformations in an inverse consistent
framework by considering a sequence of small deformation transformations, each modeled
by a linear elastic model. The problem was symmetrized by considering a periodic sequence
of images where the first (or last) and middle image are the source and target respectively.
The symmetric objective function thus comprised terms that quantify the difference between
any two successive pairs of images. The inferred incremental transformation maps were
concatenated to map one input image to another.

b) Nonlinear Models: An important limitation of linear elastic models lies in their inability
to cope with large deformations. In order to account for large deformations, nonlinear elastic
models have been proposed. These models also guarantee the preservation of topology.

Rabbitt et al. [22] modeled the deformable image based on hyperelastic material properties.
The solution of the nonlinear equations was achieved by local linearization and the use of
the Finite Element method.
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Pennec et al. [23] dropped the linearity assumption by modeling the deformation process
through the St Venant-Kirchoff elasticity energy that extends the linear elastic model to the
nonlinear regime. Moreover, the use of log-Euclidean metrics instead of Euclidean ones
resulted in a Riemannian elasticity energy which is inverse consistent. Yanovsky et al. [24]
proposed a symmetric registration framework based on the St Venant-Kirchoff elasticity. An
auxiliary variable was added to decouple the regularization and the matching term.
Symmetry was imposed by assuming that the Jacobian determinants of the deformation
follow a zero mean, after log-transformation, log-normal distribution [25].

Droske and Rumpf [26] used an hyperelastic, polyconvex regularization term that takes into
account the length, area and volume deformations. Le Guyader and Vese [27] presented an
approach that combines segmentation and registration that is based on nonlinear elasticity.
The authors used a poly-convex regularization energy based on the modeling of the images
under deformation as Ciarlet-Geymonat materials [28]. Burger et al. [29] also used a
polyconvex regularization term. The authors focused on the numerical implementation of
the registration framework. They employed a discretize-then-optimize approach [9] that
involved the partitioning voxels to 24 tetrahedra.

2) Viscous Fluid Flow Models—In this case, the image under deformation is modeled
as a viscous fluid. The transformation is governed by the Navier-Stokes equation that is
simplified by assuming a very low Reynold’s number flow:

(3)

These models do not assume small deformations, and thus are able to recover large
deformations [30]. The first term of the Navier-Stokes equation (3), constrains neighboring
points to deform similarly by spatially smoothing the velocity field. The velocity field is
related to the displacement field as v(x; t) = ∂tu(x; t) + (∇u(x; t)v(x; t)). The velocity field is
integrated in order to estimate the displacement field. The second term allows structures to
change in mass while μf and λf are the viscosity coefficients.

Christensen et al. [30] modeled the image under deformation as a viscous fluid allowing for
large magnitude non-linear deformations. The PDE was solved for small time intervals and
the complete solution was given by an integration over time. For each time interval a
successive over-relaxation (SOR) scheme was used. To guarantee the preservation of
topology, the Jacobian was monitored and each time its value fell under 0.5, the deformed
image was re-gridded and a new one was generated to estimate a transformation. The final
solution was the concatenation of all successive transformations occurring for each re-
gridding step. In a subsequent work, Christensen et al. [31] presented a hierarchical way to
recover the transformations for brain anatomy. Initially, global affine transformation was
performed followed by a landmark transformation model. The result was refined by fluid
transformation preceded by an elastic registration step.

An important drawback of the earliest implementations of the viscous fluid models, that
employed SOR to solve the equations, was computational inefficiency. To circumvent this
shortcoming, Christensen et al. employed a massive parallel computer implementation in
[30]. Bro-Nielsen and Gramkow [32] proposed a technique based on a convolution filter in
scale-space. The filter was designed as the impulse response of the linear operator L = μf Δu
+(μf + λf) ∇ (∇ · v) defined in its eigen-function basis. Crun et al. [33] proposed a multi-grid
approach towards handling anisotropic data along with a multi-resolution scheme opting for
first recovering coarse velocity estimations and refining them in a subsequent step. Cahill et
al. [34] showed how to use Fourier methods to efficiently solve the linear PDE system that
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arises from equation (3) for any boundary condition. Furthermore, Cahill et al. extended
their analysis to show how these methods can be applied in the case of other regularizers
(diffusion, curvature and elastic) under Dirichlet, Neumann or periodic boundary conditions.

Wang and Staib [35] used fluid deformation models in an atlas-enhanced registration setting
while D’Agostino et al. tackled multi-modal registration with the use of such models in [36].
More recently, Chiang et al. [37] proposed an inverse consistent variant of fluid registration
to register Diffusion Tensor images. Symmetrized Kullback-Leibler (KL) divergence was
used as the matching criterion. Inverse consistency was achieved by evaluating the matching
and regularization criteria towards both directions.

3) Diffusion Models—In this case, the deformation is modeled by the diffusion equation:

(4)

Let us note that most of the algorithms, based on this transformation model and described in
this section, do not explicitly state the equation (4) in their objective function. Nonetheless,
they exploit the fact that the Gaussian kernel is the Green’s function of the diffusion
equation (4) (under appropriate initial and boundary conditions) to provide an efficient
regularization step. Regularization is efficiently performed through convolutions with a
Gaussian kernel.

Thirion, inspired by Maxwell’s Demons, proposed to perform image matching as a diffusion
process [38]. The proposed algorithm iterated between two steps: i) estimation of the demon
forces for every demon (more precisely, the result of the application of a force during one
iteration step, that is a displacement), and ii) update of the transformation based on the
calculated forces. Depending on the way the demon positions are selected, the way the space
of deformations is defined, the interpolation method that is used, and the way the demon
forces are calculated, different variants can be obtained. The most suitable version for
medical image analysis involved 1) selecting all image elements as demons, 2) calculating
demon forces by considering the optical flow constraint, 3) assuming a non-parametric
deformation model that was regularized by applying a Gaussian filter after each iteration,
and 4) a trilinear interpolation scheme. The Gaussian filter can be applied either to the
displacement field estimated at an iteration or the updated total displacement field. The
bijectivity of the transformation was ensured by calculating for every point the difference
between its initial position and the one that is reached after composing the forward with the
backward deformation field, and redistributing the difference to each field. The bijectivity of
the transformation can also be enforced by limiting the maximum length of the update
displacement to half the voxel size and using composition to update the transformation.
Variants for the contour-based registration and the registration between segmented images
were also described in [38].

Most of the algorithms described in this section were inspired by the work of Thirion [38]
and thus could alternatively be classified as “Demons approaches”. These methods share the
iterative approach that was presented in [38] that is, iterating between estimating the
displacements and regularizing to obtain the transformation. This iterative approach results
in increased computational efficiency. As it will be discussed later in this section, this
feature led researchers to explore such strategies for different PDEs.

The use of Demons, as initially introduced, was an efficient algorithm able to provide dense
correspondences but lacked a sound theoretical justification. Due to the success of the
algorithm, a number of papers tried to give theoretical insight into its workings. Fischer and
Modersitzki [39] provided a fast algorithm for image registration. The result was given as
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the solution of linear system that results from the linearization of the diffusion PDE. An
efficient scheme for its solution was proposed while a connection to the Thirion’s Demons
algorithm [38] was drawn.

Pennec et al. [40] studied image registration as an energy minimization problem and drew
the connection of the Demons algorithm with gradient descent schemes. Thirion’s image
force based on optical flow was shown to be equivalent with a second order gradient descent
on the Sum of Square Differences (SSD) matching criterion. As for the regularization, it was
shown that the convolution of the global transformation with a Gaussian kernel corresponds
to a single step of a first order gradient descent of a functional that penalizes the remainder
of the transformation after convolving it with a high-pass filter.

Vercauteren et al. [41] adopted the alternate optimization framework that Cachier et al. [42]
proposed, to relate symmetric Demons forces with the Efficient Second-order Minimization
(ESM) [43]. In this framework, an auxiliary variable was used to decouple the matching and
regularization terms. Matching was performed by minimizing the data term through ESM
optimization while regularization was achieved by Gaussian smoothing.

In [44], Vercauteren et al. proposed a variant of Thirion’s algorithm endowed with the
diffeomorphic property. In contrast to classical Demons approaches, in every iteration of the
algorithm an update field is estimated. In order to estimate the current transformation, a
compositional update rule is used between the previous estimate and the exponential map of
the update field. The exponential map is efficiently calculated by using the scaling and
squaring method [45], [46] and the composition of displacement fields. The exponentiation
of the displacement field ensures the diffeomorphism of the mapping.

To further facilitate the use of the Demons algorithm in anatomical computational studies,
Vercauteren et al. [47] extended Demons to be symmetric. Initially, it was shown how the
complete spatial transformation can be represented in the log-domain. Subsequently, a
symmetric extension was provided by averaging the forward and backward forces that were
computed separately.

The efficiency of this two-step iterative strategy spurred research interest in seeking a
mathematical justification of the smoothing step to allow for deformations bearing different
physical properties [32], [48]–[50].

Stefanescu et al. presented a way to perform adaptive smoothing by taking into account
knowledge regarding the elasticity of tissues in [51]. A non-stationary diffusion filter was
used to smooth less inside areas where greater deformations were expected and smooth more
inside objects where coherence should be preserved. The authors also proposed to take into
account the local image gradient content during smoothing. In areas with large image
gradients where the local confidence for the established correspondences is higher,
smoothing is scaled down. On the contrary, smoothing is scaled up in homogeneous areas.

Cahill et al. [48] showed that curvature and fluid registration can be formulated as two
coupled diffusion equations. Their stationary solution may be approached via successive
Gaussian convolutions, thus yielding a Demons algorithm for these cases. In a subsequent
work, Cahill et al. [49] showed how to extend the curvature regularization to consider local
image gradient content. The authors proposed a coupled PDE system whose stationary
solution can be attained by consecutive convolutions with the Green’s function of the
diffusion equation.

In another example, Mansi et al. [50] introduced a physical constraint in the registration
process to estimate the myocardium strain from Cine-MRI. The logDemons algorithm [47]
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was endowed with the incompressibility constraint by making the velocity field divergence-
free. This was achieved by solving the Poisson equation under 0-Dirichlet boundary
conditions within a subdomain of the image showing the myocardium.

The earliest registration methods of this family of models used an SSD criterion to drive the
matching. As a consequence, they were appropriate for mono-modal image registration.
Subsequent approaches coped with the multi-modal registration problem. Guimond et al.
[52] proposed a method that alternates between Demons based registration and intensity
correction. Other efforts include the encoding of similarity metrics such as Normalized
Mutual Information by Tristán-Vega et al. [53] and Modat et al. [54].

The application of the Demons algorithm is not limited to scalar images and has been
extended to multi-channel images [55], diffusion tensor ones [56], as well as different
geometries [57]. Peyrat et al. used multi-channel Demons to register 4D time-series of
cardiac images by enforcing trajectory constraints in [55]. Each time instance was
considered as a different channel while the estimated transformation between successive
channels was considered as constraint. Yeo et al. [56] derived Demons forces from the
squared difference between each element of the Log-Euclidean transformed tensors while
taking into account the reorientation introduced by the transformation. Finally, the Demons
framework was employed to register cortical surfaces parametrized as spheres by Yeo et al.
[56]. To generalize Demons on the sphere, a method was introduced to measure the distance
between two transformations and to regularize the transformation.

4) Curvature Registration—In this case, the deformation is modeled by the following
equilibrium equation:

(5)

This regularization scheme does not penalize affine linear transformations. As a
consequence, unless an initial significant miss-alignment in space is present, these
registration frameworks do not necessarily require an additional affine linear pre-registration
step.

Fischer and Modersitzki used this constraint in [58], [59]. To solve equation (5), the Gâteaux
derivatives with respect to the data and regularization terms were calculated and a finite
difference scheme was employed to solve the resulting PDE. Neumann boundary conditions
were used since they result in a highly structured matrix problem that can be solved
efficiently. Despite this fact, the resulting underlying function space penalizes the affine
linear displacements as pointed out by Henn in [60]. Thus, Henn proposed to include
second-order terms as boundary conditions in the energy and applied a semi-implicit time
discretization scheme to solve the full curvature registration problem.

Glocker et al. [61] used an approximation of the curvature penalty in the case of parametric
grid-based deformation models. The approximation was derived by simultaneously
examining the displacements of two neighboring grid nodes while the third was assumed to
be fixed. Beuthien et al. [62], inspired by the approach presented in [32] for the viscous fluid
registration scenario, proposed another way to solve the curvature based registration
problem. Instead of devising a numerical scheme to solve the PDE that results from the
equilibrium equation (5), recursive convolutions with an appropriate Green’s function were
used.

5) Flows of Diffeomorphisms—Flows of diffeomorphisms have also been proposed to
model the deformation. In this case, the deformation is modeled by considering its velocity
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over time according to the Lagrange transport equation [30], [63], [64]. The regularization
term constrains the velocity field to be smooth:

(6)

||·||V is a norm on the space V of smooth velocity vector fields defined as ||f||V = ||Df||L2,
where D is a differential operator and ||·||L2 is the L2 norm of square integrable functions.
Choosing a kernel associated with V allows for the modeling of different types of spatial
regularization [63]. While most often a single Gaussian kernel is used [65], it is possible to
use multiple kernels and smooth the deformations adaptively at different scales [65], [66].
Lastly, the fact that the velocity field varies over time allows for the estimation of large
deformations [67].

This framework, known as Large Deformation Diffeomorphic Metric Mapping (LDDMM),
allows for the definition of a distance between images or sets of points [68], [69]. The
distance between these elements is defined as a geodesic, according to a metric, that
connects them and can be used for studies of anatomical variability [70]. A number of
theoretical aspects of this framework and especially the ones related with computational
analysis were further developed in [71]–[75]. The interested reader is referred to [76] for an
overview of its evolution and the corresponding equations.

The LDDMM framework has been extended to solve a number of problems. Among its
extensions, one may cite volume registration for scalar [67], [77]–[79] vector-[80] and
tensor-valued data [81], point-matching [68], point-matching on spheres [82], matching sets
of unlabeled points [83]–[85], shape-matching [65], [86], curve-mapping [87]–[90] and
hybrid registration [91], [92].

Even though the LDDMM framework provides diffeomorphic transformations, it is not
symmetric. To encode the symmetric property a number of approaches have been proposed
[77], [78], [93]. Beg and Khan [77] focused on providing symmetric data terms. Younes
[93] also discussed ways to render the alignment process symmetric while Avants et al. [78]
presented a symmetric LDDMM registration process driven by cross-correlation

The mathematical rigor of the LDDMM framework comes at an important cost. The fact that
the velocity field has to be integrated over time results in high computational and memory
demands. Moreover, the gradient descent scheme that is usually employed to solve the
optimization problem of the geodesic path estimation converges slowly [79]. More efficient
optimization techniques for the LDDMM have been investigated in [79], [94], [95].

Cotter and Holm presented an approach that involves a particle mesh method in [95].
Marsland and McLachlan [94] formulated the problem in a PDE framework and used a
particle method to solve for the diffeomorphism. More recently, Ashburner and Friston [79]
gave a Gauss-Newton implementation of the algorithm in [95]. These approaches were
based on the fact that the initial velocity field is sufficient to calculate the intermediate and
final deformations. In other words, the diffeomorphism is parametrized by the initial
velocity field. These calculations are possible by reformulating the initial boundary problem
to an initial value one. The initial conditions comprise the initial velocity and the starting
position. The optimization opts to estimate the initial velocity field that best aligns the
images. This approach is known as geodesic shooting.

An alternative way to efficiently calculate diffeomorphisms involves the simplification of
the problem by decreasing its degrees of freedom. Stationary velocity fields [96] have been
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used towards this direction. Despite being limited with respect to the diffeomorphisms that
they can capture, stationary velocity fields are a common choice among many researchers
[97]–[100].

Hernandez et al. followed this approach and used stationary Ordinary Differential Equations
(ODEs) in the LDDMM framework [101]. Ashburner [97] assumed the velocity field to be
constant over time in order to propose a fast diffeomorphic image registration that was based
on either membrane, bending or linear elastic energy. The solution was estimated through
integration over time by composing successive solutions. Given an even number of steps,
this was performed efficiently by a scaling and squaring approach [45], [46]. Furthermore,
the exponential of the flow field was used to guarantee that the inferred mapping is
diffeomorphic. The energy was optimized using the Levenberg-Marquardt algorithm
coupled with a full multi-grid approach to efficiently compute its update step.

B. Geometric Transformations Derived From Interpolation Theory
Rather than being motivated by a physical model, the models of this class are derived from
either interpolation theory or approximation theory. In interpolation theory, displacements,
considered known in a restricted set of locations in the image, are interpolated for the rest of
the image domain. In approximation theory, we assume that there is an error in the
estimation of displacements. Thus, the transformation smoothly approximates the known
displacements rather than taking the exact same values. These models are rich enough to
describe the transformations that are present in image registration problems, while having
low degrees of freedom and thus facilitating the inference of the parameters. Among the
most important families of interpolation strategies, one may cite (see Fig. 1): i) Radial Basis
Functions, ii) Elastic Body Splines, iii) Free-Form Deformations, iv) basis functions from
signal processing, and v) piecewise affine models.

1) Radial Basis Functions—One of the most important families of interpolation
strategies is that of Radial Basis Functions (RBFs), where the value at an interpolation point
x is given as function of its distance r from the known sample p, or

(7)

Zagorchev and Goshtasby presented an evaluation study comparing RBFs used as
transformation functions in non-rigid image registration in [102]. More recently, Yang et al.
[103] presented an analysis with respect to the ability of RBFs to preserve topology. An
important property of RBFs is that they are able to interpolate a deformation field from
irregularly placed known values. A common property of most RBFs, that are described in
this section, is their global support. Knowing the displacement at one point influences the
values of points in the whole image domain. As a consequence, interpolation in sparsely
populated areas is feasible. On the other hand, this behavior is undesirable when seeking
local transformations. In order to counter it, sufficient landmarks are required in the regions
of interest.

Bookstein proposed the use of Thin-Plate Splines (TPS) for image registration in [104],
[105]. TPS minimize the bending energy assuming infinite boundary conditions. The
solution is given in a closed-form and its uniqueness is guaranteed in most cases.
Nonetheless, TPS, as proposed by Bookstein, are known to exhibit certain shortcomings.
The transformation from one image domain to another is not inverse consistent [106].
Moreover, their support is global, which hinders the recovery of local image warpings
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[107]–[109]. Furthermore, TPS do not take into consideration possible errors in the
estimation of the displacements in the landmark positions [110]. Lastly, as the number of
points increases, the interpolation becomes computationally demanding [111]. A number of
researchers have worked to lessen the importance of these shortcomings [106]–[111].

In [106], Johnson and Christensen tackled the inverse inconsistency problem. They
considered the minimization of the bending energy under cyclic boundary conditions in an
effort to account for the great consistency error that they observed in the boundary of the
images. Additionally, a term that penalizes the consistency error was introduced in the
objective function to render the registration inverse consistent.

Li et al. coped with the problem of the global nature of TPS in [107]. TPS were constructed
in such a way that their support is restricted locally. In a subsequent work, Yang et al. [108]
defined the support of each point in an adaptive way by taking into consideration the
distribution of the points in the image domain. These approaches [107], [108] were based on
heuristics and a truncation of the original basis, to limit the influence of the control points.
Rohr and Wörz [109] introduced a variant of TPS which assumes that the forces that act at
the landmarks, also influence the region around them. These forces are described by a
Gaussian function of the radial distance from the landmark instead of a Dirac delta function
as in the classical TPS. The parametrization of the forces by the standard deviation of the
Gaussian function allows for the control of the locality of the transformation.

Rohr et al. [110] proposed to take into consideration the landmark localization error when
estimating the dense deformation field through the use of approximating Thin-Plate Splines.
The authors proposed to weaken the interpolation constraint and estimate the transformation
by minimizing a functional that weights the approximation error according to the (isotropic
or anisotropic) landmark position estimation error. The approximation problem admits an
analytical solution that consists of the same basis functions as the interpolation problem.

Three ways to address the computational problems related with the presence of a great
number of landmarks were studied by Donato and Belongie [111]. The straightforward
approach of sub-sampling the points was compared to two more elaborated ones that use
either a subset of the basis functions or a matrix approximation technique based on the
Nyström method. The more sophisticated methods were shown to outperform the naive
approach in terms of mean squared error. The matrix approximation method was also shown
to be useful when principal warp analysis was taken into account.

Marsland and Twining [69], [112] employed Clamped-Plate Splines for groupwise
registration and groupwise analysis of deformable registrations. Clamped-Plate Splines
minimize the same energy as TPS though under specific boundary conditions. Camion and
Younes introduced Goedesic Interpolating Splines (GIS) following the LDDMM framework
[113]. The dense deformation field that results from the interpolation with these splines is
diffeomorphic. Younes extended this method to combine GIS with affine transformations in
[114] while two ways to calculate them were presented by Mills et al. [115].

Ruprecht et al. have proposed another family of RBFs, that of multi-quadratics, that has
global support [116]. Little et al. extended this approach to cope with the presence of a rigid
object [117].

Arad et al. [118] suggested the use of Gaussian functions to parametrize the deformation.
The choice of an appropriate Gaussian kernel allows for the control of their spatial
influence. By choosing a small size for the Gaussian kernel, their influence can be greatly
restricted and thus local displacements may be recovered. A recent example of the use of
this deformation model in brain registration can be found in [119].
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Zagorchev and Goshtasby [102] investigated the use of the normalized weighted average of
sparse displacements to create dense deformation fields. Despite the global support of the
control points, the locality of the transformation can be adapted by choosing an appropriate
weighting function.

In medical image analysis, the presence of different anatomical structures characterized by
different properties and the subsequent need to recover local deformations render the
previous models not well suited. To cope successfully with such cases, interpolation
methods where control points have spatially limited influence are appropriate.

Fornefett et al. [120] investigated the use of Wendland functions [121], [122] that exhibit the
desired locality property, for deformable registration. Other local support radial basis
functions include the C2 smooth Wu functions [123] and the functions proposed by
Buhmann [124]. Rohde et al. [125] applied the Wu functions in image registration and
derived bounds for the basis function’s coefficients so that the Jacobian of the computed
transformation remains positive.

More recently, Siddiqui et al. [126] defined a new model based on the cosine function.
Contrary to what is claimed in the paper, the new model is not positive definite [127]. A
real-valued, continuously differentiable function is called positive definite on a
neighborhood of the origin, if it is zero for the origin and greater than zero for the rest of the
points in the neighborhood. The positive definiteness of the functions is important because it
guarantees that the system of linear equations, that arises when estimating the coefficients of
the interpolation problem, is solvable for all possible sets of pairs of corresponding
landmarks in the two image domains, which are not colinear in 2D and coplanar in 3D
[120]. Lowitzsch [128] introduced a class of RBFs that are vector-valued analogues of the
Wendland functions [121], [122]. This class of RBFs provide interpolated displacement
fields that are divergence free.

Yang et al. [103] compared the previous locally constrained radial basis functions by using
transformations on random point sets, artificial images and medical images.

2) Elastic Body Splines—Splines, though mainly inspired by interpolation and
approximation theory, may also be inspired by physical models. Such is the case of Elastic
Body Splines (EBS), which were introduced by Davis et al. [129]. These splines are
solutions of the Navier-Cauchy equilibrium equation for a homogeneous isotropic elastic
body subjected to forces. When the force field that drives the registration based on the
landmark correspondences is given as a radial symmetric function of the distance from the
landmark, one can solve the equation analytically.

Kohlrausch et al. [130] extended the previous work by considering forces that are given as a
Gaussian function of the distance from the landmark (Gaussian EBS). The size of the kernel
of the Gaussian can be used to parametrize the compactness of the model’s support. As a
result, the transformation model can cope better with local deformations. An analytic
solution for the equilibrium equation also exists for this type of force field.

Wörz and Rohr extended Gaussian EBS in [131]. Instead of opting for an exact
interpolation, an approximation strategy was employed to account for errors in the landmark
displacements. The PDE was extended to incorporate Gaussian forces that were weighted by
the localization uncertainty. The uncertainties, depending on their isotropic or anisotropic
nature, were represented as either scalar weights or matrices. An analytic solution was
obtained for the extended equation.
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3) Free Form Deformations—Free-Form Deformations (FFDs) is one of the most
common types of transformation models in medical image registration. A rectangular grid G
= Kx × Ky × Kz is superimposed on the image (size Nx × Ny × Nz, Kx ≪ Nx, Ky ≪ Ny, Kz
≪ Nz) that gets deformed under the influence of the control points. The dense deformation is
given as a summation of tensor products of univariate splines. FFDs were first popularized
in the computer graphics community [132], [133] but gained wide acceptance in the medical
image analysis community when coupled with cubic-B splines [134]–[137].

The displacement field is given as

(8)

where i = ⌊x/Nx⌋ − 1, j = ⌊y/Ny⌋ −1, k = ⌊z/Nz⌋ − 1, μx = x/Nx − ⌊x/Nx⌋, μy = y/Ny − ⌊y/Ny⌋
and μz = z/Nz − ⌊z/Nz⌋. Bl represents the lth basis function of the B-spline and d denotes
displacement. This transformation model is simple and can efficiently provide smooth
deformations. Moreover, it requires few degrees of freedom to describe local deformations.

While in general the transformations that result from cubic B-spline FFDs are smooth, the
preservation of topology is not guaranteed. Rueckert et al. [138] imposed the hard
constraints proven in [139] to produce diffeomorphic deformation fields. The required
condition is that the maximum displacement should not be greater than four tenths of the
grid spacing. Preservation of topology may also be ensured through the use of soft
constraints (see Sec. II-D1).

Many extensions of FFDs have been proposed in the literature. While FFDs are usually
uniform, non-uniform approaches have been proposed. Schnabel et al. [140] proposed to use
multi-level B-splines. In this case, the transformation was given as a summation of the
individual transformations of each level. The authors proposed to assign to every control
point a status, either active or passive, in order to simulate a non-uniform control point
distribution. Active control points were allowed to move, while passive control points
remained fixed. Wang and Jiang [141] employed non-uniform rational B-splines (NURBS)
to perform medical image registration in an adaptive focus manner. Shi et al. [142] used the
multi-level B-splines model of [140] while imposing that only a sparse subset of the control
points is active.

Noblet et al. [143] presented a symmetric extension of FFDs. The authors assumed that both
images deform toward a common domain under the influence of two isomorphic grids. The
common domain was assumed to be in an equal distance from the source and the target.
Given the parametric nature of the transformation, this results in constraining the
displacements of the corresponding nodes in the two grids to sum to zero. Moreover, in
order to calculate the mapping from one image domain to the other, the respective estimated
mappings toward the common domain should be invertible. Feng et al. [144] proposed an
inverse consistent method based on FFDs. The proposed method did not require the
inversion of the deformation field. It examined how well the composition of the two
transformations mapped back to the image domain. Sotiras and Paragios [145] used a similar
model to [143]. The two models differed in the way the invertibility of the mappings was
guaranteed, and the fact that in [145], the registration problem was formulated as a discrete
labeling one.

FFDs have been extended to tackle multiple-image registration where hard constraints are
employed to define a reference domain [146]–[149]. Moreover, the transformation model
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has been extended to the spatio-temporal domain where B-splines are also used for the
temporal axis [150]–[152].

4) Basis Functions from Signal Representation—Inspired by the mathematical tools
that are available to represent and analyze signals, many researchers have used Fourier and
Wavelet analysis to model transformations. An important reason to use them is the fact that
they can naturally provide a multi-resolution decomposition of the displacement field. This
is a useful property for the coarse-to-fine schemes that are commonly applied in medical
image registration to ease the computations and handle large deformations.

Christensen and Johnson employed a Fourier-based transformation scheme in their
consistent registration framework [19]. The Fourier series representation of the
transformation simplifies the linear elasticity constraint, thus allowing an efficient numerical
implementation. Ashburner and Friston [153] tackled nonlinear registration by employing a
transformation model that was parametrized as a linear combination of Discrete Cosine
Transform basis functions. The separable nature of the basis functions was exploited by the
authors to accelerate calculations.

Fourier basis functions are well localized in the frequency domain. On the contrary, they are
not localized at all in the spatial domain. Wavelet basis functions, being localized in both
domains, can model local deformations more efficiently than Fourier basis [154].

Amit [154] presented two variational approaches for 2D image matching. In the first case,
the transformation was parametrized with respect to the Fourier basis, while in the second
case, it was parametrized with respect to a wavelet basis. The reported experimental results
indicated that the second method was able to capture local deformations with more accuracy
than the Fourier method. Wu et al. [155] used a wavelet-based deformation model. The Cai-
Wang wavelet was employed to generate a multi-resolution description in Sobolev space
yielding intrinsically smooth deformations. Based on this model, the authors were able to
treat global and local information simultaneously in a coarse-to-fine approach. Gefen et al.
[156] modeled the deformation field with a finite-supported, semi-orthogonal wavelet
toward tackling the problem of aligning rat brain histological images. In order to ease the
optimization burden, the authors exploited the natural multi-resolution and multi-band
decomposition of the wavelet coefficients. The transformation parameters were first inferred
for low resolution levels, separately for each subband, before proceeding to finer resolution
levels.

Musse et al. [157] presented a topology-preserving multi-resolution approach for 2D images.
The authors used nonorthogonal Riesz basis of polynomial splines due to their compactness.
The topology was preserved by controlling the Jacobian through hard linear constraints.
Noblet et al. extended this approach to the 3D domain in [158] and further validated it in
[159]. In the 3D case, the same multi-resolution framework was used, though the topology
could not be preserved by satisfying linear constraints. This was made possible by solving a
constrained optimization problem where the Jacobian was enclosed between two user
specified bounds. Cathier [160] used the same wavelet basis as in [155] to decompose the
transformation in a multi-resolution fashion. An L1 penalty on the wavelet coefficients was
used to regularize the registration problem. This regularization led to sparse transformations
with respect to the wavelet basis and thus facilitated their storage in memory.

5) Locally Affine Models—Locally affine models parametrize the transformation by
locally linear deformations. One may discern two different cases: i) piecewise affine models,
and ii) poly-affine ones. In the first case, the image is mosaicked by a set of triangles or
tetrahedra whose nodes parametrize the deformation. Inside each region, affine interpolation
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takes place. Efficiency and invertibility are the main strengths of this method, while lack of
smoothness in the region boundaries is its main limitation. In the second case, fuzzy regions
are used in order to tackle the aforementioned drawback and produce a smooth
transformation.

a) Piecewise Affine Models: Some of the most recent approaches using a piecewise affine
model include, but are not limited to, the following. Hellier et al. [161] proposed a multi-
resolution and multi-grid approach. The image was partitioned adaptively into cubes and an
affine transformation was inferred for each one. A regularization energy term encouraged
neighboring pairs to deform similarly. In a similar fashion, Zhang et al. [162] tackled
diffusion tensor registration by taking into consideration tensor reorientation. The images
were separated into contiguous blocks and an affine transformation was recovered for each
one of them. Regularization on the interface of regions ensured the global smoothness of the
transformation.

Pitiot et al. [163] reconstructed 3D volumes of histological images by employing a
piecewise affine transformation model. The images were separated into independent
components through hierarchical clustering. In a subsequent step, affine registration was
performed for each pair of regions. The final transformation was estimated by calculating
the affine transformation for each region and applying a non-linear interpolation in between
the regions. Commowick et al. presented similar approach was presented in [164]. The main
difference between the two methods lies in the fact that a regularization step followed to
improve the smoothness in the interpolated areas. The regularization was based on the Log-
Euclidean framework using Euclidean differences between the logarithms of the affine
transformations.

Two more recent applications of piecewise affine models were presented in [165], [166].
Cootes et al. [165] favored the use of piecewise affine transformations as they can be easily
inverted. Buerger et al. [166] proposed a hierarchical framework to adaptively separate the
images into regions. Splitting was formulated as an energy minimization problem and three
criteria were used. The first criterion tried to group regions with rich structural information.
The second criterion grouped regions with significant residual error in large blocks, while
the last criterion encouraged regions with similar motion to be considered together. The
second was found to perform best.

Most approaches that employ piecewise linear strategies consider the affine transformations
independently. As a result, singularities may occur and the transformation is not globally
invertible. To account for this drawback, sophisticated methods have been introduced.
Narayanan et al. proposed a transformation model that is affine at the center of a region and
reduces to identity as the distance from the center increases [167]. This novel transformation
model has a closed form and can be computed efficiently. Moreover, constraints were given
in the form of bounds on the translation so that invertibility is ensured.

b) Poly-Affine Models: Arsigny et al. [168] presented a poly-rigid/affine transformation
model. the transformation is parametrized by a set of anchor points ai, a parameter pi that
defines the importance of every point and a distance σi. Fuzzy regions are defined by
calculating the influence of an anchor point at each position x of the image as pi * Gai, σi (x),
Gai,σi denotes a Gaussian function parametrized by a mean value ai and a standard deviation
σi. Given the transformation of the set of anchor points, the global transformation at each
point is given by a distance-weighted sum of infinitesimal velocities at the known points,
integrated over time. No closed form exists and a computationally expensive integration of
ODEs is necessary. Arsigny et al. [169] extended the poly-affine transformation so that its
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inverse is also poly-affine. Moreover, the fusion of affine transformations was rendered
invariant to affine changes of the coordinate system.

C. Knowledge-based Geometric Transformations
In medical image analysis, there are registration scenarios that involve a specific well-
defined task. More specifically, registration is either performed between any image and a
specific target image or involves image acquisitions of specific anatomical organs. In these
cases, it is possible to introduce knowledge about the deformations one tries to recover.

Introducing knowledge regarding the deformation may be achieved in two ways. In the case
that the target domain is fixed in registration because it exhibits desired properties (e.g., it is
manually annotated), one can learn a high dimensional statistical model of deformations by
performing pairwise registrations between the target image and the data that one has at their
disposition. Subsequently, when a new image is to be registered to the target image, the
learned model can be used to penalize configurations that diverge from it. The second
method consists of exploiting our knowledge about the deformability of the tissues and
constructing biomechanical/biophysical deformation models that mimic their properties.

The main motivation behind creating more informed priors is to render the registration
method more robust and stable. A registration method is characterized as robust, when its
performance does not drastically degrade for small deviations of the input images from the
nominal assumptions. In other words, the presence of a small fraction of artifacts or outliers
results in small changes in the result. Robustness is, for example, important when
encountering images of pathology (e.g., images characterized by the presence of tumors that
can be regarded as outliers). A registration method is characterized as stable, when small
changes in the input data result in small changes in the result. The stability of the method is,
for example, important in longitudinal studies when temporal smoothness, or stable results,
can be associated to normality and differences are attributed to temporal anatomical
changes. On the other hand, the quality of the solution is conditioned on the quality of the
learned model. Learning a high dimensional model is a challenging task that is further
impeded by the limited number of training samples.

1) Statistically-Constrained Geometric Transformations—Statistical deformation
models (SDMs) capture statistical information about deformation fields across a population
of subjects. These methods are able to reduce the number of degrees of freedom, and
consequently the computational demands of the problem, while achieving robust
performance. Nonetheless, the use of SDMs implies important assumptions. First, one
should be able to train the high dimensional statistical model from an often limited number
of subjects. Second, it is assumed that the set of images used during the learning step is
representative of the population that will be analyzed. Hence, a statistically-constrained
registration framework is limited by previously-observed deformations. Subsequent
refinement by conventional registration has been proposed to cope with this limitation.

Statistical models of variability have been applied successfully to many problems in medical
image analysis. One of the most prominent examples concerns statistical models of shape
variability applied to segmentation [170]. Cootes et al. [170] studied shape variability by
performing Principal Component Analysis (PCA) on point correspondences. Wang and
Staib [35] combined a statistical shape model over boundary points and a physics-based
regularization term in a Bayesian approach to solve the atlas-based registration problem.

PCA has also been applied in the case of dense deformation fields to derive priors that can
be used to constrain registration. Gee and Bajcsy [17] described a recursive way to update
the model given new observations while accounting for the limited number of samples.
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Wouters et al. [171] used PCA to model the deformation and registration was performed by
adjusting the coefficients of the principal components while maximizing Mutual Information
(MI).

Tang et al. [172] also used PCA to learn an SDM to accelerate image alignment. Once the
model was learned, the authors created a set of intermediate target images by sampling along
each dimension of the estimated multidimensional Gaussian distribution. The registration of
a new image was performed by projecting it to the intermediate target image that is closest
in intensity similarity, and by refining the result with a conventional registration method. In
a similar approach, Kim et al. [173] used support vector regression models to predict the
intermediate target image. The regression models had learned the correlations between
deformations and image appearances.

Rueckert et al. [174] performed statistical analysis on the displacement of the control points
of the FFD grid that deforms the image. Loeckx et al. [175] used a similar model to tackle
lung radiograph registration. The statistical model was augmented by incorporating
translation and scaling, to account for the fact that the training set was created by manual
alignment of image pairs without prior global spatial normalization. Pszczolkowski et al.
demonstrated that the model in [174] can encode landmark position information [176].

Glocker et al. [177] also proposed a model that captures variations in the displacements of
the control points of the FFD grid. In the first place, a clustering step was performed to
reveal the co-dependencies between node displacements. Then, Gaussian mixture models
were used to represent the probability density function (PDF) of the relative displacement of
two cluster centers and thus capture information about the global nature of the desired
deformations. Similarly, PDFs were learned over the relative displacements of the cluster
and its cluster members capturing the local information of the desired deformations. The
learned priors were introduced as soft constraints in a discrete Markov Random Field
registration framework through the consideration of appropriate pairwise interactions.

Xue et al. [178] tackled the problem of training a high dimensional SDM from a limited
number of samples by employing wavelet-based decompositions and estimating the PDF of
each band by applying PCA to each one. Two SDMs were trained, one captured variations
about the deformation fields while the second encoded information about the Jacobian
determinant of the deformation fields. The registration result was constrained by the these
models as well as a nested Markov random field (MRF) regularization scheme. In a
subsequent work, Xue and Shen [179] proposed the use of conventional registration to refine
the result of the statistically-constrained method.

Pennec et al. [23] presented a statistical framework for nonlinear registration that takes into
account the means and the covariances of the deformation tensors by computing their
Mahalanobis distance. Brun et al. [180] further developed this framework by computing
statistical priors on both the deformation tensors and the displacement vector fields in a
nonconservative Lagrangian fluid registration algorithm. In both approaches, statistical
priors were used to guide registration, instead of constraining it to follow the learned
distribution.

Lester et al. [181] presented a modified version of the viscous fluid registration algorithm
that incorporated tissue information by letting the viscosity vary according to the tissue. In a
similar context, Commowick et al. [182] proposed to introduce prior knowledge regarding
the stiffness of the deformability of different structures by weighting an elastic-type
regularization term by a space-varying scalar or tensor field. The computation of the scalar
map of deformability was based on the mean of the absolute value of the logarithm of the
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determinant of the Jacobian while the stiffness tensor map was based on the mean of the
absolute value of the logarithm of the deformation tensor.

Yeo et al. [183] presented a conceptually complementary approach. Instead of learning the
set of admissible deformations, the weights for a weighted SSD similarity criterion were
inferred by optimizing the cross-validation error of a specific task. One could argue that
estimating these weights is implicitly equivalent to estimating a stiffness map.

2) Geometric Transformations Inspired by Biomechanical/Biophysical Models
—Biomechanical/Biophysical models are also inspired by physical properties. Their
difference with respect to the models presented in Sec. II-A is that they relate closely to
anatomy and physiology. Usually, Finite Element Methods (FEMs) are employed to model
the biomechanical/biophysical properties of the tissues under consideration.

The main motivation behind using the methods of this category is the surmise that more
informed priors regarding the biomechanical properties of the tissues will allow the reliable
estimation of complex deformation fields with the use of few degrees of freedom. What is
more, the limited search space results in improved efficiency when compared to the standard
approaches. Moreover, one assumes that by creating models of deforming organs that are
consistent to their physical properties, the plausibility of the estimated deformation will
improve and registration will be able to better cope with challenges due to the presence of
outliers or large deformations. These models are more suitable for intra-individual
registration since the biophysical model is no longer valid in inter-individual settings.
Nonetheless, one may advocate in favor of their use in inter-individual settings on the basis
that, depending on the application, it may be meaningful to let an anatomical structure
behave realistically.

On the downside, when opting for models that aim to faithfully represent anatomical
structures, one needs to accurately define the material properties as well as the necessary
geometry and boundary conditions. This is a challenging procedure that is emphasized by
our limited understanding of the material properties. As a consequence, the choice of the
parameter values is approximately determined, while at the same time is general and not
case-specific. The definition of the geometry requires an accurate segmentation of
anatomical structures as well as appropriately meshing the image domain. Suitable boundary
conditions can be specified by providing displacement constraints for the segmented organ
surfaces. Uncertainty in the specification of these parameters may lead to undesirable bias.

a) Tumor growth models: Registration between normal atlas and pathological brain images
in the presence of tumors is a problem that may profit from the existence of brain-tumor
interaction models [184]–[187]. One approach to tackle such cases is to correct for the
topological difference between the pair of images by accounting for the tumor and its effects
in neighboring structures in the normal subject.

Kyriacou et al. [188] used a simple uniform expansion model for the tumor. The authors
simulated a tumor-free anatomy that was subsequently used in a normal-to-normal atlas
registration. The tumor influence was taken into account in order to produce the final
deformation field. Cuadra et al. used a radial expansion model of the lesion in two cases
[189], [190]. In the first case [189], the authors combined the model of lesion growth with
the Demons registration algorithm [38]. In the second case [190], they used a variational
method based on mutual information [191]. Ganser et al. also employed a simple radial
growth model in order to perform registration between the Talairach atlas and a subject
[192]. The matching process was driven by establishing point correspondences between
segmented structures and the atlas. An RBF deformation model was used to estimate the
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dense deformation field. Nowinski and Belov [193] refined the result of a Talairach
landmark registration by assuming a radial mass-effect tumor model.

Richer models have also been considered. Clatz et al. [184] refined the result of an affine
registration between a normal atlas and a patient’s image by using a coupled model that
predicts the anisotropic evolution of the tumor as well as its mass-effect. Methods that
combine sophisticated brain-tumor interaction with deformable registration have been
proposed in [194]–[197]. Mohamed et al. [194] trained a statistical model of the tumor-
induced deformation based on a great number of tumor model simulations. This model was
used to estimate the mass-effect in the atlas domain before applying deformable registration.
Zacharaki et al. [195], [196] also trained a statistical model based on simulations of the
tumor effect [185]. The parameters of the learned model were inferred through optimization
that considered both deformation field information and image similarity. Gooya et al. [197]
addressed the registration between a normal subject and a subject with Glioblastoma
multiforme brain tumors. The tumor was modeled by [186]. An expectation-maximization
setting was used to jointly estimate the parameters of the model and the warping.

b) Biomechanical models of the breast: Another field for application of biomechanical
models is breast imaging. Biomechanical modeling is important in tackling large
deformations which are typical in breast imaging applications such as image-guided
interventions [198], cancer diagnosis [199] and surgical planning [200]. The ability of FEMs
to realistically simulate breast deformations has led to their use for the validation of
registration methods [201]–[203].

There are two main causes of breast deformation, gravity and plate compression. When
patients are imaged under different positions (typically prone-supine), the breast is deformed
greatly under the influence of gravity. FEMs have been used either to register the images
[200], [204] or to provide a more appropriate initialization for standard intensity-based
nonrigid registration methods [205]–[207].

The breast is typically compressed in mammography under the pressure of two plates in
order to flatten and spread the tissue. As a consequence, alignment between 2D
mammograms and images from other, (typically 3D), modalities is a challenging problem.
FEMs have been used to tackle this problem [198], [208]–[212]. While these methods aim to
align different images, they do not opt to optimize an image-similarity criterion. Instead,
alignment is determined by the modeling assumptions and boundary conditions. Image
driven approaches have been proposed toward estimating subject-specific tissue properties
[213]–[215].

c) Biomechanical models of the prostate: Biomechanical models have also been used to
model the prostate and its surrounding organs with applications in preoperative-
intraoperative image registration problems [216] and treatment planning [217]. Mohamed et
al. [218] and Hu et al. used a biomechanical model of the prostate to simulate training data
to learn a statistical model that was subsequently used to constrain the registration.
Alterovitz et al. [219] presented a 2D biomechanical model whose material properties and
external forces were optimized by maximizing the overlap between the segmented prostate
in both images. Crouch et al. [220] used medial shape models to facilitate meshing and
boundary condition calculation.

d) Miscellaneous: Biomechanical models span a great range of applications. Detailing them
all here is both out of scope and impossible. Nonetheless, let us note that they have been
applied in the estimation of: cardiac movement [221]–[226], brain shift during surgical
operations [227] and lung movement [228], [229].
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D. Task-Specific Constraints
According to Hadamard’s definition of well-posed problems [11], unregularized
optimization of similarity measures for high-dimensional deformable transformation models
is, in general, an ill-posed problem. In order to cope with the difficulty associated with the
ill-posedness of the problem, regularization is necessary. Moreover, regularization allows us
to introduce any prior knowledge we may have regarding the physical properties of the
underlying anatomical structure and helps optimization avoid local minima.

There are two possible ways to regularize the problem: implicitly and explicitly. Implicit
regularization may be achieved by parameterizing the deformation field with smooth
functions. Explicit regularization may be achieved through the use of either hard constraints
or soft constraints. Hard constraints are the constraints that the solution must satisfy in order
for the registration to be successful. Soft constraints are introduced as additional terms in the
energy function that penalize non-regular configurations. Soft constraints encode our
preference regarding specific configurations, but deviations from the preferred
configurations are allowed if driven by the other term(s) of the energy function. Physics-
based deformation models are typical examples of explicit regularization. Moreover, explicit
regularization may be used to achieve specific goals that are tailored to the problem at hand.
Such goals include (see Fig. 1): i) topology preservation, ii) volume preservation, and iii)
rigidity constraints. Task-specific constraints can be, and often are, used in conjunction with
physics-based models (Sec. II-A) and interpolation-based models (Sec. II-B).

1) Topology Preservation—One of the most important properties that a registration
algorithm should exhibit is the preservation of topology. The preservation of topology is
equivalent to the invertibility of the deformation field. The Jacobian of the deformation field
is very informative regarding the local properties of the deformation field. In order to avoid
singularities in the deformation field, Christensen et al. [30] proposed to track the values of
the Jacobian. When its value dropped below a threshold, an intermediate deformed image
was created and the registration process was reinitialized.

Another way to enforce the preservation of topology is through the use of constraints, i.e.,
by including in the objective function an appropriate term that acts upon the Jacobian.
Christensen and Johnson [19] added to the objective function a term that penalizes small and
large Jacobian values for both the forward and backward transformation. Similarly, Rueckert
et al. [138] introduced a term in the objective function that penalizes values of the Jacobian
determinant that are close to zero.

A different strategy is to formulate registration as a inequality constraint optimization
problem. Musse et al. derived linear inequality constraints so that the topology is preserved
[157]. The optimization was solved by employing a fast method that bears a resemblance to
sequential linear programming. Noblet et al. extended the previous framework in the 3D
case [158]. The authors optimized the energy under the constraint that the Jacobian will stay
between user specified bounds. Interval analysis techniques were used in order to solve the
optimization problem. Haber and Modersitzki [230] also used inequality constraints. They
used a variant of a log-barrier method to solve the optimization problem. Instead of solving
the initial constrained problem, a sequence of unconstrained ones was employed. The weight
for the barrier terms increased gradually for each unconstrained problem that was optimized
by applying a variant of the Gauss-Newton’s method.

Sdika [137] also proposed a constrained optimization framework to ensure that the
transformation is invertible. Two constraints were investigated for the case of a
transformation model parametrized by cubic B-splines. The first constrained the Jacobian of
every pixel to be greater than a threshold. This constraint did not control the value of the
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Jacobian between the voxels. To account for that, the author proposed a second constraint
that relates the Jacobian with its derivative. In that way, the Jacobian was restricted to be
within a range of values. Moreover, its derivatives were constrained to be close to zero when
approaching values close to the bounds. Chun and Fessler devised a simpler penalty for the
case of B-splines [231]. The penalty takes into account the difference between two adjacent
nodes and is memory efficient.

2) Volume Preservation—In many applications, volume preservation is also important.
Such a constraint is of particular interest when we know that the imaged anatomical
structure is not compressible and that all changes are due to either motion or intensity
changes provoked by the action of a contrast agent. A simple example is a rigid part of the
body such as a bone structure. More complicated cases include deformable structures that
preserve their volume such as breast, myocardium and liver.

Tanner et al. [232] proposed a sequential approach for volume preserving deformable
registration using an FFD model. First, a standard registration was performed. Based on its
result, the areas whose volume should be preserved were identified. Then, the control points
of the FFD that influenced these areas were grouped and restricted to move by a constant
displacement that is equal to the mean value of their displacements during the initial
registration step. Finally, the registration was solved again for the rest of the variables.
Greene et al. also presented a sequential approach for image-guided adaptive radiotherapy
using an FFD model [233]. First, the organs of interest and the bones were segmented and
independently registered. Then, a constrained framework was used to estimate the FFD
transformation that maps from one image to another. The displacements of the control points
that influence the segmented objects were constrained to be close to the displacements that
were calculated during the individual object registrations.

Rohlfing et al. employed a volume preserving strategy to register contrast-enhanced MR
breast images [234]. The objective function comprised an image matching term and a term
that penalized volume changes. The penalty integrated the absolute logarithm of the
Jacobian determinant and was zero only when local volume was preserved. Haber and
Modersitzki [235] presented a constrained optimization approach for volume preservation.
The proposed energy function, consisting of a matching and regularization term, was
minimized under the constraint that the determinant of the transformation is equal to one
(det(I + ∇u) − 1 = 0).

The myocardium is known to be a nearly incompressible material. Therefore, applications
involving the deformation of the myocardium may profit from including an
incompressibility constraint. Bistoquet et al. [236] approximated the previous constraint
with ∇ · u = 0. This constraint was enforced by the use of divergence-free radial basis
functions as deformation model [128]. In addition, a hard constraint was introduced in the
objective function to penalize deviations from incompressibility. Dauguet et al. [237]
constrained the determinant of the Jacobian to be close to one in a predefined region by
using Lagrange multipliers. Mansi et al. took a different approach in [50]. They constrained
the velocity field v to be divergence-free. This method was based on the fact that the
integration over time of divergence-free velocities results in incompressible deformations.

3) Rigidity Constraints—The presence of rigid anatomical structures in medical images
motivates the incorporation of rigidity constraints in image registration. Loeckx et al. [238]
locally constrained a non-rigid FFD registration method by penalizing deviations of the
Jacobian from orthogonality. Staring et al. [239] imposed rigidity by introducing three
conditions. The first condition required the second derivatives of the transformation to be
zero. The second condition forced the orthonormality of the rotation matrix, while the third
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condition required the determinant of the Jacobian to be equal to one. Modersitzki [240] has
also investigated local rigidity in a variational setting. Modersitzki introduced a third term in
an objective function comprising a matching and a regularization term. The additional term
controlled the rigidity of the transformation by forcing its Jacobian to be linear, orthogonal
and orientation preserving.

III. Matching Criteria
We can distinguish three groups of registration methods according to how they exploit the
available information to drive the matching process (see Fig. 2).

On one hand, geometric methods opt for the establishment of correspondences between
landmarks. The landmarks are assumed to be placed in salient image locations which are
considered to correspond to meaningful anatomical locations. The underlying assumption is
that saliency in the image level is equivalent to anatomical regions of interest. Geometric
registration is robust with respect to the initial conditions and the existence of large
deformations. The solution of the registration problem is obtained in a relatively
straightforward way once landmarks have been extracted. However, locating reliable
landmarks is an open problem and an active topic of research. Most importantly, the sparse
set of directly obtained correspondences gives rise to the need for extrapolation.
Interpolation results in a decrease in accuracy as the distance from the landmarks increases.
The interest regarding geometric methods has decreased during the past decade.
Nevertheless, geometric methods constitute a reliable approach for specific applications.
They are of interest when intensity information is undermined due to the presence of
pathologies while geometric structures remain stable (e.g., retina registration [241]).
Geometric registration has also important applications in image-guided interventions [242],
[243].

On the other hand, iconic methods, often referred to as either voxel-based or intensity-based
methods, quantify the alignment of the images by evaluating an intensity-based criterion
over the whole image domain. When compared to the geometric methods, this approach has
the potential to better quantify and represent the accuracy of the estimated dense
deformation field. Nonetheless, it comes at the cost of increased computational expense.
Where geometric methods use a small subset of image voxels to evaluate the matching
criterion, iconic methods may use them all. Moreover, due to the fact that salient points are
not explicitly taken into account by the matching criterion, the important information they
contain is not fully exploited to drive the registration. In addition, initial conditions greatly
influence the quality of the obtained result due to the non-convexity of the problem.

Hybrid methods combine both types of information in an effort to get the best of both
worlds.

A. Geometric Methods
Geometric methods aim to register two images by minimizing a criterion that takes into
account landmark information. Before describing any methods, let us introduce the known
and unknown variables of the problem.

The known variables consist of two sets of landmarks (K = {κ1, ···, κn} and Λ = {λ1, ···,
λm}). These sets of landmarks can be created using a key-point detector strategy. The first
set of landmarks contains points belonging to the source domain ΩS, while the second
contains points that belong to the target one ΩT. The set of unknown variables comprises: i)
the correspondence, and ii) the transformation.
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Three classes of methods can be separated based on which unknown variable is estimated
[244] (see also Fig. 2): i) methods that infer only the correspondence, ii) methods that infer
only the spatial transformation, and iii) methods that infer both variables. Let us emphasize
that these are not the different components of geometric methods. Indeed, methods that infer
only the correspondence can be used in conjunction with an interpolation to establish dense
correspondences between two images. Nonetheless, these are different methods that exploit
geometric information in order to solve distinct problems.

In the remainder of this section, we are going to first give a brief presentation of strategies
for detecting point of interests. Then, we are going to continue with the presentation of
methods based on the previous classification. In this section, we interchangeably use the
terms landmarks, points of interest and key-points.

1) Detecting points of interest—The first step in geometric registration is to detect
points of interest. Images that contain sufficient details facilitate point detection. Medical
images are not as rich in details as natural images [4]. That is why, point detection has
mainly drawn the interest of the computer vision community. Landmark extraction has been
studied more in the case of 2D images and less in the case of 3D images. Before continuing,
let us refer the interested reader to a recent book by Goshtasby [10] where point-detectors
and descriptors are more extensively studied.

The detection and the matching of points of interest are inherently coupled with the way the
landmarks are described. The richness of the description is important in order to detect
salient points and better disambiguate between close potential candidates during matching.
Moreover, as the imaged objects undergo deformations, the appearance of the points of
interest will vary between images. Therefore, descriptors should be invariant to such
changes in order to allow robust detection and matching under deformations.

A detailed overview of the point detectors that have been proposed in the computer vision
literature is out of the scope of this review. Nonetheless, let us give a brief description of
some important key-point detector methods. Harris et al. proposed to identify corners by
exploiting the information conveyed by the structure tensor A [245]. Specifically, points of
interest are determined by considering the following quantity: det(A) − α Tr(A)2. In similar
lines, Shi and Tomasi [246] proposed to use the minimal eigenvalue of the structure tensor
in order to track points of interest.

Many extensions to the Harris detector have been proposed in the literature. Their main aim
was to impose a certain invariance. One may cite the approach proposed by Triggs [247] and
affine-invariant Harris and Hessian [248]. Affine invariance is important as it enables the
detection of points under affine transformations and a lot of efforts have been concentrated
in defining such detectors. An evaluation study comparing the most important affine
invariant detectors was presented by Mikolajczyk et al. [249]. For review of point detection
methods, the interested reader is referred to the works of Schmid et al. [250] and Triggs
[247]. Evaluation studies of point and corner detectors have been performed by Schmid et
al. [250] and Mokhtarian and Mohanna [251].

An alternative way to determine point of interests is by performing scale-space analysis and
detecting blob-like regions. The use of the Laplacian of Gaussian has been investigated to
perform this task. The image is convolved with different scales of a Gaussian kernel and at
each level the Laplacian operator is applied. Lindeberg proposed to track across scales the
local maxima/minima of the response of the Laplacian operator in order to detect key-points

2http://www.mindboggle.info/papers/evaluationNeuroImage2009/data/
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[252]. Kadir and Brady [253] proposed a multiscale approach for the detection of salient
regions. The algorithm was based on the use of local entropy to quantify saliency. Matas et
al. proposed a technique for blob detection [254]. A multiscale representation of image
regions was created by thresholding for different values in the intensity domain. These
regions were tracked and selected based on their area’s stability to change of the threshold
value.

Lowe [255] proposed to use the Difference of Gaussians, that is an approximation of the
Laplacian, to create a scale-space representation. Feature points were detected by extracting
the local minima/maxima of the this scale-space representation. The local Hessian
information was used to reject spurious points. Lowe’s Scale Invariant Feature Transform
(SIFT) algorithm to describe key-points was based on the gradient information at the scale a
point of interest was detected. For every pixel in a neighborhood of the key-point the
gradient magnitude was computed. Its value was weighted depending on its distance from
the key-point. From these values, gradient orientation histograms were computed and
normalized to account for photometric variations. Many variants of SIFT have been
proposed.

Ke and Sukthankar proposed PCA-SIFT [256] where the gradient image of the local patch is
projected to lower dimensional space constructed by Principal Component Analysis (PCA).
Mikolajczyk and Schmid proposed the use of Gradient Location and Orientation Histogram
(GLOH) [257]. The authors proposed to use a log-polar pattern for the spatial sampling and
PCA to decrease the dimensionality of the descriptor. Bay et al. [258] proposed the
Speeded-Up Robust Features (SURF) that are based on the application of the Haar wavelet
in the region of the point of the interest. Morel and Guoshen proposed an affine invariant
version of SIFT [259]. Invariance was introduced by simulating the latitude and longitude
angles.

For a comparison between the original SIFT and its variants see [260]. For a comparison of
the performance of different feature descriptors, the interested reader is referred to [257],
[261].

The development of such generic approaches to extract points of interest is less investigated
in medical image analysis. Nonetheless, a number of extensions of SIFT in higher
dimensions have been proposed. Cheung and Hamarneh extended SIFT in the nD domain
[262] and reported results for the 3D and 4D case. Ni et al. also presented an extension of
SIFT to the 3D image domain [263]. These approaches ignored the tilt-orientation
information. Allaire et al. [264] proposed another extension of SIFT in the 3D domain that is
fully orientation invariant. The authors proposed to create an additional histogram to
determine the tilt angle. Flitton et al. [265] proposed the use of a tilt histogram for the full
definition of the 3D orientation when extending SIFT in the 3D domain.

Cheung and Hamarneh [262] validated their extension of SIFT by matching landmarks
between 3D MR images and 3D + t CT images. Ni et al. used 3D SIFT to 3D ultrasound
volume stitching toward panorama creation [263]. Allaire et al. used 3D SIFT to register
planning CT data to cone bean CT data [264]. Niemeijer et al. used matched SIFT points in
order to tackle rigid registration between Optical Coherence Tomography (OCT) images
[266]. Han extended the SURF descriptor [258] to 3D and used it in a hybrid registration
framework [267]. Yang et al. used salient the scale invariant features [253] to tackle
geometric registration that infers both the correspondence and the spatial transformation
[268]. Toews and Wells used 3D scale invariant features for rigid model-to-image
registration [269]. We are going to discuss in more detail these methods in the section that is
more related to each one of them.
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To the best of our knowledge, feature detection in medical image analysis is performed in a
task specific manner, usually as product of a segmentation preprocessing step. Pennec et al.
extracted points and lines in surfaces through the use of differential geometry for rigid brain
registration [270]. In brain image registration, sulci information has been used in [89],
[271]–[273]. The cortical surface information has also served as feature in [273]–[275].

Retina image registration is another application where extracting geometric cues has been
investigated. The intensities in the nonvascular part of the image are homogeneous, while
important information is conveyed by the vasculature. Can et al. used the branching and
crossover points of the blood vessel structure as feature points [276]. Stewart et al.
additionally used the centerlines of the segmented vasculature [241]. For each centerline
point, its location, tangent direction and width were retained. Vascular structures are also
important in brain sift correction [277], pulmonary CT images [278] and liver registration
[279]. That is why a number of task-tailored detectors have been devised [280]–[283].

Lastly, fiducial markers are also used to guide image registration. Some resent studies
regarding the errors in the process are given in [284]–[286].

2) Methods that infer only the correspondences—Methods that belong to this class
aim to solve only the correspondence problem. In other words, these methods aim to assign
every point κi ∈ K to its corresponding point λj ∈ Λ. Establishing solely correspondences
can be useful when they are used in combination with an interpolation-based transformation
model to estimate dense displacements between the two images. Hybrid registration (see
Sec. III-C) is another case where such methods are of interest. One uses the sparse geometric
correspondences along with an iconic criterion to improve the estimation of the spatial
transformation.

Having established a discriminative and ideally deformation invariant description of the key-
points, correspondences may be established either by i) relying solely on the closeness of the
descriptions, or ii) by incorporating structural constraints. For a different classification as
well as the presentation of some earlier works in the field, the interested reader is referred to
[244].

a) Matching by descriptor distance: In the first case, the information contained by the
descriptor is used to determine the correspondences. There is an implicit assumption that the
descriptors are constructed so that the use of the Euclidean distance is sufficient to rank
potential matches. This construction can be achieved by appropriate rescaling of the feature
vector values. Based on an established ranking, different matching strategies may be
considered.

The simplest strategy is thresholding; points that exhibit a similarity higher than a threshold
are matched. The definition of the threshold can be achieved by studying the Receiver
Operating Characteristic (ROC) curve. A different strategy is to assign each point to its
closest candidate. Closeness is de-fined based on the Euclidean distance in the descriptor
space. As the probability of detecting a false positive is significant, a threshold is still
needed to control it. The third strategy is to take into account the ratio between the distance
with the nearest and the second nearest neighbor in the feature space. For an evaluation of
these strategies, the interested reader is referred to [257]. A fourth strategy consists of
verifying the uniqueness of the matching by evaluating the third criterion in both the
forward and backward direction [262], [266], [267]. A point a is matched to b if and only if
a is the best match for b, and b is the best match for a.
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While being intuitive and efficient, these matching approaches discard any information
regarding the spatial location of the key-points in the image. The incorporation of such
knowledge aims to better constrain the matching problem and further reduce the number of
erroneous correspondences.

b) Matching through geometric constraints: A popular way to introduce structural
constraints is by formulating the problem as graph matching. Leordeanu and Hebert [287]
proposed a spectral technique to solve the matching problem. Pairwise constraints were used
to preserve pairwise geometry. Berg et al. [288] formulated the problem of recovering
feature correspondences as an integer quadratic programming problem. Changes in the
length and the direction of vectors defined by pairs of features were penalized. Torresani et
al. also employed pairwise constraints to model local spatial coherence [289]. Moreover, the
authors showed that is possible to handle outliers during the optimization.

Despite the success pairwise constraints have had in many applications, they are limited
with respect to the relations they can model. Recently, a number of researchers have tried to
tackle the graph matching problem with higher order constraints. Duchenne et al. [290]
generalized the spectral matching method [287] to higher order constraints. A tensor power
iteration method was employed to solve the matching problem. Zass and Shashua in [291]
proposed a similar formulation, while using a different optimization method. Wang et al.
[292] proposed a higher-order graph matching formulation that incorporates learned
structural constraints in a segmentation framework. The inference was performed by a dual
decomposition based method [293].

3) Methods that infer only the spatial transformation—The aim of these methods is
to estimate the spatial transformation that, when applied, will align the two sets of
landmarks K and Λ. These methods do not aim to explicitly establish correspondences
between the two landmark sets. The output of the algorithm is the spatial transformation that
relates the two point sets and not an explicit assignment of the every point κi ∈ K to a point
λj ∈ Λ.

Two different classes of methods can be distinguished according to whether the
correspondences are known or not. The case of known correspondences is briefly presented
for completeness reasons. We focus more on the case of unknown correspondences because
it is more challenging and there is a number of recent algorithms that have been proposed to
tackle the problem.

a) Known correspondences: Two categories of methods should be considered (see Fig. 2).
The first one assumes that the correspondences are known in an exact or inexact way. This
problem is known as exact or inexact landmark matching. In the exact case, a smooth
transformation is sought so that the correspondences are respected exactly or a
regularization energy is optimized under correspondence constraints. In the inexact case, a
compromise between matching and smoothing the deformation is preferred.

Procrustes analysis is a popular method for shape analysis and is useful when homologies
between point-sets are given [165], [294]–[296]. In Procrustes analysis, a least-squares
distance is minimized. Given the correspondences, a solution that consists of translating,
rotating and scaling can be analytically calculated [295].

Given the correspondences, one may estimate non-rigid transformations by adopting an
interpolation strategy (Sec. II-B). Radial basis functions are able to produce dense
deformation fields for any spatial distribution of points. Moreover, approximating splines
are able to account for the uncertainty in the estimated correspondences [110], [131]. Guo et
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al. has presented a solution for both the exact and inexact landmark matching problems for
the case of diffeomorphic deformations [297]. Glaunes et al. have extended this method to
the case where the domain is a sphere [82].

b) Unknown correspondences: The second subclass opts to estimate the transformation
without concerning itself with the establishment of correspondences. These methods are
more robust to missing correspondences and outliers. One may distinguish two different
subclasses depending on the nature of the transformation that is estimated. The methods that
belong in the first category estimate a global linear transformation, while the methods in the
second category estimate a non-rigid transformation. For the description of some of the
methods that belong to the first class, we refer the reader to [244]. Because the aim of this
review is to describe the recent advances in deformable registration, we are going to focus
here on the second class of methods.

The estimation of non-rigid transformations was achieved through the use of alternative
representations of the geometric information. One possibility is to represent the point sets as
probability distributions. In this case, the non-rigid transformation is estimated by
minimizing a distance measure between the two distributions. Glaunes et al. [84] extended
the large diffeomorphic deformation framework in the case of distributions and unlabeled
point sets. Point sets were modeled as a weighted sum of Dirac measures and a kernel-based
error measure was used. Tsin and Kanade [298] proposed to register point sets based on a
measure called kernel correlation. The proposed measure is proportional to the correlation of
two kernel density estimates. Singh et al. presented a similar approach based on kernel
density correlation [299].

Gaussian Mixture Models (GMMs) are a common way to model distributions. Jian et al.
[300] modeled each point set using GMMs and used a L2 distance to compare them.
Myronenko and Song [301] recast registration as a probability density estimation problem.
The points of the first set were considered as the centroids of the GMMs which were fitted
to the data (or points of the second set) by likelihood maximization. Special care was taken
so that the centroids move in a coherent way. Roy et al. [302] modeled each feature of each
shape as GMM. A mixture model was used to represent the shape by assuming that features
are independent and identically distributed. A closed-form distance between the two
distributions was used. Wang et al. used a similar model to tackle the problem of the
simultaneous registration of multiple point sets [303]. Jensen-Shannon divergence was used
as the similarity metric. The drawback of this approach was that the problem could not be
solved in closed-form. Instead, a computationally and memory demanding estimation based
on the law of large numbers was required. In a subsequent work, Wang et al. [304]
alleviated this shortcoming by using the generalized L2-divergence that allows for a closed-
form solution. Tustison et al. also used a GMM with the difference that the Gaussians were
not isotropic [305]. The Havrda-Charvat-Tsallis (HCT) divergence was used to compare the
two distributions.

Another way to perform non-rigid registration of shapes and points without caring to
establish correspondences is by adopting a representation of the geometric information
based on the use of signed distance functions. In this case, the geometric primitives (e.g.,
landmarks or shapes) are assigned to zero distance, while the rest of the image elements are
assigned a signed value based on their euclidean distance from the geometric primitives.
Based on this representation, the optimal transformation can be estimated by performing
standard intensity-based registration.

Paragios et al. embedded shapes to the higher dimensional space defined by the signed
distance transform and register them by evaluating the sum of squared differences criterion
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over a narrow band around the shapes [306]. Huang et al. used the same shape
representation and investigated the use of Mutual Information to globally align them [307].
The sum of squared differences was used to non-rigidly register the shapes. Savinaud et al.
represented both silhouettes and landmarks using the Euclidean distance transform [308].
Leow et al. used implicit representation to tackle brain warping [83], [85]. Leow et al.
formulated the energy minimization problem as a curve evolution problem motivated by the
geodesic active contours [309].

4) Methods that infer both the correspondences and the transformation—The
last class of methods aims to estimate the correspondences and the transformation at the
same time. This is usually performed in an iterative way. First, one component is estimated,
and then the other component is refined based on this estimation.

One of the most well known approaches is the Iterative Closest Point (ICP) method
proposed by Besl and McKay [310]. Simplicity and speed are the main characteristics of this
method. Correspondences are defined based on a closest (in a geometric sense) neighbor
principle. Based on this estimation, the transformation is calculated. Then, a new closest
neighbor is assigned to each key-point and the process continues until convergence. ICP has
drawn a lot of attention and a number of researchers have tried to improve the method over
the years. Rusinkiewicz and Levoy reviewed different variants of ICP [311]. Liu has
reported an overview of the improvements over ICP [312]. Pottmann et al. presented a study
of the convergence properties of the ICP algorithm [313].

Penney et al. [314] proposed to add Gaussian noise to the positions of the points in one set
before each iteration of the original ICP. The magnitude of the noise was decreased as the
process advanced. The motivation behind this strategy was to improve the precision and
robustness of the algorithm. Granger and Pennec [315] proposed an approach named multi-
scale EM-ICP. The method is similar to standard ICP with a Mahalanobis distance. The
principal difference lies in the estimation of the transformation step where multiple matches
weighted by Gaussian weights were considered. The problem was solved in an Expectation-
Maximization fashion. Sharp et al. [316] investigated the use of shape features in addition to
the positional information when estimating the correspondences.

Stewart et al. [241] proposed a dual-bootstrap ICP method to register retinal images. The
method operated initially on small regions where accurate correspondences could be
obtained. Based on these correspondences low order transformations were estimated. In the
subsequent steps, the size of the regions as well as the order of the transformation model
were refined. The region refinement was based on the uncertainty of the transformation. Liu
[312] used collinearity and closeness constraints in order to increase the robustness and
accuracy of the algorithm for free form deformation. Estepar et al. [317] allowed for
anisotropic noise in both target and source point sets in order to render the algorithm more
robust. The problem was cast in the form of a Generalized Total Least Square problem.
Maier-Hein et al. [318] recently proposed a related work that accounts for localization error.

Let us note that ICP method, as well as its variants presented here, estimate a global linear
transformation. An important extension to non-rigid scenarios was proposed by Chui et al.
[244]. The proposed Thin-Plate Spline Robust Point Matching (TPS-RPM) algorithm
iterates between estimating the correspondence with the softassign method and computing
the transformation with a TPS model. Chui et al. [273] further refined the latter approach by
iteratively solving a clustering and matching problem.
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B. Iconic Methods
In iconic methods, the matching term integrates the evaluation of a dissimilarity criterion
that takes into account the intensity information of the image elements. Devising an
appropriate criterion is an important and difficult task. The criterion should be able to
account for the different physical principles behind the acquisition of the two images and
thus for the intensity relation between them. Moreover, the properties of the similarity
function (e.g., its convexity) may influence the difficulty of the inference and thus the
quality of the obtained result.

An ideal dissimilarity criterion would take low values when points belonging to the same
tissue class are examined and high values when points from different tissue classes are
compared. Moreover, an ideal criterion should be convex, allowing for accurate inference.
There is an important balance that should be struck between the convexity and ability to
distinguish between points belonging to different tissues. On the one hand, convexifying the
objective function will facilitate the solution of the problem. On the other hand, it may lead
to a less realistic problem because the problem is non-convex in its nature.

At this point, two cases should be distinguished regarding the iconic methods (see also Fig.
2): i) the mono-modal case, involving images from one modality, and ii) the multi-modal
one, involving images from multiple modalities.

1) Mono-Modal Registration—In the mono-modal case, the same imaging device is
used to capture the same type of information for both volumes.

a) Intensity-based methods: Different matching criteria can be devised depending on the
assumptions about the intensity relationship between the images. In the case that the same
anatomical structures are assumed to correspond to similar intensity values, the Sum of
Squared or Absolute Differences (SSD and SAD respectively) can be used as a matching
criterion. The choice between the two depends on the assumption regarding the noise that
corrupts the image intensities. In the case that a linear relation is assumed between the signal
intensities, the optimal criterion is Cross Correlation (CCor) and Correlation Coefficient
(CCoef) [1], [78], [319].

b) Attribute-based methods: Intensity information may lead to ambiguous matching and
local minima in the objective function when pixels of the same anatomical structure take
similar intensity values [119]. A number of researchers have proposed to increase the
dimensionality of the feature space in order to cope with this shortcoming. A way to
augment the feature space is by introducing local information through the use of attributes
that represent the geometric structure of the underlying anatomy. These approaches are
referred to as feature- or attribute-based ones. These approaches focus on a different way to
represent image information, while they use standard similarity measures.

Shen and Davatzikos [119] proposed the use of an attribute vector including Geometric
Moment Invariants in an attempt to capture local anatomical information at different spatial
scales. The motivation was that a rich enough attribute vector would be able to differentiate
voxels that would be considered the same based only on their intensity information. Thus,
fewer local minima would be present and better accuracy may be achieved. To further
reduce the effect of the local minima, they proposed a hierarchical scheme that successively
approximated the objective function by progressively increasing the number of voxels where
the matching criterion was evaluated.

The previous method requires a pre-segmentation step in order to introduce local spatial
information. Xue et al. proposed the use of Daubechies wavelets to populate the attribute
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vector in order to remove the requirement for segmentation [320]. The attribute vector was
constructed in a multiscale fashion to be translation and rotation invariant. Shen proposed to
tackle the above shortcoming by using local histograms and boundary information as
attributes [321]. Wu et al. [322] proposed to use a learning approach in two ways. First, the
authors proposed to learn the optimal scale for the geometric features for each voxel.
Second, they proposed to learn which voxels should be used to drive the registration
process. They proposed to take into account the saliency and the consistency of the
description of the voxels across the training data.

Local information may also be incorporated by exploiting the local frequency
representations obtained as response to Gabor filters [323], [324]. Gabor features have
proven successful for both mono-modal and multi-modal image registration as they are able
to capture information across different scales and orientations. Ou et al. [323] optimized the
Gabor features to be more distinctive and employed the notion of mutual saliency to let the
most reliable points drive the registration process. However, Liao and Chung [325] argued
that frequency spectra of MRI brain images often exhibit non-Gaussian behavior and thus
the choice of Gabor filters is not optimal. They proposed the use of symmetric alpha stable
filters and showed experimentally that they outperform Gabor features in non-rigid MRI
brain registration. Liao and Chung proposed a new feature for non-rigid registration in
[326]. The feature is a uniform spherical region descriptor and is invariant with respect to
rotation as well as monotonic gray-level transformation. Thus, it is able to account for the
presence of a bias field. Myronenko and Song proposed to use Residual Complexity (RC) to
account for complex spatially-varying intensity distortions [327]. This method attempts to
register two images by minimizing the number of basis functions that are required to code
the residual image.

2) Multi-Modal Registration—Multi-modal registration is more challenging as the
choice of an appropriate matching criterion is a harder task. Two main approaches have been
proposed to solve the problem (see also Fig. 2): i) use of information theoretic measures, and
ii) reduction of the multimodal problem to a mono-modal problem. The latter can be
achieved by either a) simulating one modality from another, or b) mapping both modalities
to a common domain. Here, we are going to focus primarily on information theoretic
approaches as they constitute the most frequently used way to tackle the challenges posed by
multi-modal registration. Reduction techniques will also be briefly discussed.

a) Information theoretic approaches: Information theoretic approaches were popularized
by two different groups, one in US [328], [329], and one in Belgium [330], [331]. Both
teams investigated the use of Mutual Information (MI) in multi-modal image registration.
The difference between their approaches is the way entropy is estimated. Wells et al. [328]
and Viola and Wells [329] used a non-parametric estimator. Collignon et al. [330] and Maes
et al. [331] used histograms instead. An important property of MI is its generality. MI does
not assume any relationship between the image intensities. For a survey on MI-based
registration methods, the interested reader is referred to the review by Pluim et al. [332].

The widespread use and study of MI has revealed some of its shortcomings. Primarily, it is
not overlap invariant. Thus, in certain cases it may be possible for mutual information to be
maximized when the images get misaligned. Studholme et al. proposed a Normalized
version of Mutual Information (NMI) in order to remedy this shortcoming [333]. Recently,
Cahill and co-workers elaborated upon the idea of overlap invariance and showed that
neither NMI, MI, CR, CCor nor CCoef are invariant to changes of overlap and proposed
appropriate invariant versions of the previous similarity measures in [334].
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The success of MI paved the way for the introduction of an important number of statistical
criteria in image registration. Roche et al. [335] argued that the generality of mutual
information can be a drawback when a reasonable hypothesis can be made regarding the
relationship between the intensities. They proposed to use the Correlation Ratio (CR) as the
appropriate similarity measure when the assumption of functional dependence between the
image intensities is valid.

Pluim et al. [336] compared the performance of a number of f-information measures
(including MI) in medical image registration. In the context of registration, f-measures
quantify the difference between the joint distribution of the intensities and the joint
distribution that would arise if images were independent. The most important finding of the
study was that there are f-measures that were able to perform better than MI at the cost of
more difficult inference.

The idea to use divergence measures to compare joint intensity distributions has attracted
significant attention and different divergence measures have been proposed for multimodal
image registration. Chung et al. [337] and Guetter et al. [338] used Kullback-Leibler
Divergence (KLD) to register multi-modal images. The joint intensity distribution was either
learned from aligned pairs of images or by segmenting corresponding anatomical structures.
Images got aligned by minimizing the divergence between the observed and estimated
distributions. Liao et al. used Jensen-Shannon Divergence (JSD) to compare learned
distributions in [339]. JSD is symmetric, bounded and true metric.

Another family of information theoretic approaches is built upon Renyi Entropy (RE) [340].
Let p be a random variable with n possible outcomes, then RE is defined as

, α ≥ 0 and α ≠ 1. pi denotes the probability of the outcome i. Based
on this entropy, the Jensen-Renyi divergence can be defined. It is symmetric, convex for α
∈ (0, 1) and is maximum when the distributions are degenerate. He et al. proposed its use for
image registration [341]. Neemuchwala et al. [342] used a Minimum Spanning Tree (MST)
to estimate the RE. Spanning graphs were also used by Sabuncu and Ramadge [343]. Martin
and Durrani introduced a generalization of KLD in [344]. The new divergence measure was
based on modified Bessel functions of the second kind and allowed for an efficient recursive
computation. The generalization of KLD was shown to perform better than the standard
measures of divergence.

Most of the aforementioned approaches share a common drawback; they are based on a
single pixel joint probability model. As a consequence, by changing the positions of the
pixels in a random way and evaluating the statistical criterion, the same similarity is
obtained [345]. This extreme case demonstrates that when spatial information is ignored,
registration may fail because the matching criterion is not able to quantify the difference
between the two images. Shading artifacts pose a more reasonable challenge where
information theoretic measures may fail [345]. To rectify this shortcoming, local context can
be introduced in the used criterion.

One way to relax the way statistical criteria are globally taken into account consists of
computing them locally, thus coping with the fact that the relation between the two image
intensities is non stationary. This approach was investigated by Hermosillo et al. [191] and
Karaçali [346]. Hermossilo et al. derived the Euler-Lagrange equations for MI, CR and
CCoef based on locally estimated probability distribution functions. Karaçali followed a
deterministic rationale to express the mutual information, joint entropy and the sum of
marginal entropies over small spherical regions in closed form.
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Local evaluation of mutual information has also been proposed by other researchers. For
instance, Studholme et al. [347] investigated the use of Regional Mutual Information (RMI).
The proposed similarity function is a linear weighted sum of local evaluations of MI and
aims to reduce the error caused by local intensity changes. Sundar et al. proposed a robust
way to compute MI [348]. The authors proposed to adaptively parcel late the image using
octrees. The size of the octants is proportional to the homogeneity of the underlying image.
These octant define the sampling strategy that is used to estimate the entropy. More samples
are taken in regions where the density of octants is higher. In this case, the octree parcelation
changes when objects move in the image and thus the estimation of the entropy changes.
The method was applied in rigid registration. Loeckx et al. [349] proposed to condition the
evaluation of MI upon the position. More recently, Zhuang et al. used locally evaluated MI
in combination with standard global MI [350]. Under their approach, the local evaluation of
the probability distribution function assesses pixels relatively to their distance from the FFD
control points.

An alternative way to introduce local context is by inserting spatial information. This has
been mainly achieved by incorporating additional features that capture local geometric
information, which results in higher order entropic measures.

Pluim et al. [351] used the intensity image gradient as an additional cue. The proposed
algorithm sought not only to maximize NMI but also intensity gradient information. This
was simply achieved by multiplying NMI with a measure that takes into consideration both
the intensity gradient magnitude and its orientation. This measure encourages the alignment
of strong intensity gradients.

Rueckert et al. [345] proposed to use second-order MI to encode local information by
considering co-occurrences of intensities between neighboring voxels. That approach
requires a 4D-histogram to estimate the information measures. To account for the high
dimension of the histogram and the curse of dimensionality, the number of bins was kept
reasonably small.

Russakoff et al. [352] proposed Regional Mutual Information that pushed forward the
previous idea by taking into account co-occurrences between regions. Moreover, an efficient
way to deal with the curse of dimensionality was presented. Assuming a high-dimensional
distribution, the data points were transformed so that they were independent in each
dimension. Then, the entropy was estimated by summing the distributed 1D entropies.
Bardera et al. [353] investigated NMI between blocks of image elements. The high-
dimensional NMI was estimated using random lines and a reduced number of bins.
Recently, a similar approach was presented by Yi and Soatto [354]. Their approach is based
upon learning a dictionary of image patches. Each image patch is represented by the label of
its closest dictionary element. Then, higher-order mutual information can be estimated by
using this label representation while accounting for the euclidean transformation that maps
the patch to the label.

Instead of explicitly taking into account neighboring voxels, another way to consider local
information is by extracting features that concisely describe regional characteristics. Holden
et al. [355] employed Gaussian scale space derivatives and incorporated them as an
additional information channel in a higher dimensional MI criterion. Gan et al. also
employed a multi-dimensional NMI criterion [356]. The authors proposed to construct a new
feature field by considering the average rate of intensity change between any two points in
the images. The proposed feature, named Maximum Distance-Gradient, is calculated for a
set of special points placed in important gradient areas by finding for which point the
average rate of intensity change is maximized. This feature contains information regarding
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the local edge content, the maximum rate of intensity change as well as the direction in
which this change happens. The magnitude of the MDG vector field formed the
supplementary channel, while its orientation was used as a second element in the similarity
function.

The approaches that employ a higher dimensional statistical criterion are troubled by the
curse of dimensionality. There are not enough samples to accurately calculate higher
dimensional statistical criteria. To be able to handle such calculations, most researchers
resort to crude implementation approximations such as limiting the number of histogram
bins. Nevertheless, ways to estimate high dimensional entropies have been proposed and
used to perform image registration.

Sabuncu and Ramadge [357] introduced spatial information through the construction of
feature vectors. The resulting high dimensional entropy was estimated with the use of the
MST estimator. Neemuchwala et al. used entropic graphs to tackle high dimensional α-MI
registration of ultrasound images [358]. Both approaches coped with global linear
registration. Staring et al. tackled deformable registration of Cervical MRI using high-
dimensional MI in [359]. Features were used to describe local geometric information and a
k-nearest neighbor graph was used to estimate the multi-dimensional MI.

Spatial information is not the only type of information that can be used to endow registration
with increased robustness and accuracy. Assuming that a prior step of segmentation has
been performed, tissue classification information may also help disambiguate between
voxels that belong to different tissues but share common appearance properties.

Studholme et al. [360] segmented regions by thresholding and labeling connected
components. The labels were used as an additional image and the matching criterion took
into account the difference between the entropies of each image and the joint entropy.

Knops et al. [361] performed a k-means clustering before registration. Based on this
clustering, voxels that shared similar intensity profiles but belonged to different anatomical
structures were mapped to different intensity bins during the construction of the histogram.
The new remapped intensities along with the initial one contributed to an NMI-based
similarity criterion.

D’Agostino et al. [362] took into account voxel class probabilities in the matching criterion
in order to tackle the labeled-to-labeled and intensity-to-labeled image registration. For the
labeled-to-labeled case, KLD was used to compare the distribution of the joint classes. For
the intensity-to-labeled registration, a version of MI was used with the difference that one of
the features is a class probability and not intensity.

b) Reduction to mono-modal registration: An alternative way to proceed with multi-
modal registration is to reduce the problem to a mono-modal one. By this reduction, one
aims to simplify the problem and facilitate its solution. There are two possible ways to
perform such a task. First, one can simulate one modality from another so that at the end
both images come from the same modality. Second, one can map both images to a third
domain where the registration will take place.

Simulating one modality from another can be achieved by taking advantage of the available
knowledge regarding the physical properties of the imaging device. In this case, the goal is
to model the imaging process. An alternative way is to exploit available co-registered pairs
of images. In this case, machine learning techniques can be used to capture the relation
between the intensities.
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Roche et al. [363] tackled ultrasound (US) to MR rigid registration by simulating an US
image from the MR one. The authors exploited MR intensities and MR gradient magnitude
information in order to predict US intensities. Complex phenomena such as US signal
attenuation and speckle were neglected. As a consequence, the simulated images roughly
resembled actual US images. Wein et al. [364] simulated an US image in order to tackle the
problem of CT-to-US rigid/affine registration. In order to simulate the US image, the authors
employed a model that was based on the physical principles of ultrasound. A locally
evaluated statistical criterion was used to drive the registration.

Michel and Paragios [365] used the mixture of experts methods to learn the conditional
probability of the target intensity given a source patch. The conditional probability was then
used to drive a Markov Random Field to regularize the simulated image.

In the second case, both modalities are mapped to a common space. As both modalities
image the same anatomical structure, the assumption can be made that the local geometry
would be helpful to establish meaningful correspondences. Thus, in principle, most methods
apply filters to extract geometrical information. This information is subsequently used in a
mono-modal registration setting.

Maintz et al. [366] tackled rigid multi-modal registration by using morphological tools to
create new gray-value intensity images. The proposed method applied morphological
opening and closing to extract edge information and then cross-correlation to align the
images. It resembles a surface registration with the difference that instead of having binary
values, real ones were used.

Droske and Rumpf [26] proposed an approach that was motivated by the mathematical
morphology theory that states that an image can be characterized uniquely by the entity of
its level sets. The common space was defined by mapping every point to its normalized
intensity gradient. The registration was formulated in a variational framework where a
morphological, contrast invariant, matching criterion was minimized under the influence of
an appropriate regularization term. Haber and Modersitzki [367] assumed that borders of
anatomical structures correspond to intensity changes and thus opted to exploit intensity
gradient information. An intermediate image domain was created by taking into account the
normalized intensity gradient field. This field conveys purely geometric information and
accounts for the fact that the gradient magnitude may vary among different modalities. The
similarity function was based on the difference in angles between the normalized gradient
vectors.

Butz and Thiran [368] investigated the use of edge related information to cope with affine
multi-modal registration. They used an edgeness operator that takes into account the local
edge variance to map both images to a common space. Mutual information driven
registration was then performed coupled with a multi-scale genetic optimization. Depending
on the nature of the images, other operators may be applied. Penney et al. used the
probability of vessel presence along with normalized cross-correlation to rigidly register
MRI with ultrasound images [369].

Gabor filtering has also been used to map the images to a common domain because of their
ability to capture local edge and texture information [370]. Liu et al. used local frequency
representations to tackle rigid/affine multi-modal registration [324]. These representations
are robust to edge strength and contrast differences. They were estimated by calculating the
local phase gradient of the most significant Gabor filter response. Then, the integral squared
error was chosen as the matching criterion. Jian et al. used local frequency maps for
deformable registration [371]. The authors used the Riesz transform to estimate the local
frequency information. Ou et al. used Gabor filters in deformable image registration [323].
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Specifically, the responses of the filters were used to construct a rich vector descriptor. The
images were aligned by minimizing a weighted sum of the vector differences.

Andronache et al. tackled the problems related to the estimation of MI in small patches in
[372]. Their strategy consisted of identifying the patches where the estimation of MI
becomes unreliable and then mapping them to a common pseudo-modality. The pseudo-
modality depicted only common structures in both images and was constructed by
decreasing the variance of the mapped intensities. In the intermediate domain, simpler
criteria may be used to drive registration.

Recently, Heinrich et al. [373] presented a new descriptor for multi-modal registration. The
driving idea behind the new descriptor is the use of similarities between neighboring patches
as features. This idea is borrowed from the image de-noising literature. Once the descriptor
is constructed a vector-difference can be used as a matching criterion. Wachinger et al. [374]
proposed two techniques that derive from information theory and manifold learning to create
the intermediate structural representation. The first one used the entropy of a patch centered
around the voxel to assign a new intensity value. The second method used Laplacian
Eigenmaps to embed the patches in a lower-dimensional manifold that preserves local
distances.

Lee et al. presented a supervised technique to learn the similarity measure for multi-modal
image registration [375]. The approach was formulated in a discriminative setting where the
goal is to optimize a similarity function so that correct correspondences are assigned high
values and erroneous ones low. Support vector machine regression was employed to learn
the metric.

Bronstein et al. presented a supervised technique whose aim was to learn a similarity metric
that discerns between corresponding and non-corresponding points [376]. This technique
maps both modalities to a Hamming metric space where true correspondences are likely to
have the same code, while wrong ones are not. The embedding was constructed by using
AdaBoost. Michel et al. investigated the application of the previous method to the problem
of 3D deformable registration [377].

It should also be noted that some of the techniques that were previously presented under the
information theoretic class of methods learn a similarity measure. The difference is that a
generative framework is employed. Given co-registered data, the joint distribution of the
intensities is learned. Then, either a maximum likelihood approach [378] or a divergence
criterion [337]–[339], [343] is used to compare the estimated and learned distributions.

C. Hybrid Methods
Iconic and geometric registration methods each bear certain advantages while suffering from
shortcomings. Hybrid methods try to capitalize on the advantages of each by using
complementary information in an effort to get the best of both worlds. Among hybrid
methods, the following subclasses may be distinguished based on the way the geometric
information is exploited, that is (see also Fig. 2): i) as initialization, ii) as constraint, or iii) in
a coupled fashion.

1) Additional information used independently—In the first subclass, each type of
information is taken into account in a separate and sequential way. Registration is
decomposed into two independent steps, each one acting on a different type of information.
Typically, geometric registration precedes, resulting in a rough alignment of the two images.
Subsequently, iconic registration is performed to refine the result.
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a) Exploiting landmarks information: Johnson and Christensen initialized their consistent
intensity algorithm with the result of a consistent landmark approach in [379]. The landmark
and intensity registration were solved independently in an iterative way until a criterion on
the number of iterations was met. Paquin et al. proposed a multiscale approach for hybrid
image registration [380]. The authors identified bony structure landmarks and used them to
coarsely align the images. In the finer levels, intensity-based deformable registration was
performed. Yin et al. [381] inferred the optimal displacements of a cubic B-spline FFD
model by alternately minimizing the sum of squared intensity differences and the distance
between corresponding landmarks.

b) Exploiting surface information: Liu et al. [274] proposed a hybrid algorithm that
combined surface and volume information to register cortical structures. The algorithm was
initialized with the result of a volumetric approach [119] and was subsequently refined using
a surface warping method. Postelnicu et al. [382] started from the geometric registration,
propagated the result to the whole volume using a biophysical model of the brain and refined
it with a non-linear optical flow registration algorithm. Gibson et al. [383] presented an
approach where brain images are initially registered using an intensity-based method [67]
and the result is refined by cortical surface registration [57]. Auzias et al. investigated the
use of the diffeomorphic sulcal-based cortical registration (DISCO) [92] in collaboration
with an intensity method (DARTEL [97]). The methods were used in a sequential manner.

c) Exploiting segmented structures information: Camara et al. [384] presented an
approach where the result of the registration of segmented structures is refined by iconic
registration.

2) Additional information used as constraint—Using one type of information
independently of the other to initialize the following step usually results in an increase of the
robustness of the registration procedure. However, there is no guarantee that the
correspondences that were established during the previous step will be preserved. To
overcome this limitation, a number of researchers have proposed to use the correspondences
that were estimated during the first step to constrain the estimation of the correspondences
during the following step. The spatial influence of these constraints varies from point-wise
to global.

a) Additional information used as soft constraint: The Hellier and Barillot proposed to
couple dense and landmark-based approaches for non-rigid brain registration in [272]. In a
first step, sulci were extracted and modeled as active ribbons. Then, a matching point
algorithm was used to establish geometric correspondences. These correspondences were
subsequently used in a robust function as constraints with local spatial support. Hartkens et
al. combined normalized mutual information with geometric cues to tackle brain registration
in [385]. Two kinds of geometric cues were employed, landmarks and surfaces. The
correspondences for the landmarks were fixed while the surface correspondences were
estimated in an ICP fashion. The ratio between the iconic and geometric terms was
calculated automatically based on their derivatives. Papademetris et al. [386] used sulcal
constraints to constrain iconic registration. A robust point matching method was used to
establish correspondences between the sulcal landmarks while accounting for outliers. The
matching criterion comprised an intensity similarity term and a term ensuring that the
estimated deformation field adhered to the point correspondences.

Rohr et al. [387] used the local correlation coefficient as intensity similarity criterion along
with the adherence to point correspondences to register 2D electrophoresis images. Avants
et al. [91] added a landmark inexact matching term in the LDDMM framework in order to
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compare human and chimpanzee cortices. Landmarks were provided manually to establish
either anatomical or functional correspondences between the two species.

Azar et al. proposed a user-guided registration method [388]. The proposed algorithm
iterated between estimating the transformation W that maps one image to another and the
estimation of two dense deformation fields. The landmark-based deformation field was
initialized by using the user provided landmark correspondences and TPS interpolation. In
subsequent iterations it was estimated by taking into account the landmark correspondences
and the transformation W of the previous iteration. The intensity-based deformation field
was estimated by minimizing an intensity based similarity criterion while taking into
account the transformation W of the previous iteration. The transformation W was given as
an adaptive combination of the intensity- and landmark-based deformation fields. Landmark
information was weighted more in their vicinity of landmarks. This method was able to
incorporate any intensity-based algorithm though it could not guarantee convergence.

Wörz and Rohr proposed a spline-based registration framework that uses both intensity and
landmark information [389]. The authors proposed to estimate a dense deformation field by
using a set of corresponding landmarks and their localization uncertainties. The solution of
the registration problem was a compromise between matching the image data, being regular
and being close to the landmark-based deformation field. Biesdorf et al. presented a similar
approach in [390]. The difference was that a local measure of mutual information was used
as an intensity criterion. Lu et al. [391] incorporated landmark information in the
diffeomorphic Demons registration algorithm [99]. The authors proposed to include the sum
of squared landmark Euclidean distances in the matching criterion along with point-wise
mutual information [392].

b) Additional information used as hard constraint: While most methods establish
geometric correspondences and then encourage the intensity driven deformation field to
comply with them without guaranteeing their preservation, Joshi et al. [393] imposed
geometric correspondences as hard constraints. First correspondences were established
between the cortical gray/white matter and gray/CSF surfaces using sulcal constraints. The
correspondences were then propagated to the whole cortical volume with the use of an
harmonic map. Following that, the dense deformation field was refined by considering
image intensity information under the hard constraint that the deformation is zero for the
previously registered surfaces.

3) Coupled approaches—In the previous approaches, the information flows in one
direction. By formulating the problems in a decoupled way, iconic registration may profit
from geometric methods either by being initialized closer to the solution or by being driven
by an extra force of adherence to correspondences. However, geometric registration does not
benefit from iconic registration because its solution is independently obtained. In this class
of methods, the two problems are unified and solved by minimizing a single objective
function simultaneously. As a consequence, the solution of each problem takes advantage of
the information coming from the other problem, and the final solution of the registration is
consistent with both types of information.

Cachier et al. [271] proposed such a universal energy function for the problem of
deformable registration. The coupling of the two problems was performed through the
introduction of an auxiliary smooth deformation field. The authors proposed to extract sulci
modeled as point distributions and use them in the coupled formulation to accomplish brain
registration. The problem was solved by iterating between three steps: i) solving for the
deformation that minimizes the iconic criterion, ii) solving the geometric problem by
establishing correspondences between the closest points of the geometrical structures, iii)
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and finally opting for a smooth deformation that respects both iconic and geometric
constraints.

Joshi et al. [394] proposed an approach to couple surface-and intensity-based registration.
An approach to tackle surface registration is to map both surfaces to a sphere and perform
registration there. Joshi et al. proposed to additionally map the interior brain volumes to the
interior of the spheres through harmonic maps. Then, correspondences can be established by
involving the complete sphere domain, or both the surface and iconic information at the
same time.

Sotiras et al. [148] presented a coupled approach that aims to simultaneously estimate the
correspondences between two landmark sets, and a dense displacement field parametrized
by cubic B-splines that maps one image space to another. The problem was formulated as a
first-order Markov Random Field described by a two-layer undirected graph. The graph
nodes represent the latent variables (displacement parameters and landmark
correspondences), while the edges represent the relationships between the variables. The
first layer of the graph modeled the iconic registration problem, while the second layer
modeled the geometric correspondence problem. Inter-layer edges imposed the consistency
between the two problems by approximating a coupling constraint.

Some of the limitations of this work were addressed in subsequent attempts. Honnorat et al.
[395] used the exact L2 distance to couple the geometric and iconic information for the
problem of guide-wire tracking. The inner product was developed to allow its modeling by
pairwise relations. Kurkure et al. [396] used learned higher-order potential for the layer of
the graph that models the geometric problem. As a consequence, the requirement for a
global linear registration was reduced.

Siless et al. [397] proposed a coupled approach based on the diffeomorphic Demons
algorithm [99]. The authors proposed to define the update field as the addition of an
intensity-based update field and a geometric-based update field. The intensity-based update
field was calculated as in [99]. The geometric-based update field was estimated by
minimizing the squared Euclidean distance between each point and its closest one. In a
subsequent work, Siless et al. extended log-domain diffeomorphic demons [47] to take into
account geometric information represented in the space of currents [398]. Cifor et al. [399]
also extended [47] to take into account geometric information.

IV. Optimization Methods
The aim of optimization is to infer the optimal transformation (see Sec. II) that best aligns
two images according to an objective function comprising a matching term (see Sec. III) and
a regularization term (see Eq. 1). As a consequence, the choice of the optimization methods
impacts the quality of the obtained result.

Optimization methods may be separated into two categories based on the nature of the
variables that they try to infer (see Fig. 3): i) continuous, and ii) discrete. The first class of
methods solves optimization problems where the variables assume real values. On the
contrary, methods in the second class solve problem the variables take values from a discrete
set. Both classes of methods are constrained with respect to the nature of the objective
function as well as the structure to be optimized. Heuristic and metaheuristic methods do not
bear the previous constraints. However, they do not enjoy theoretical guarantees regarding
the optimality of the solution.
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A. Continuous Optimization
Continuous optimization methods are constrained to problems where the variables take real
values and the objective function is differentiable. Image registration is a problem where the
application of continuous optimization methods has been studied. Continuous optimization
methods estimate the optimal parameters following an update rule of the following form:

(9)

where θ denotes the vector of parameters of the transformation, t indexes the number of
iteration, αt is the step size or gain factor, and g defines the search direction. The search
direction is calculated by taking into account both the matching and the regularization term.
Therefore, it should be written as gt(  (θt) + (θt)). Nonetheless, we prefer the use of
gt(θt) in order to reduce the clutter of unnecessary notation.

There are various ways to define the previous parameters. For example, the step size may be
constant, decrease with each iteration or such that it minimizes the objective function along
the search direction (exact or inexact line search). The search direction can be specified by
exploiting only first-order information or, for example, by also taking into consideration
second-order information. It is the choice of these parameters that distinguishes different
methods.

Commonly used methods include (see also Fig. 3): i) Gradient Descent (GD), ii) Conjugate
Gradient (CG), iii) Powell’s conjugate directions, iv) Quasi-Newton (QN), v) Levenberg-
Marquardt (LM), and vi) Stochastic gradient descent. Klein et al. [400] reported a study
comparing optimization strategies in image registration using mutual information as
similarity metric and cubic B-spline FFDs as deformation model.

1) Gradient descent methods—An approach to optimize the objective function is by
following the direction that decreases the energy, or its negative gradient. In other words, the
direction is given as g = −∇θ(θ). Klein et al. [400] studied two variants of gradient descent.
The first employed a function of the step size that decayed with each iteration, while the
second was based on the inexact line search algorithm of Moré and Thuente [401]. Other
line strategies include keeping the step size fixed, monotone line search [402], line search
and golden section search [403].

Gradient descent has been used to solve various registration problems. In the LDDMM
framework, usually posed in a variational setting, gradient descent is often used to solve the
problem [67], [72], [80]. Johnson and Christensen’s consistent registration approach [379]
as well as Rueckert et al.’s FFD registration algorithm [135] were also based on a gradient
descent optimization scheme. Without trying to give a full account of all registration
methods that employ gradient descent, let us also cite two more variational approaches [26],
[307].

2) Conjugate gradient methods—Techniques that have better convergence rates than
gradient descent have also been tested. Conjugate gradient descent methods try to exploit the
knowledge conveyed by the previous gradients and propose a search direction that does not
follow the new gradient but is conjugate to the previous direction. Thus, the direction now is
given as gt = f(∇θ(θt), gt−1), where f usually denotes a linear combination, gt = −∇θ(θt) +
βtgt−1. Different ways to define the weighting factor βt. Among the well-known formulas for
βt, one may cite the Fletcher-Reeves [404], the Polak-Ribière [405], the Polak-Ribière-
Polyak [406] and the Hestenes-Stiefel [407]. For a review on CG methods, the interested
reader is referred to the work of Hager and Zhang [408].
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Some examples of registration methods that use conjugate gradient descent as an optimizer
are [71], [82], [382], [393]. An interesting approach tailored for FFD image registration
using a preconditioned gradient scheme was presented in [409]. Tustison et al. [409]
observed that problematic energy topologies appear in the standard gradient schemes for
FFD image registration. This is caused by the nature of the uniform B-splines that leads to
disproportionate weighting of the control points. The authors proposed an approach to
account for this fact by normalizing the gradient based on the spline basis functions.

3) Powell’s conjugate directions method—Powell’s optimization approach or the
Direction Set method [403] is another method that has been used in image registration.
Powell’s method aims to minimize the objective function by following conjugate directions.
Contrary to the CG methods, the conjugate directions are calculated without the use of
gradient information. The basic procedure that Powell proposed sets the initial direction to
the basis vectors gi = ei, i = 1, ···, N; optimizes along each parameter axis independently

from the rest; performs the replacement  while adding  and iterates until
convergence.

Powell’s method is gradient free and has been applied in low degrees of freedom registration
tasks e.g., [331], [336], [337], [351], [356]. A drawback of Powell’s method is that it tends
to find search directions that are linearly dependent [403]. As a consequence, the
optimization fails even for moderate scale problems.

4) Quasi-Newton methods—Another class of optimization methods that has been tested
in registration applications is that of Quasi-Newton (QN) methods [403]. This class of
methods aims to accumulate information from the previous iterations and take advantage of
it in order to achieve better convergence. More specifically, these methods aim to estimate
the inverse Hessian matrix H−1(θ) and use it to define the search direction. Thus, the search
direction is defined as g = −Ĥ−1(θ) ∇θ(θ), where the ^ denotes that an approximation is used
(the true Hessian is used in the case of Newton’s or the Newton-Raphson method). Two
main algorithms exist in this category, the Davidon-Fletcher-Powell (DFP) and the Broyden-
Fletcher-Goldfarb-Shanno (BFGS). BFGS is considered to be more efficient than DFP
[410], [411].

A version of BFGS that uses less memory (L-BFGS) was tested in [400]. Other efforts
where researchers have investigated the use of Quasi-Newton methods in image registration
can be found in [100], [152], [303], [349].

5) Gauss-Newton method—An optimization method of the same family is the Gauss-
Newton (GN) algorithm. It is devised to solve optimization problems involving sum of
squared function values. This is of particular interest for image registration as this type of
objective function is common when aligning images of the same modality. This algorithm
does not require the computation of second derivatives. Instead, the Hessian is approximated
by ignoring derivatives higher than first order with Ĥ = 2JTJ where J denotes the Jacobian.
The search direction is now given as g = −(JT(θ)J(θ))−1∇θ(θ).

The Gauss-Newton optimizer has been used in [79], [230], [240]. The Gauss-Newton
algorithm is frequently used in the Demons registration framework to optimize the similarity
measure when tackling mono-modal registration [41], [44], [56], [57], [99]. In the demons
registration setting, an extension of Gauss-Newton by Malis [43] was employed to derive
the symmetric demons forces [47], [50]. This algorithm exploits more knowledge with
respect to the problem at hand. More specifically, it takes advantage of the fact that when
the images are aligned, the gradient of the source can be approximated by the gradient of the
target. Recently, Zikic et al. [412] proposed a preconditioning scheme that improves the
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convergence speed of registration algorithms. The scheme is based on normalizing the
length of the point force vectors.

6) Levenberg-Marquardt algorithm—A method related to the previous one that has
been applied to the problem of image registration is the Levenberg-Marquardt algorithm.
The search direction in this case is given by: g = −(Ĥ−1(θ) + ζI) ∇θ(θ). I is the identity
matrix and ζ is a weighting factor that regulates the performance of the optimizer with
respect to its speed and stability. By decreasing its value, greater speed may be achieved. At
the limit, when ζ equals to zero, we fall to the previous algorithm. On the contrary, when its
value increases, the stability increases as well.

For some applications of the LM approach the interested reader is referred to [97], [136],
[155], [156]. Based on the LM algorithm, Thevanez and Unser [413] proposed an efficient
optimizer for mutual information driven registration. Kybic and Unser [136] compared the
LM algorithm with GD, GD with a quadratic step size estimation and CG to find that it
performs the best for an FFD registration task.

7) Stochastic gradient descent methods—The aforementioned techniques cover the
deterministic gradient methods that are used most often to solve the optimization problems
that arise when tackling image registration. In medical image registration, the computation
of the derivative information can be computationally demanding because of the great
dimensionality of both the data and the search space. Thus, to alleviate the computational
burden, researchers have investigated the use of stochastic gradient approaches. Their update
rule is based on an approximation of the gradient, or θt+1 = θt + αtĝt(θt).

The variants of the stochastic gradient approach differ with respect to how the gradient is
approximated. In [400], three approaches were discussed. The first one, referred to as
Kiefer-Wolfowitz (KW), approximates the gradient by a finite difference scheme. The
second one, known as Simultaneous Perturbation (SP), estimates the gradient by perturbing
it not along the basis axis but instead along a random perturbation vector Δ whose elements
are independent and symmetrically Bernoulli distributed. The last method was proposed by
Robbins and Monro (RM). It is more general, in the sense that it only assumes that an
approximation of the gradient exists. This method uses a step-size that decreases with time
in order to decrease the inaccuracy. [400] estimated the gradient by using a subset of the
image voxels sampled uniformly. The conclusion of [400] is that the RM method performs
best.

The RM method was extended in two subsequent works by employing adaptive image-
driven strategies. Klein et al. [414] presented an adaptive step mechanism, while Bhagalia et
al. [415] proposed an edge-driven importance sampling to improve the gradient
approximation. Stochastic gradient descent schemes have been applied in image registration
settings that employ lower degrees of freedom deformation models (e.g., global linear or
cubic B-spline FFDs). For some applications of stochastic gradient see [147], [328], [329],
[359].

8) Constrained optimization methods—All the previous approaches aim to solve an
unconstrained optimization problem. As discussed in Sec. II-D, constrained optimization
problems arise when trying to impose task-specific conditions on the deformation field. The
solution of such optimization problems is more challenging. The optimization strategies that
are usually employed transform the constrained to an unconstrained one that can be solved
efficiently. For example, a log-barrier method was used in [230]. Another way to solve the
problem is by augmenting the dimensionality of the problem using the method of Lagrange
multipliers [235], [237].
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B. Discrete Optimization
Discrete optimization methods are constrained to problems where the variables take discrete
values. Recently, discrete Markov Random Field (MRF) formulations have been
investigated to tackle image registration.

An MRF is a probabilistic graphical model represented by an undirected graph , consisting
of set of vertices  and a set of edges (  = { , }). The set of nodes encodes the random
variables, while the set of edges represents the relationships between the variables. The
random variables take values in a discrete label set . The corresponding energy is the sum
of all unary potentials  of the nodes p ∈  (i.e., data cost) along with the pairwise
potentials  (i.e., regularization cost) modeled by the edges connecting nodes p and q (i.e,
pq ∈ ). Minimizing the previous energy results in an assigning to each random variable p

an optimal label .

Discrete optimization methods can be classified according to the techniques they employ
into three categories (see also Fig. 3): i) graph-based methods, ii) message passing methods,
and iii) Linear-Programming (LP) approaches.

1) Graph-based methods—The first class of methods is based on the max-flow min-cut
principle [416] that states that the maximum amount of flow that can pass from the source to
the sink is equal to the minimum cut that separates the two terminal nodes. The two terminal
nodes are defined as source and sink depending on the direction of their edges. The cost of a
cut is given by the sum of the weights of the edges that were removed.

Greig et al. [417] showed how to calculate the exact maximum a posteriori estimation for
the case of the Ising model through a single graph cut computation. Boykov et al. [418]
proposed the α-expansion algorithm that extended [417] to the multi-label case. This
algorithm starts from an initial labeling and then checks every label to see if the energy may
be decreased by allowing any set of nodes to change their label to the one under study. The
optimal labeling at each iteration is estimated by performing a single graph cut.

In medical image registration, α-expansion is the optimizer used by Tang and Chung [419],
So et al. [420]–[422] and Liao and Chung [326]. The authors constructed a graph the size of
the image assuming a 6-connectivity scheme and densely sampled the solution space
resulting in a large set of candidate solutions. The size of the graph as well as the large label
set resulted in important computational times.

2) Belief propagation methods—Belief Propagation (BP) methods [423] constitute the
second class of methods. These methods are based on local message exchange between the
nodes of the graph and then backtracking to recover the best solution to the problem. Belief
propagation methods can provide an exact inference for chain and tree-structured graphs. In
the case of graphs that contain loops, Loopy Belief propagation methods have been shown to
converge to satisfactory solutions [424], [425].

A drawback related to the messages is the large storage requirement when a large set of
solutions is involved. Yang et al. [426] proposed a constant space O(1) BP method that does
not depend on the number of labels. The basic idea of the method was to a apply a coarse-to-
fine strategy to the solution space so that the overall complexity remains constant. The
numbers of labels decreased from coarser to finer levels by keeping only the ones for whose
the cost was the smallest. Heinrich et al. [427] applied this technique in a discrete
registration setting to recover respiratory motion.
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Shekhovtsov et al. [428] proposed an efficient MRF deformation model for non-rigid 2D
image matching by decomposing the original grid graph into two isomorphic layers. The
nodes of each layer modeled the displacement along each axis. Nodes placed at
corresponding positions in each layer were connected with an edge that modeled the data
matching term. Intra-layer edges encoded the regularization term. This decomposition
reduced the number of operations required to update the messages. Lee et al. extended this
model to the 3D case [429]. The graph was decomposed into three layers and ternary
interactions were used to model the data cost.

Liu et al. [430] used the 2D decomposed model [428] along with loopy BP to match SIFT-
descriptors along the flow vectors. Kwon et al. proposed a similar approach that matches
dense local descriptors using a higher-order smoothness prior [431].

3) Linear-Programming approaches—The last class of methods comprises techniques
that are based on Linear Programming. These approaches aim to solve an LP relaxation of
the original problem that is in general NP-hard. Komodakis et al. [432], [433] cast the
original problem as a linear integer program and proposed a method (FastPD) that takes into
account the primal and dual LP relaxations.

Glocker et al. [434], [435] used FastPD to infer the displacements of a grid-based
deformation model in image registration. Hard constraints on the set of solutions, imposed
through the construction of the label set, enforced the diffeomorphic property on the
deformation field despite the use of a simple first-order regularization term. Glocker et al.
extended this method to tackle atlas-based registration in [436], and to knowledge-based
registration with the use of learned pairwise relations in [177]. Ou et al. [323] used it to
solve feature-based registration, while Sotiras et al. to solve diffusion tensor registration
[437] and symmetric iconic registration [145].

Sotiras et al. used this optimizer to tackle group-wise registration [438], [439]. Savinaud et
al. extended this method to multi-channel images [440]. These methods modeled the
registration problem with the use of an n-layer graph where intra-layer edges encoded a
smoothing term and inter-layer edges encoded the data matching term. Zikic et al. [441]
tackled linear registration by using FastPD to perform inference in a graph where each node
encoded a different parameter of the transformation, while the edges relating them modeled
their interactions.

TRW-S or sequential tree-reweighted message passing is also based on an LP relaxation.
The algorithm aims to solve the dual of the relaxation that provides a lower bound of the
optimal MRF energy. The goal is to maximize the lower bound that is given by a convex
combination of trees.

Shekhovtsov et al. [428] used it to optimize their efficient decomposed MRF deformation
model. Kwon et al. [442] used TRW-S to perform inference in a factor graph that models
higher-order spatial smoothness constraints for image registration. Sotiras et al. used it to
perform hybrid registration [148]. Lee et al. [443] used TRW-S to solve the optical flow
estimation problem based on an adaptive convolution kernel prior.

C. Miscellaneous
The continuous and discrete methods are limited regarding what objective functions and
structures they can optimize. Heuristic and metaheuristic methods, on the contrary, can
handle a wide range of problems and explore large solution spaces. Nevertheless, they are
not able to provide any guarantee with respect to the optimality of the solution.
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1) Greedy approaches—Making at each step the locally optimal choice is an approach
that has been used in image registration. This greedy strategy requires the definition of a set
of plausible solutions and a score function. Being gradient free and intuitive, it was applied
to tackle the problem of feature-driven image registration. The candidate sets were
constructed in a multi-resolution fashion while a standard similarity measure was used.
More information about the practical implementation of this strategy can be found in [119],
[274], [320]–[322].

2) Evolutionary algorithms—Evolutionary algorithms have been used in medical image
registration to mainly tackle linear registration [444]. These algorithms derive from the
theory of evolution and natural selection. They start from an initial set of solutions that are
ranked according to a fitness measure and a subset of them is chosen in a stochastic fashion
to generate a new set of solutions. The new set of solutions is generated by adapting the
current set following a nature-motivated strategy such as mutation. In [400], the covariance
matrix adaptation method was investigated [445] and found to converge slowly. For a more
elaborated presentation and comparison of state-of-the-art evolutionary methods for image
registration the interested reader is referred to the work of Santamaria et al. [444].

V. Discussion
Deformable registration is a mature field that has been extensively studied. As a
consequence, an important body of research work has been devoted to its improvement and
application in clinical settings. In this review, we have made an effort to provide a
comprehensive survey of the recent developments in the field of deformable medical image
registration. Our approach was structured around the three core registration components, i)
deformation models, ii) matching criteria, and iii) optimization methods. For every
component, particular emphasis was placed on classifying the methods appertaining to it
according to their theoretical foundations. We focused our presentation on giving an account
of recent approaches that have not be be covered in previous reviews. Let us now summarize
the contents of this paper.

In Sec. II we have presented the transformation models for deformable image registration.
We discussed physics-based models (see Sec. II-A) which provide transformations that
comply with a physical model. The transformation is estimated through the solution of a
PDE that can be computationally demanding. Interpolation-based methods were presented in
Sec. II-B). These models do not assume, in general, that the deformed object behaves
according to a natural law. Instead, they exploit interpolation and approximation theory to
construct the deformation field. In Sec. II-C we discussed knowledge-based approaches that
exploit our knowledge regarding the problem through the use of more informed priors at the
cost of being constrained to well-defined settings. We concluded this section by presenting
constraints (see Sec. II-D) that have been devised to enforce certain properties on the
resulting transformation.

In Sec. III we have classified similarity criteria based on the type of information they
exploit. We have presented intensity-based matching criteria in Sec. III-B according to
whether they tackle mono-modal or multi-modal registration problems. In the mono-modal
case, the use of standard similarity criteria (e.g., SSD or SAD) involving either intensities or
multi-channel data extracted from the image through the application of filters is well-
accepted by the community. In the multimodal case, the use of information theoretic
measures has become the prevalent solution. In Sec. III-A, we presented registration
approaches that exploit geometric information. The presentation was organized according to
the unknown variables the methods estimate. We concluded the section by presenting
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coupled approaches that opt to bridge the gap between the iconic and the geometric methods
(see Sec. III-C).

The third component of registration, optimization, is discussed in Sec. IV. Registration is an
inherently continuous problem. As a consequence, continuous optimization methods have
been the main driving force behind registration algorithms. These methods are presented in
Sec. IV-A. Recently, discrete optimization techniques have been proposed to tackle
deformable registration. We discuss these approaches in Sec. IV-B. Heuristic and
metaheuristic approaches are briefly introduced in Sec. IV-C.

Image registration is a particularly active field of research. New methods, spanning all
aspects of registration, are devised that tackle the shortcomings of the existing ones resulting
in a fluid research domain. In this review, we opted to map the research field by reporting
the recent advances related to the methodological aspects of registration.

An important topic that was not covered is the evaluation of registration methods.
Evaluation of registration methods is a particularly difficult problem because of the lack of a
“ground truth”. The absence of knowledge of correspondences between images makes the
quantitative validation of the registration performance a challenging task. Moreover,
because of the different requirements of the applications that are based on deformable
registration, the notion of correspondence should vary according to application context,
aiming to properly characterize error [446].

Nonetheless, the increasing availability of annotated data sets (e.g., the LONI Probabilistic
Brain Atlas [447], the Internet Brain Segmentation Repository - IBSR [448], the CUMC12
dataset2 acquired at the Columbia University Medical Center, the MGH10 dataset2 scanned
at the MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging) has made
possible evaluation studies like the one by Klein et al. [449]. Moreover, the development of
evaluation projects for image registration (i.e., Non-rigid Image Registration Evaluation
Project - NIREP [450]) and the increasing understanding regarding the use of surrogate
measures for the measurement of the accuracy of registration [451] will further facilitate the
comparison between different algorithms.

Landmark correspondences can also be used for the evaluation of registration accuracy.
Manual identification and matching of landmarks across scans is a tedious task. As a
consequence few datasets are available providing such reference standards. One may cite the
POPI model [452] containing 40 landmarks in every frame of a 4D lung CT acquisition, or
the 4D CT dataset made available by Castillo et al. [453] with landmarks in the maximum
inhale and exhale phase. The development of dedicated methods for reference standard
construction [454] and the organization of registration challenges [455] create the necessary
conditions for objective comparison of registration methods.

The increased availability of data along with the publication of the source code of the
methods will lead to evaluation studies that will allow us to quantify the performance of the
registration components and draw conclusions regarding their applicability in specific
registration settings.
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Fig. 1.
Classification of deformation models. Models that satisfy task-specific constraints are not
shown as a branch of the tree because they are, in general, used in conjunction with physics-
based and interpolation-based models.
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Fig. 2.
Classification of matching criteria.
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Fig. 3.
Classification of optimization methods.
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