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Abstract
Using simultaneous measurements from multiple channels of a radio-frequency coil array,
magnetic resonance inverse imaging (InI) can achieve ultra-fast dynamic functional imaging of the
human with whole-brain coverage and a good spatial resolution. Mathematically, the InI
reconstruction is a generalization of parallel MRI (pMRI), which includes image space and k-
space reconstructions. Because of the auto-calibration technique, the pMRI k-space reconstruction
offers more robust and adaptive reconstructions compared to the image space algorithm. Here we
present the k-space InI (K-InI) reconstructions to reconstruct the highly accelerated BOLD-
contrast fMRI data of the human brain to achieve 100 ms temporal resolution. Simulations show
that K-InI reconstructions can offer 3D image reconstructions at each time frame with reasonable
spatial resolution, which cannot be obtained using the previously proposed image space minimum-
norm estimates (MNE) or linear constraint minimum variance (LCMV) spatial filtering
reconstructions. The InI reconstructions of in vivo BOLD-contrast fMRI data during a visuomotor
task show that K-InI offer 3 to 5 fold more sensitive detection of the brain activation than MNE
and a comparable detection sensitivity to the LCMV reconstructions. The group average of the
high temporal resolution K-InI reconstructions of the hemodynamic response also shows a relative
onset timing difference between the visual (first) and somatomotor (second) cortices by 400 ms
(600 ms time-to-peak timing difference). This robust and sensitive K-InI reconstruction can be
applied to dynamic MRI acquisitions using a large-n coil array to improve the spatiotemporal
resolution.
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Introduction
A radio-frequency (RF) coil array with multiple receivers has been first invented to improve
the signal-to-noise ratio (SNR) of MRI (Hyde et al., 1986; Roemer et al., 1990). However,
other than SNR improvement, the RF coil array leads to the development of parallel MRI
(pMRI) using simultaneous acquisitions from all channels of an array to achieve accelerated
data acquisition and/or spatial resolution enhancement (Pruessmann et al., 1999; Sodickson
and Manning, 1997). The reconstruction of pMRI data can be categorized into either image
space methods, such as SENSE (Pruessmann et al., 1999), or k-space methods, such as
SMASH (Sodickson and Manning, 1997) and GRAPPA (Griswold et al., 2002). In
functional brain imaging, pMRI has been dominantly combined with the gradient-echo
echo-planar imaging (EPI) (Mansfield, 1977) to achieve a higher sampling rate, a higher
spatial resolution (Preibisch et al., 2003), reduced geometrical distortion (Schmidt et al.,
2005), or a reduced acoustic noise level (de Zwart et al., 2002).

The image reconstruction of pMRI may need explicit coil sensitivity to complete the image
reconstruction. Examples include SMASH, SENSE, SPACE-RIP (Kyriakos et al., 2000).
However, accurate coil sensitivity map estimation is practically difficult. Error in the
estimated coil sensitivity maps can propagate to the reconstructed images. To mitigate this
challenge, auto-calibration scans (ACS) have been suggested by AUTO-SMASH (Jakob et
al., 1998), PILS (Griswold et al., 2000), and GRAPPA (Griswold et al., 2002). These
methods empirically measure a small portion of the fully gradient encoded data, which
satisfy the Nyquist sampling theorem to give the desired spatial resolution and FOV, in
order to estimate the necessary coefficients to interpolate missing data in the accelerated
scans. Since the coil sensitivity embedded in the ACS is implicitly used in the image
reconstruction, the reconstructed images are immune from any errors arising from explicit
coil sensitivity map estimation. Furthermore, GRAPPA and PILS can achieve coil-by-coil
reconstructions. Individual coil images can be later combined in different ways to achieve
the optimal performance.

Without considering the finite wavelength effect governed by the electromagnetic theory,
increasing the number of channels in an RF coil array can further improve the
spatiotemporal resolution of pMRI (Ohliger et al., 2003; Wiesinger et al., 2004). Previously,
we have introduced the magnetic resonance inverse imaging (InI) to achieve the ultra-fast
functional MRI (fMRI) of the human brain in tasks (Lin et al., 2006; Lin et al., 2008b; Lin et
al., 2008c). Mathematically, InI generalizes the pMRI reconstructions from an over-
determined linear system to an under-determined linear system in order to reduce the time in
k-space traversal and therefore to achieve an unprecedented temporal resolution. InI is
closely related to the MR-encephalography (Hennig et al., 2007). Our previous InI
reconstructions using either the minimum-norm estimates (MNE) or the linear-constraint
minimum variance (LCMV) beamformer spatial filtering are both implemented in the image
space. To reveal only the relative changes in the task fMRI, we can reconstruct images by
the “in vivo sensitivity” approach (Sodickson, 2000), which uses the fully gradient encoded
data themselves as the coil sensitivity maps. However, we cannot reconstruct individual
images at each time instant since the pure coil sensitivity maps cannot be measured.

In this study, we investigate the k-space InI (K-InI) reconstruction, which is based on the
GRAPPA reconstruction of the pMRI data. The goal of K-InI is to offer robust and sensitive
coil-by-coil reconstruction of the highly accelerated fMRI acquisitions using a large-N coil
array. Different from MNE or LCMV InI reconstructions, we expect that K-InI can offer 3D
volumetric reconstruction at each time instant in addition to the estimates of dynamic
changes and the associated statistical inferences. Mathematically, K-InI is a generalization
of GRAPPA reconstruction to allow reconstruction of data from an underdetermined system
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in k-space. In the following sections, we introduce the K-InI reconstruction and
quantitatively characterize the spatial resolution and localization accuracy of the K-InI using
synthetic simulation data. We then demonstrate the acquisitions and K-InI reconstructions in
an event-related visuomotor fMRI experiment for high temporal resolution (100 ms) 4D
dynamic statistical characterization of task-related BOLD-contrast responses.

Methods
Participants

Ten healthy participants with normal or corrected-to-normal vision were recruited for the
study. Informed consent for these experiments was obtained from each participant approved
by the Institutional Review Board of our institutes.

Task
Our visuomotor task required the participants to flex right hand fingers upon perceiving a
high-contrast hemifield (right field) visual checkerboard reversing at 8 Hz. The motor task
was sequential finger flexion between D1–D3, D1–D5, D1–D2, and D1–D4 (D1: thumb,
D2: index finger, D3: middle finger, D4: ring finger, D5: little finger). The purpose of this
rather complicated motor task is to elicit a stronger hemodynamic response. The
checkerboard subtended 20° of visual angle and was generated from 24 evenly distributed
radial wedges (15° each) and eight concentric rings of equal width. The stimuli were
generated using the Psychtoolbox (Brainard, 1997; Pelli, 1997). The reversing checkerboard
stimuli were presented in 500 ms epochs and the onset of each presentation epoch was
randomized with a uniform distribution of inter-stimulus intervals varying from3 to 16 s
(average inter-stimulus-interval: 10 s). For event-related fMRI data analyzed using a general
linear model (GLM), it is useful to jitter the event onsets in order to optimize the estimates
of the HRF by reducing its variance (Dale, 1999). Twenty-four stimulation epochs were
presented during four 240 s runs, resulting in a total of 96 stimulation epochs per participant.
The choice for 3 to 16 s inter-stimulus intervals was made by consideration of the duration
of the HRF and practical concerns on accommodating 24 stimulus events within a 240 s run.

Image data acquisition
MRI data were collected with a 3 T MRI scanner with a 32-channel coil array (Tim Trio,
Siemens Medical Solutions, Erlangen, Germany). The InI reference scan was collected using
a single-slice echo-planar imaging (EPI) readout, exciting one thick coronal slab covering
the entire brain (FOV 256 ×256 ×256 mm; 64×64×64 image matrix) with the flip angle set
to the Ernst angle of 30° for the gray matter (considering the T1 of the gray matter is 1 s at 3
T). Partition phase encoding was used to obtain the spatial information along the anterior–
posterior axis. The EPI readout had frequency and phase encoding along the superior–
inferior and left–right axes respectively. We used TR=100 ms, TE=30 ms, bandwidth=2604
Hz and a 12.8 s total acquisition time for the reference scan, consisting of 64 TRs and two
repetitions allowing the coverage of a volume comprising 64 partitions.

For the InI functional scans, we used the same volume prescription, TR, TE, flip angle, and
bandwidth as for the InI reference scan. The principal difference was that the partition phase
encoding was removed so that the full volume was excited, and the spins were spatially
encoded by a single-slice EPI trajectory, resulting in a coronal X/Z projection image with
spatially collapsed projection along the anterior–posterior direction. The K-space InI
reconstruction algorithm, described in the next section, was then used to estimate the spatial
information along the anterior–posterior axis. In each run, we collected 2400 measurements
after collecting 32 measurements in order to reach the longitudinal magnetization steady
state. A total of four runs of data were acquired from each participant.
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In addition to the InI reference and functional scans, structural MRI data for each participant
were obtained in the same session using a high-resolution T1-weighted 3D sequence
(MPRAGE, TR/TE/flip=2530 ms/3.49 ms/7°, partition thickness=1.33 mm,
matrix=256×256, 128 partitions, FOV=21 ×21 cm). Using these data, the location of the
gray–white matter boundary for each participant was estimated with an automatic
segmentation algorithm to yield a triangulated mesh model with approximately 340,000
vertices (Dale et al., 1999; Fischl et al., 2001; Fischl et al., 1999). This mesh model was then
used to facilitate mapping of the structural image from native anatomical space to a standard
cortical surface space (Dale et al., 1999; Fischl et al., 1999). To transform the functional
results into this cortical surface space, the spatial registration between the InI reference and
the native space anatomical data was calculated by FSL (http://www.fmrib.ox.ac.uk/fsl),
estimating a 12-parameter affine transformation between the volumetric InI reference and
the MPRAGE anatomical space. The resulting spatial transformation was subsequently
applied to each time point of the reconstructed K-InI hemodynamic estimates to spatially
transform the signal estimates to a standard cortical surface space (Dale et al., 1999; Fischl
et al., 1999). Before the spatial transformation, the reconstructed K-InI data were spatially
smoothed with a 10 mm full-width-half-maximum (FWHM) 3D Gaussian kernel. This
smoothing kernel was chosen to be 2.5 times the native image resolution (4 mm in our
reference scan).

Spatiotemporal reconstruction of the InI data
The collection of the InI data set across all channels in an RF coil array and across all time
points can be considered as two separate processes in both spatial and temporal domains.
Physically, the unknown spin density distribution was spatially modulated by the sensitivity
profiles (B1 maps) of the individual channels of the RF coil array; The time series
measurements at each channel of the coil array recorded the MR signals including stimulus-
induced response as well as other confounds over time, such as system drift and motion
artifacts. In this section, we describe how to process the spatiotemporal InI data in order to
ultimately yield 3D whole brain images at a high temporal resolution. First, we first
processed the data in the time domain in order to derive the coefficients of the hemodynamic
response functions (HRF) basis function for each channel of the coil array separately. This
was implemented by using Finite-Impulse-Response (FIR) basis function and General
Linear Model. FIR basis functions assume no particular shapes of the HRF and they are
particularly appropriate for InI, which provides a high degree of freedom in the time domain
to characterize dynamic responses. Second, we reconstructed the distribution of the HRF
basis function coefficient in the spatial domain using our proposed k-space InI
reconstruction (K-InI). Volumetric reconstruction was calculated from the collection of the
basis function coefficients across all channels of the RF coil array at each individual
particular time instant. Using the FIR basis, we can get the 3D distribution of the HRF
covering the whole brain at each TR (100 ms in this study) independently. This first
temporal then spatial reconstruction of the InI data is mathematically valid because these
two processes are linear. One practical benefits of this order of reconstructing the InI data is
that the temporal reconstruction can first reduce the dataset size by eight fold (2400 samples
per run to 300 samples, the number of our FIR basis function over the duration of our
chosen HRF).

Temporal InI reconstruction: estimation of the coefficients of the HRF basis function in the
projection image

The accelerated InI acquisition and the reference scans were processed from k-space to the
image domain, using 2D and 3D fast Fourier transformations, respectively. The reference
scan in each channel of the coil array was synthetically averaged across partitions in order to
simulate the InI acquisitions, whose phase are subsequently used in the accelerated InI
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acquisition in order to estimate the magnitude changes in the BOLD-contrast fMRI (Lin et
al., 2008b; Lin et al., 2008c). After phase-correction of the projection image in the original
time series from each coil array channel, we calculated the HRF for each image voxel in the
projection images. Specifically, we used a general linear model (GLM) and a basis set of
finite impulse response (FIR) to estimate HRF elicited by the stimulus in each channel of the
coil array. The basis set was temporally synchronized to the onset of the visual stimulus,
spanning a 30 s period that included a 6 s pre-stimulus baseline and a 24 s post-stimulus
interval. Given TR=100 ms and a chosen 30 s as the duration for HRF, we had 300 unknown
coefficients for the FIR basis functions. HRFs were estimated from the coefficients for each
FIR basis in the GLM using a least squares minimization procedure. Additionally, we
estimated the noise covariance matrix across different channels of an RF coil array based on
the GLM residuals. After model estimation, the coefficients of the FIR basis set across the
30 s epoch for each of the 32 receiver channels were used for the subsequent K-InI
reconstruction. At each time instant, the FIR coefficient is a complex number including
phase and magnitude information and it represents the instantaneous BOLD-contrast in one
particular channel.

Spatial InI reconstruction: estimation of the spatial distribution of the HRF basis function
using k-space InI (K-InI) reconstruction

Review of parallel MRI reconstruction in k-space—The parallel imaging
reconstruction in the k-space has been proposed by several approaches, such as SMASH
(Sodickson and Manning, 1997) and GRAPPA (Griswold et al., 2002). Essentially, these
methods estimate those k-space samples not acquired in the accelerated scan by linearly
interpolating from other k-space samples acquired in the accelerated scan. Without the loss
of generality, we take the GRAPPA formulation here to express the not-acquired k-space

data  with phase encoding ky = k + m·Δk from coil channel j as a linear
combination of the acquired k-space data with ky = k from all channels in the accelerated
acquisition:

(1)

where nc is the total number of channels in the coil array; βc,m is the unknown fitting
coefficients for coil channel c to estimate the data in channel j with phase encoding m·Δk;
and Δk is the minimal separation in the phase encoding direction (ky) defined by the FOV,
spatial resolution and the Nyquist sampling theorem. Importantly, Eq. (1) describes a linear
relationship between data with different phase encodings within a vicinity, which consists of
a “block” in GRAPPA (Griswold et al., 2002). For example, a block of four describes the
relationship between any four consecutive phase encoding lines using Eq. (1) with m
ranging between 1 and 3. One feature of GRAPPA and auto-SMASH (Jakob et al., 1998) is
that if some data at the RHS of Eq. (1) are actually acquired for some blocks, βc,m can be
first estimated via optimizing the residuals of Eq. (1). And subsequently βc,m can be used to
interpolate the not-acquired k-space data in other blocks where the RHS of Eq. (1) are not
acquired in the accelerated scan. The data at the RHS of Eq. (1) used for estimating fitting
coefficients are called “auto-calibrating scans (ACS)”.

(2)
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Collecting all data in different frequency encoding steps and all channels in the coil array,
we can write Eqs. (1) and (2) using matrices and vectors.

(3)

(4)

In practice,  and AACS are first empirically measured to estimate βj,m, which are then
multiplied with AACC constructed from the collected data in the accelerated scan to

reconstruct the missing data . As the number of channels in a RF coil array increases,
the matrices AACS and AACC will grow horizontally. However, data with different frequency
encodings can be included as independent measurements in Eq. (4) and usually a few blocks

are used in the auto-calibrating scans. Thus  and AACS will also grow vertically as the
results of data concatenation. Overall, Eq. (4) usually represents an over-determined linear
system as the results of a “long” AACS (more rows than columns). Subject to a constraint,
such as the minimal residual power, the fitting coefficients βj,m, can be estimated uniquely.

InI reconstruction in k-space (K-InI)—The InI acquisition achieves massive
acceleration by collecting minimal k-space data (one phase encoding line) using a large-N
coil array. Therefore the matrix AACS in Eq. (4) is no longer a “long” matrix but a “wide”
matrix, since InI usually uses a coil array with many channels and totally 1 block including
all partition encodings is collected in the auto-calibrating scan. Practically, AACS includes
all data collected with zero partition encoding across all channels of the coil array during the

auto-calibrating scan. The auto-calibrating scan also provides  describing the
measurement at channel j and at m partition encoding steps. Given the size of AACS and

, the estimation of βj,m is translated from an over-determined linear system to an under-
determined linear system. We cannot uniquely determine the values of βj,m using the
constraint of minimizing the residual power. However, we can impose another constraint of,
for example, minimizing the power of the fitting coefficients, in order to estimate βj,m. This
gives the following optimization formulation:

(5)

which can be solved analytically

(6)

where ‖•‖2 is the ℓ2-norm, the superscript H denotes the complex conjugate and transpose, C
is the noise covariance matrix among different channels in the coil array, and λ is a
regularization parameter. From our previous experience, λ can be reasonably estimated from
the pre-specified signal-to-noise ratio (SNR) of the measurement (Lin et al., 2006; Lin et al.,
2008b):

Lin et al. Page 6

Neuroimage. Author manuscript; available in PMC 2013 August 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(7)

Here Tr(•) represents the trace of the matrix. This is similar to the minimum-norm estimate
(MNE) of the InI data (Lin et al., 2006; Lin et al., 2008b). However, the reconstruction is
now done in the k-space directly without involving explicit coil sensitivity estimates.

Provided with the estimated β̂j,m and empirically collected AACC in the accelerated scan, the

missing data  can be reconstructed sequentially for individual channels and individual
m·Δk in the phase encoding direction using Eq. (3). Note that the same set of β̂j,m was used
to reconstruct all HRF coefficients for the same channel (channel j) in the coil array at
different time instants. And different sets of the β̂j,m were used to reconstruct the time series
at different channels. The combined images can thus be calculated using the sum-of-squares:

(8)

where FT{•} denotes the discrete Fourier transform.

Statistical inference
In fMRI, we are interested in estimating the statistical significant activity spatiotemporally.
Eq. (6) can be used to reconstruct InI data in 3D time point by time point. To facilitate
statistical inference, the noise levels in the reconstructed images were estimated from the
baseline data after K-InI reconstruction. A baseline noise volume can be calculated after
defining a baseline interval, which was chosen as 4 to 0 s before the onset of the visual
stimulus in our study. Using these noise estimates, dynamic statistical parametric maps
(dSPMs) can be derived as the time-point by time-point ratio between the K-InI
reconstruction values and the baseline noise estimates. dSPMs should be t distributed under
the null hypothesis of no hemodynamic response (Dale et al., 2000). When the number of
time samples used to calculate the noise covariance matrix C exceeds 100, the t distribution
approaches the unit normal distribution and the individual t-statistics approximate z-scores.

Spatial resolution analysis
We performed numerical simulations to evaluate the spatial resolution and localization
accuracy of the K-InI reconstructions. The reference data and the noise covariance matrix
were obtained from empirical data. The simulation procedure began by creating a source
ROIs. These ROIs were manually selected at the primary visual (V1), auditory (A1), and
somatomotor (SM1) cortices in the left hemisphere. We then estimated the ideal
measurements from all coil array channels by computing the product of the reference data
and individual ROI. We created 100 realizations of synthetic noise with spatial coloring
according to the noise covariance matrix. At a specified SNR, the noise was scaled and
subsequently added to the idealized measurements to generate the synthetic measurements.
K-InI reconstructions were subsequently calculated using Eqs. (3) and (4).

The performance of the reconstructions was quantified using a similar procedures in MEG/
EEG source analysis (Dale et al., 2000; Liu et al., 1998; Liu et al., 2002) and our previous
InI analysis (Lin et al., 2008b; Lin et al., 2008c). We estimated the average point spread
function (aPSF) at each location to quantify the spatial distribution of the reconstruction:

Lin et al. Page 7

Neuroimage. Author manuscript; available in PMC 2013 August 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(9)

where |di| indicates the distance between the reconstructed source at location i and the center
of mass of a simulation ROI ρ⃑. χK-InI(i) represents vector entries in the K-InI reconstruction
with values exceeding 50% of the maximum, and l is the number of voxels to be spatially
resolved by the K-InI reconstructions. This procedure allows the estimation of the full-
width-half-maximum (FWHM) of the point spread function.

Similar to other InI reconstructions, since K-InI is an ill-posed inverse problem, the
reconstructed image may not accurately reflect the original spatial distribution of spins
contributing to the actual measurements. Thus, we next explored the localization accuracy
by estimating discrepancies between the reconstructed and original sources. Quantification
of localization accuracy was done by calculating the distance between the center of mass of
the K-InI reconstruction and the simulated sources:

(10)

where r⃑(i) is the 3D coordinate of the K-InI reconstruction. Since the K-InI inverse depends
on both the SNR and the measurement data, the SNRs were parametrically varied from 0.1
to 100. For comparison, we also calculated the reconstructions using the minimum-norm
estimates (MNE), the dynamic statistical parametric maps of the MNE (MNE-dSPM) (Lin et
al., 2008b), and the spatial filtering using the linear constraint minimum variance (LCMV)
beamformer (Lin et al., 2008c).

The image reconstruction and statistical analysis procedures were implemented in Matlab
(The Mathworks, Natick, MA).

Results
Spatial resolution analysis of simulated data

Spatial resolution—Fig. 1A shows the MNE, MNE-dSPM, LCMV, and K-InI
reconstructions of the simulation source at the primary visual cortex (V1). To illustrate the
spatial distribution, each reconstruction was linearly scaled between 1 and 0. As SNR varies
between 1 and 100, all four reconstructions show high values around the occipital pole.
However, compared to MNE, MNE-dSPM and LCMV, only K-InI gives the reconstruction
with a comparable size to that of the simulation source. This feature of preserving the size of
the simulated source was found stable at low (SNR= 1) and high (SNR= 100) SNRs. To
further quantify the reconstruction performance, we calculated the aPSF and SHIFT metrics
shown in Figs. 2A and B. As SNRs increase from 0.1 to 100, generally the aPSF metrics
decrease for all reconstruction methods. We found that K-InI reconstructions have the aPSF
smaller than 6 mm across SNRs. And K-InI has the smallest aPSF compared to MNE, MNE-
dSPM, and LCMV reconstructions at individual SNRs. This suggests that the K-InI
reconstruction has the least spatial dispersion. Fig. 2B shows the SHIFT metrics. The
localization accuracy of the MNE and LCMV reconstructions closely correlates with the
SNRs: a smaller SHIFT metric is found at a higher SNR. K-InI does not have such a strong
dependency on SNR and it has the smallest SHIFT metric compared to MNE, MNE-dSPM,
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and LCMV reconstructions at individual SNR. The localization precision for K-InI was
found to be approximately 2 mm as SNR higher than 1. MNE-dSPM generally has a smaller
SHIFT value than MNE at low SNRs as the result of noise normalization. However, at
higher SNR (SNR>20), MNE can outperform MNE-dSPM. Overall, K-InI has the highest
localization accuracy (SHIFT<2 mm).

In addition to the visual cortex, we also investigate the spatial dispersion and localization
accuracy of the primary somatosensory cortex (SM1). Fig. 1B shows the location of the
simulated SM1 source and MNE, MNE-dSPM, LCMV, and K-InI reconstructions. Similar
to the results in the V1 simulations, all reconstructions are reasonably localized at the pre-
central gyrus, central sulcus, and post-central gyrus. Notably, K-InI reconstructions have a
similar size compared to the simulated source, while MNE, MNE-dSPM, and LCMV
reconstructions have smaller and distorted size. Again, the ability of K-InI reconstruction to
preserve the size of the simulation source is constant over SNRs (SNR>1). Figs. 2C and D
summarizes the aPSF and SHIFT metrics for the simulation over the SM1. For MNE, MNE-
dSPM and LCMV the spatial dispersion quantified by aPSF shows a strong SNR
dependency. K-InI reconstructions have stable aPSF across SNRs, presumably due to the
auto-calibrating process in the reconstruction (Eqs. (3) and (4)). As SNR is higher than 1, all
methods have aPSF less than 10 mm. Still, K-InI outperforms all other reconstructions by
giving aSPF approximately 5 mm at all SNRs. The localization accuracy of MNE and MNE-
dSPM are worse than that of LCMV and K-InI reconstructions. Both LCMV and K-InI have
mislocalization of less than 3 mm as SNR is higher than 1. K-InI reconstructions give
smaller SHIFT metrics at all SNR than other reconstructions. The difference in aPSF and
SHIFT metrics between V1 and SM1 is likely attributed to the relative position between the
simulated source and the coil array. A shorter distance between the simulated source and the
coil array, such as SM1, can provide more disparate spatial information from all channels of
the coil array and therefore helpful to correctly reconstruct the image.

Reconstruction of individual time frame
Fig. 3 shows the reconstruction of one time point of the K-InI reconstruction at different
axial slices. For comparison, the MNE reconstruction and the sum-of-squares image in the
reference scan are also shown. LCMV cannot reconstruct the individual volumes of the time
series acquisition, since the LCMV reconstructions require a data covariance matrix, which
can only be estimated from an interval of the time series containing the dynamic changes
(Lin et al., 2008c). Such a data covariance requirement imposes a constraint of time
integration and thus it is contradictory to the goal of obtaining instantaneous reconstructed
volumes here. As expected, due to the auto-calibrating nature and the coil-to-coil
reconstruction, K-InI reconstructions shows much improved quality in terms of anatomical
features and constrict compared to the MNE reconstruction. Note that the InI acquisition
generated projection images along the left–right direction. Therefore the K-InI
reconstructions still demonstrate spatial smearing as the result of resolving the spatial
information solely from the RF coils.

Functional activation
Strong task-related activity effects can also be easily seen in group average time series. Fig.
4 shows the medial view of 100 ms duration frames of InI MNE-dSPM, LCMV, and K-InI t-
values at the occipital lobe averaged over 10 participants. The individual frames of this
group average show progressively increasing activity starting at 1.0 s after the stimulus
onset (critical threshold t>2; uncorrected p-value<10−2). The signal returns to baseline
approximately 6.5 s after stimulus onset. Both MNE-dSPM and K-InI reconstructions show
similar spatial distribution of the visual cortex activity. But MNE-dSPM reconstructions are
relatively weaker than K-InI reconstructions. Note that both LCMV and K-InI
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reconstructions offer very similar estimates of visual cortex activity. Particularly, some
deactivation (negative values of the statistical maps) was found around the occipito-parietal
junction in K-InI reconstructions. This deactivation location was found to be consistent with
the default mode of the brain during the resting state (Raichle et al., 2001).

The visual cortex time course of the MNE-dSPM, LCMV, and K-InI t-values from the group
average are shown in Fig. 5. The shape of this average time series resembles between each
other. We observed a reduced variability in the group time course as compared with the
individual time courses. Peak task-related activity was found 3.5 s after stimulus onset. Both
LCMV and K-InI reconstructions show an approximately three-fold increase in detection
sensitivity compared to the MNE-dSPM reconstructions (LCMV: 5.8, K-InI: 5.6; MNE-
dSPM: 1.8).

We also concerned that the spatial smoothing procedure can affect the reconstructions. The
smoothing kernel we used is about 2.5× larger than the inherent resolution (4 mm). Such a
smoothing kernel is common to fMRI analysis with EPI data, where the nominal in-plane
spatial resolution was about 3–4 mm and commonly a Gaussian kernel with full-width-half-
maximum of 6 to 12 mm was used to spatially smooth the data in order to increase the
signal-to-noise ratio. The smoothing was done after the K-InI reconstruction. And the
purpose of the spatial smoothing is for visualization only. To demonstrate the reconstruction
without smoothing, we also calculated the K-InI reconstruction without smoothing (Fig. 5).
The results show similar time courses of the peak t statistics (smoothed K-InI: 5.6;
unsmoothed K-InI: 5.5). Thus we conclude that the spatial smoothing only changes the
results marginally.

We also studied the hemodynamic responses at the motor cortex. Fig. 6 shows the lateral
view of 100 ms duration frames of InI MNE-dSPM, LCMV, and K-InI t-values around the
central sulcus averaged over 10 participants. Two clusters of positive responses at the
premotor cortex and primary somatomotor cortex were found in both MNE-dSPM and K-InI
reconstructions. Comparing between these reconstructions, we found that K-InI
reconstructions show much stronger significant responses than MNE-dSPM: between the
interval of 3.0 and 5.0 s after the onset of the visual stimulus, MNE-dSPM values are around
2.0, while K-InI values are around 7.0. LCMV reconstructions offer the highest values of
statistical significance of somotomotor cortex activation. But the spatial distribution of the
activated somatomotor cortexis very similar between LCMV and K-InI reconstruction. All
three reconstructions also detected the deactivation in the secondary somatomotor cortex
around the inferior part of the central sulcus.

Fig. 7 shows the time courses of MNE-dSPM, LCMV, spatially smoothed and spatially un-
smoothed K-InI reconstructions over the somatomotor cortex. Qualitatively, all time courses
are similar, while minor differences exist still: MNE-dSPM peaks at 3.5 s after the onset of
the visual stimulus, and K-InI peaks at 4.0 s after the onset of the visual stimulus. LCMV
time courses offer the highest peak t statistics estimate (10.2). Consistent with the visual
cortex time courses, we found that K-InI reconstructions give 3.6-fold higher statistical
significance than MNE-dSPM: the peak value of smoothed K-InI is 9.1, the peak value of
unsmoothed K-InI is 8.9, and MNE-dSPM peak value is 2.5.

Since K-InI reconstructions depend on a regularization parameter to estimate the
interpolation coefficient (Eqs. (3) and (4)), we studied the sensitivity of the K-InI
reconstructions by scaling the regularization parameter by 10 or 0.1 fold. Fig. 8 shows the
respective time courses at visual and somatomotor cortices. We found that the time courses
at either visual or somatomotor cortices are not sensitivity to the regularization parameter:
the peak values of the time courses at the visual cortex changes by +5% ((peak t
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statistics=5.1) or -12% (peak t statistics=6.1) at SNR=0.3 and SNR=30 respectively.
Similarly, the peak values of the time courses at the somatomotor cortex changes by +4%
((peak t-statistics=8.1) or -5% (peak t statistics=7.4) at SNR=0.3 and SNR=30 respectively.
The shapes of the time courses are similar to each other when we increased or decreased the
regularization parameter by 10 folds.

Fig. 9 shows the scaled group average time courses at the visual and somatomotor cortices.
To further quantify the timing information of these two waveforms, we first linearly scaled
the time courses between 0 and 1. Subsequently, we fitted a canonical hemodynamic
response function using two shifted and scaled exponential functions (Glover, 1999). Taking
the time arriving the 50% of the peak value as the onset timing, we found that the visual
cortex time course leads the somatomor cortex time course by 400 ms (visual cortex: 1.4 s;
motor cortex 1.8 s). The timings of reaching the peak value for these two time courses are
3.7 and 4.3 s for visual and motor cortex respectively. Interestingly, both ways of
quantifying the timing of two time courses are consistent with the sequential activation of
first visual and then somatomotor cortices in this visuomotor task.

Discussion
In this study, we introduce the k-space InI (K-InI) reconstruction method to restore the
volumetric spatial distribution of dynamic changes of brain activity and the associated
statistical inference in a visuomotor fMRI experiment. K-InI is a generalization of GRAPPA
reconstruction. K-InI estimates the missing k-space data in the accelerated scan by
interpolating the acquired k-space data in the accelerated scan with coefficients estimated
from the k-space ACS collected in the reference scan. The results of the detecting functional
brain activity (Figs. 4–7) show that K-InI generally outperforms the MNE. LCMV
reconstruction can offer a more sensitive detection of brain activity in the visual cortex, but
it cannot generate an instantaneous image, since there is no data covariance matrix for each
instantaneous measurement and such a data covariance is a necessary parameter in LCMV
reconstruction. The better reconstructions from K-InI can be attributed to the ACS, which
enforces the data consistency within the data across different channels in a coil array and
different k-space locations. On the contrary, the MNE and LCMV reconstructions do not
have such an auto-calibrating procedure. For the analysis of fMRI time series, we
reconstructed the HRF basis coefficients. The chosen FIR basis actually corresponded to one
instantaneous measurement. We were aware that the deconvolution in the GLM can actually
correlate (or un-correlate) the measurements across time points implicitly. We were also
aware that it is possible to use HRF basis functions showing stronger correlations (for
example, the canonical hemodynamic response function and its temporal derivative).
However, we want to indicate that the selection of the basis function in the analysis of fMRI
time series is independent of the K-InI reconstruction in the spatial domain. And K-InI can
actually provide instantaneous reconstruction. This was clearly demonstrated in Fig. 3,
where one time point reconstructed volume was shown. From this demonstration we can see
that K-InI reconstruction is not restricted to reconstructing the coefficients of the HRFs at
each time point relative to a stimulus.

The assumption of K-InI
The derivation of K-InI assumes that the power of the reconstructing coefficients (Eq. (5)) is
minimal, which is a pure mathematical constraint. This assumption enables us an analytical
and computationally efficient algorithm to estimate these coefficients (Eq. (6)).In Eq. (7) the
regularization coefficient was theoretically derived from the tradeoff between the “signal”
quantified by the auto-calibrating data and the “noise” C. And we have empirically validated
that the regularization parameter suggested in Eq. (7) marginally modulated the
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reconstructed images (Lin et al., 2008b). K-InI reconstruction, like other InI reconstructions,
further assumes that there is no motion between the measurements of the reference auto-
calibrating data and the accelerated data. This sensitivity to motion is further discussed in
the following “Spatiotemporal coupling of the K-InI reconstruction” section.

Applying K-InI to fMRI time series, we used the same FIR basis functions at all spatial
locations in the projection images. As expected, it is possible that two functionally active
areas were spatially overlapped in the projection images. However, given the simultaneous
measurements from all channels of the coil array, we separated the spatially collapsed
functional activity into a 3D space. This was practically achieved by estimating different
coefficients for these FIR basis functions for different channels of the coil array individually
using the reference auto-calibrating data (across all channels) and the accelerated InI data
(for each individual channel separately). Repeating the reconstruction for different channels,
K-InI provided 3D whole-brain HRF estimates at each individual coil (coil-by-coil
reconstruction). We then combined different channels by calculating the sum-of-squares.
Here we assume that the spatial information afforded from the coil array can spatially
resolved the projection image along the partition encoding direction. And this spatially
information was time-invariant during the experiment. From our data reported here using a
32-channel coil array at 3 T, this assumption was empirically valid.

Relationship between K-InI, MNE and LCMV
Mathematically, the estimation of interpolation coefficients in the K-InI reconstruction (Eq.
(4)) is identical to the InI MNE image reconstruction. We attempt to estimate the unknown
coefficients (in K-InI) or image (in InI MNE) in an under-determined linear system. Since
there are infinite sets of solutions satisfying the forward problem, additional constraint must
be imposed to obtain a unique solution. Here the constraint in K-InI is minimizing the power
of the coefficients interpolating the missing k-space data. And the reason for choosing this
constraint is that it gives a robust solution in an analytic form. Alternatively, we may apply
LCMV spatial filtering to estimating the coefficient βj,m in Eqs. (3) and (4) The performance
of such k-space LCMV spatial filtering needs further investigation to quantify its spatial
resolution and localization accuracy.

While closely related to each other, the MNE, LCMV, and K-InI are still different in a few
aspects. First, the K-InI can reconstruct individual coil images, which include phase and
magnitude. Both MNE and LCMV reconstructions are image space methods and they offer
only one composite image reconstruction. This distinction is not prominent in this study
because fMRI is mostly interested in the BOLD-contrast, which differentiates between the
baseline and the active states of the human brain based on the difference in image magnitude
(Kwong et al., 1992). The phase information, however, can be crucial for other experiments.
For example, in our preliminary report on a spectroscopic imaging experiment (Lin et al.,
2008a), where repetitive measurements are required to collect off-resonance free induction
decays from different metabolites or macromolecules, only K-InI can achieve reasonable
reconstruction. The MNE fails to reconstruct spectroscopic imaging data because the phases
derived from the ratio between the reconstructed real and imaginary parts of the image are
distorted significantly. This is consistent with our spatial resolution analysis (Figs. 1 and 2)
and reconstructed images (Fig. 3). The other difference between K-InI and MNE/LCMV is
that K-InI offers the flexibility to obtain reconstructed image for individual coil in the array.
However, the coil-by-coil reconstruction can be computationally demanding since the
amount of calculation is in proportion to the number of channels in an coil array. As the
number of channels in an RF coil array increases from conventional 8, 12, 32, and even 96
channels (Wiggins et al., 2005), this computation can be particularly demanding. This
technical challenge can be partially mitigated by the array compression approach (Buehrer et
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al., 2007): Via a few linear combinations of channels in the array, the spatial information
can be effectively preserved, while the total number of “channels” can be reduced
dramatically to improve the computational efficiency. K-InI is also closely related to the
consistency GRAPPA reconstruction (Lustig et al., 2009), which requires the k-space data to
be locally consistent across the whole k-space using multiple array measurements.
Differently, K-InI estimates and applies this consistency property globally along all data
points in the kz (partition encoding) direction.

The dependence of K-InI on the regularization parameter
Estimating the reconstruction coefficient in Eq. (6) requires a regularization parameter
during the derivation of the inverse operator. This is because the matrixAACCH

 AACC can be
rank deficient as the result of few channels and/or less independent spatial information
offered by the coil array. A rank-deficientAACCH

 AACC prohibits the calculation of
coefficients in Eq. (6) since the necessary matrix inversion does not exist. To address this
issue, a fully ranked noise covariance matrix is introduced as a remedy for the rank
deficiency. Eq. (7) uses an empirical formula to estimate the regularization parameter.
Alternative regularization parameter estimates have been studied extensively. For example,
we can use L-curve (Hansen, 1998), or generalized cross validation (Golub et al., 1979) to
estimate different λ. However, from empirical data (Fig. 8), we found that the results are
marginally depending on the regularization parameter. This is because we estimated 64
unknowns from 32 channels, which was not as ill-posed as electroencelphalograph (EEG)
and magnetoencephalography (MEG) source localization, where around 100 sensors/
channels are available to estimate current sources of approximately 10,000 locations. We
hypothesize that under the electromagnetic approximation of infinite wave, the K-InI
reconstructions are less dependent on the regularization parameter at higher fields and using
an RF coil array with more channels, since a higher field has a corresponding shorter
wavelength and more channels can offer more disparate spatial information to resolve the
projection images in the accelerated scan. Nevertheless, further theoretical and empirical
studies are required to test this hypothesis and to quantify the upper bound of the maximal
channel number in a given field strength for the optimal reconstruction.

Spatiotemporal coupling of the K-InI reconstruction
The K-InI reconstruction is a pure spatial domain reconstruction. It is un-coupled from the
temporal domain processing, which was implemented by the General Linear Model (GLM)
with the FIR base functions in the analysis of the fMRI time series. However, such
separation between spatial and temporal domain is only an ideal case, Practically, the
acquisition and reconstruction can be correlated spatiotemporally. For example, consider
that there is some motion during the InI data acquisition. Motion artifacts can cause the
inconsistency between the fully gradient encoded auto-calibrating data and the accelerated
InI data. Such an inconsistency can eventually lead to the increased residuals energy. And
consequently the reconstructions can be deteriorated by showing either strong aliasing
artifacts or noisy images. In fact, motion artifacts are critical to all InI and parallel MRI time
series reconstructions. If there is no auto-calibrating procedure at each instantaneous
measurement, the reconstruction kernel (fitting coefficients in K-InI) cannot be accurately
used to reconstruct the instantaneous data after the motion. The sensitivity to motion can be
empirically controlled by avoiding lengthy measurements (we collected one run for 4 min in
this study) and using cushion filling inside the coil array to reduce the explicit motions.

Relative onset latency in K-InI reconstruction
This study first demonstrates the volumetric dynamic brain activity at different cortical areas
with a high temporal resolution. Our previous studies only showed the InI time courses at
visual cortex in 2D (Lin et al., 2006) and 3D (Lin et al., 2008b; Lin et al., 2008c). And time
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courses at both visual and somatomotor cortices with clear activation are shown here. Given
such a high temporal resolution, we are interested in the relative timing onset across cortical
areas. This timing difference is particularly interesting to neurophysiologists to reveal the
complex orchestration between brain areas to accomplish tasks and cognition. The result in
Fig. 9 shows that for a visuomotor task, the hemodynamic activity at the visual cortex
actually precedes that in the motor cortex in a group. While this result is logical since it
follows the intuitive causal relationship in a visuomotor task, the ability to resolve sequential
brain activity in visual and motor cortices using the “sluggish” BOLD-contrast
hemodynamic response is still surprising, since the BOLD-contrast fMRI is a secondary
measure of the neuronal activity (Logothetis et al., 2001) and the local vasculature variety
may overwhelm the timing information elicited from the neuronal activity. Our preliminary
result only finds this sequential activation in the group average data, but not individual data.
This is consistent with the previous report (Miezin et al., 2000). Earlier studies show that the
hemodynamic responses can actually carry timing information (Huettel and McCarthy,
2001; Menon et al., 1998). Nowadays we are equipped with improved RF coil array, a
higher field magnet, and improved data acquisitions and reconstructions. Thus it is possible
to resolve this minor latency difference from the BOLD-contrast fMRI. Still, further detail
studies are required to ascertain the reliability and the sensitivity to monitor neuronal
activity via fMRI vascular responses.

Future development
In our implementation, the InI data always acquired at the same central partition in the Kz
direction. This sampling pattern in k-space is time invariant. Other GRAPPA reconstructions
have been coupled with the time-varying sampling patterns in order to achieve the optimal
spatiotemporal resolutions. For example, T-GRAPPA (Breuer et al., 2005) uses an interleave
lattice structure over time to collect the ACS data. k-t GRAPPA further modifies the ACS
acquisition to achieve a higher efficiency (Huang et al., 2005). The advantage of these two
approaches is that the ACS data can be obtained along the accelerated scans. And such
interleave sampling strategies have the benefit of reduced reconstruction noises as the result
of trading-off the distribution of the point spread function in both time and spatial domains.
The same principle can be applied to K-InI acquisitions and reconstructions: By repetitively
collecting data using the multi-shot EVI sequence in the reference scans, each shot consists
of an accelerated InI acquisition, and the composite of different shots over time can generate
the fully gradient encoded reference data for K-InI reconstruction coefficients estimation.

Recently, sparse MRI (Lustig et al., 2007) has been proposed as an alternative approach to
accelerate data acquisitions using either single receiver or multiple receivers. Such
compressed sensing (CS) approach attempts to restore randomly sampled data, which
generate intrinsically incoherent aliasing artifacts. Subsequently a nonlinear algorithm is
used to solve the underlying image. Due to insufficient data samples to satisfy the Nyquist
theorem, similar to InI, the CS pMRI is also dealing with an under-determined linear system.
Using a cost function formulation, CS image reconstruction solves the image by minimizing
the residual errors arising from the random sampling and a prior cost measuring the sparsity
of the underlying image via the wavelet transform. In fact, this formulation can be
incorporated to either MNE InI or K-InI reconstruction in the future. Specifically, we can
replace the constraint of minimizing the ℓ2 norm power of the image (MNE) or the fitting
coefficients (K-InI) with a constraint of minimizing the ℓ1 norm in order to achieve more
sparse estimates in image space and k-space respectively. However, the detection power,
sensitivity to noises, and the localization accuracy needs to be further studied quantitatively
in order to select the optimal reconstruction method for different experiments.
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Fig. 1.
Simulation sources and reconstructions at visual (A) and somatomotor (B) cortices in the left
hemisphere. The brain was rendered in an inflated surface model where dark and light gray
represent sulci and gyri respectively. The MNE, MNE-dSPM, LCMV, and K-InI
reconstructions of visual and somatomotor cortices at different SNRs are linearly scaled
between 0 and 1 to illustrate the spatial distribution.
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Fig. 2.
The aPSF (A and C) and SHIFT (B and D) metrics for MNE, MNE-dSPM, LCMV, and K-
InI reconstructions at visual (A and B) and somatomotor (C and D) cortices at different
SNRs.
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Fig. 3.
Reconstructed instantaneous images using MNE and K-InI. LCMV does not offer
instantaneous image reconstruction because of no data covariance. For comparison, the sum-
of-squares (SoS) images from the reference are also shown.
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Fig. 4.
The snapshots of the left hemispheric visual cortex activation in MNE-dSPM, LCMV, and
K-InI reconstructions. At top of the figure, we illustrate the cropped ROI as a gray rectangle
over the medial aspect of the inflated left hemisphere surface.
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Fig. 5.
The average time courses of the MNE-dSPM, LCMV, spatially smoothed K-InI, and
spatially unsmoothed K-InI reconstructions at the visual cortex. The visual cortex ROI is
shown in light blue at the medial aspect of the inflated left hemisphere surface. (For
interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 6.
The snapshots of the left hemispheric somatomotor cortex activation in MNE-dSPM,
LCMV, and K-InI reconstructions. At top of the figure, we illustrate the cropped ROI as a
gray rectangle over the lateral aspect of the inflated left hemisphere surface.
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Fig. 7.
The average time courses of the MNE-dSPM, LCMV, spatially smoothed K-InI, and
spatially unsmoothed K-InI reconstructions at the somatomotor cortex. The somatomotor
cortex ROI is shown in light blue at the lateral aspect of the inflated left hemisphere surface.
(For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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Fig. 8.
The time courses of K-InI reconstruction with 10-fold bigger (light blue) or smaller (pink)
regularization parameter at visual and somatomotor cortices. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this
article.)

Lin et al. Page 25

Neuroimage. Author manuscript; available in PMC 2013 August 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 9.
Detection of relative timing of the group average K-InI reconstructions at visual (blue trace)
and somatomotor (red trace) cortices. The time-to-peak and the timing of reaching 50% of
the peak values are reported. The figure inlet includes the zoomed time courses between -1
and 4 s after the onset of the visual stimulus. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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