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Abstract

Lethal mutagenesis, or virus extinction produced by enhanced mutation rates, is under investigation as an antiviral strategy
that aims at counteracting the adaptive capacity of viral quasispecies, and avoiding selection of antiviral-escape mutants. To
explore lethal mutagenesis of hepatitis C virus (HCV), it is important to establish whether ribavirin, the purine nucleoside
analogue used in anti-HCV therapy, acts as a mutagenic agent during virus replication in cell culture. Here we report the
effect of ribavirin during serial passages of HCV in human hepatoma Huh-7.5 cells, regarding viral progeny production and
complexity of mutant spectra. Ribavirin produced an increase of mutant spectrum complexity and of the transition types
associated with ribavirin mutagenesis, resulting in HCV extinction. Ribavirin-mediated depletion of intracellular GTP was not
the major contributory factor to mutagenesis since mycophenolic acid evoked a similar decrease in GTP without an increase
in mutant spectrum complexity. The intracellular concentration of the other nucleoside-triphosphates was elevated as a
result of ribavirin treatment. Mycophenolic acid extinguished HCV without an intervening mutagenic activity. Ribavirin-
mediated, but not mycophenolic acid-mediated, extinction of HCV occurred via a decrease of specific infectivity, a feature
typical of lethal mutagenesis. We discuss some possibilities to explain disparate results on ribavirin mutagenesis of HCV.
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Introduction

Hepatitis C virus (HCV) infections affect about 180 million

people worldwide, and an estimated 75% of newly infected

patients progress towards a chronic infection, which constitutes a

risk for severe liver diseases such as cirrhosis and hepatocarcinoma

[1–4]. HCV is an hepacivirus of the Flaviviridae family that displays

the error-prone replication and quasispecies dynamics typical of

RNA viruses [3,5–7]. No vaccine is available to prevent HCV

infections or disease, and the current standard of care (SOC)

treatment consists of the combination of pegylated interferon-a
(IFN-a) and the purine nucleoside analogue ribavirin (1-b-D-

ribofuranosyl-1-H-1,2,4-triazole-3-carboxamide) (Rib) (IFN-

a+Rib). However, on average only about 60% of the chronically

infected patients show a sustained virological response that results

in virus clearance [8–11]. The mechanism of anti-HCV activity of

IFN-a+Rib and the reasons for treatment failure are largely

unknown. HCV evolving in hepatoma cells in culture can find

multiple mutation pathways to acquire resistance to IFN-a, and

resistant HCV populations display decreased sensitivity to a IFN-

a+Rib combination treatment [12]. New therapeutic options have

been opened with the development of directly acting antiviral

agents (DAAs), but it is not clear which new combinations will be

the most effective, although inclusion of Rib appears to be

important [13–17].

The prior experience gained with the treatment of infections by

highly variable RNA viruses that exhibit quasispecies dynamics, in

particular human immunodeficiency virus type 1 (HIV-1),

anticipates that HCV variants with different degrees of resistance

to one or multiple anti-HCV inhibitors will be selected with high

probability in the course of the new treatments [18–25]. Rapid

selection of antiviral-resistant mutants is a direct consequence of

quasispecies dynamics and one of the main reasons that impulsed

research on a new antiviral strategy termed virus entry into error

catastrophe or lethal mutagenesis. It is based on one of the

corollaries of quasispecies theory that asserts that a sufficient

increase of error rate during genome replication should result in

the loss of the information conveyed by the replicative system

[26,27]. In agreement with these and other theoretical treatments

[28–34], virus extinction associated with enhanced mutagenesis

has been documented with several RNA viruses in cell culture and

in vivo [35–54]. Rib is one of the mutagenic agents that are
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currently used in the investigations on lethal mutagenesis because

it has been licensed for human use for several decades, and proven

to be mutagenic first for poliovirus (PV) [37,55,56], and then for

several other RNA viruses [35,40,48,49,51,57–62], but not for

others [63–65]. It is not clear whether Rib exerts its anti-HCV

activity through mutagenesis or other mechanisms [58,66–77].

Alternative antiviral mechanisms of Rib are: (i) immunomodula-

tion and enhancement of the Th1 antiviral immune response

[78,79]; (ii) up-regulation of genes involved in IFN signaling

[80,81]; (iii) inhibition of viral RNA-dependent RNA polymerases

(RdRps) [82–87]; (iv) depletion of intracellular GTP levels [88];

and (v) inhibition of mRNA cap formation [89].

While some studies in cell culture have suggested a mutagenic

activity of Rib on HCV [58,73,76,90–92], other investigations

have failed to provide evidence of Rib mutagenesis [93,94].

Elucidation of the anti-HCV mechanism of Rib is highly relevant

because it may influence the design of antiviral protocols. Recent

model studies with different virus-host systems have indicated that

when a mutagenic agent participates in therapy, a sequential

administration of an inhibitor first, followed by a mutagenic agent

may be more effective than the corresponding combination

therapy to achieve virus extinction [49,95–97]. The advantage

of a sequential administration depends on the concentrations of

mutagen and inhibitor used, and it requires that one of the drugs

used for therapy acts as a mutagenic agent [95–97]. Thus, with the

advent of DAAs, it is important to clarify the mechanism of Rib

activity against HCV to compare the effectiveness of alternative

antiviral protocols first in cell culture and then in animal models

and clinical trials.

The development of systems which allow infection of cultured

cells with HCV particles containing the entire viral genome [98–

100] permits addressing HCV evolution over extended periods of

time (serial infections) in the presence of antiviral agents, without

possible confounding effects derived from host cell evolution [12].

Here we study the effect of exposure of HCV in cell culture

[12,101] to several drugs or drug combinations in a multiple

passage design, as depicted in Fig. 1. The results indicate that Rib

is mutagenic for HCVp0, and that Rib-mediated, but not

mycophenolic acid-mediated, HCV extinction displays the attri-

butes of lethal mutagenesis.

Results

Cytotoxicity and inhibitory activity of ribavirin and
mycophenolic acid

To determine cytotoxicity of the drugs (concentration that

reduces cell viability by 50%, CC50) used in the present study,

Huh-7.5 reporter cells were incubated with increasing concentra-

tions of Rib or mycophenolic acid and cell viability determined

after 72 h of treatment. To quantify the inhibition of infectious

HCV progeny production (drug concentration that produces a

50% decrease in progeny production, IC50), Huh-7.5 cells were

infected with HCVp0 at a multiplicity of infection (MOI) of 0.2–

0.5 TCID50/cell in the presence of increasing concentrations of

the drugs and infectious progeny production measured. From the

data, CC50 and IC50 values were calculated (Fig. 2), that yielded a

therapeutic index (TI) (CC50/IC50) of 12.8, and .212.8 for Rib

and mycophenolic acid, respectively. These values served as guide

for the choice of drug concentrations in the experiments.

Influence of infection conditions on the response of HCV
to ribavirin treatment during replication in human
hepatoma cells

The parental HCVp0 virus [12,101] was prepared as described in

Materials and Methods, and used to investigate the response of

HCV to Rib. HCVp0 was subjected to 10 serial passages in Huh-7.5

cells using either high (1–2 TCID50/cell) or low (0.1–0.2 TCID50/

cell) initial MOI, in the absence or presence of different Rib

concentrations. The results show a consistent decay of progeny

infectivity and of intracellular HCV RNA as a result of Rib

treatment, while a sustained viral replication was observed in the

absence of Rib (Fig. 3). An exception was the decreased but

continued replication of HCV in the presence of 50 mM Rib in the

infection at high MOI (Fig. 3a). In all other cases, infectivity and viral

RNA decreased to levels below the corresponding limits of detection

by passages 3 to 9 (Fig. 3a, b). Decay of infectivity in the cell culture

supernatant always preceded decay of intracellular viral RNA, an

observation previously made during mutagenesis-based extinction

of lymphocytic choriomeningitis virus (LCMV) [42].

In previous studies on lethal mutagenesis of foot-and-mouth

disease virus (FMDV) and LCMV we defined a double criterion to

consider the virus extinct: (i) absence of infectivity following three

Figure 1. Scheme of serial hepatitis C virus passages performed in the present study. The initial clonal population HCVcc (filled square)
was prepared by transcription of plasmid Jc1 FLAG (p7-nsGluc2A) (RNA HCVcc) and electroporation into Lunet cells, as described in Materials and
Methods. The amplified virus HCVp0 was subjected to serial passages in the presence of different drugs or drug combinations, as indicated; uncloned
populations are depicted as empty circles. Infections with the replication-negative HCV mutant GNN were carried out in parallel (not shown in this
scheme). The multiplicity of infection (MOI), drug concentrations, and the various analyses performed with different HCV populations are detailed in
the corresponding experiments.
doi:10.1371/journal.pone.0071039.g001
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blind passages of the undiluted cell culture supernatant in the host

cells in the absence of any drug, and (ii) absence of intracellular

viral RNA using a highly sensitive RT-PCR amplification protocol

[47,52,57]. When these criteria were applied to the Rib-treated

HCV populations, no infectivity could be rescued when superna-

tants devoid of detectable infectivity were further passaged in the

absence of Rib. However, some residual HCV RNA persisted as

judged by an amplification band (above the background level of

the negative control) even when the treatment was extended to 15

passages (Fig. 3b).

Mutant spectrum complexity in hepatitis C virus
populations passaged in the absence or presence of
ribavirin

To examine whether the decrease of infectivity upon HCV

replication in the presence of Rib was accompanied with a

mutagenic activity of Rib, the mutant spectrum complexity at the

E2-, NS5A- and NS5B-coding regions (chosen because they

encode structural and non-structural proteins displaying different

degrees of conservation) of several HCV populations was

evaluated (Table 1). NS5A and NS5B of populations passaged

three times at low MOI in the presence of Rib underwent a

significant increase of mutation frequency (1.4- to 3.0-fold with

50 mM Rib, and 1.6- to 4.8-fold with 100 mM Rib), relative to the

population passaged in absence of Rib (p,0.05 to p,0.0005; x2

test). Statistically significant increases of nucleotide diversity were

also observed for increasing Rib concentrations (NS5A p,0.004;

NS5B p,0.04 and p,0.005; Permutation test) (Table 1). Riba-

virin induces preferentially GRA and CRU transitions in HCV

and other RNA viruses [35,56,57,77,102]. While the percentage of

transitions relative to the total number of mutations did not vary as

a result of Rib treatment (79.1%, 75.6% and 79.4% in the absence

and presence of 50 and 100 mM Rib, respectively), the

corresponding percentage of [(GRA)+(CRU)] transitions in-

creased from 32.5% in the absence of Rib to 51.7% and 57.7%

in the presence of 50 and 100 mM Rib, respectively, reflected also

in an increase of the [(GRA)+(CRU)]/[(ARG)]+[(URC)] ratio

(Fig. 4a). The mutational bias reinforces the conclusion that Rib

acts as a HCV mutagen. [The amino acid substitutions and their

score according to the PAM 250 substitution matrix [103] – a

measure of their probability of occurrence – are listed in

Tables S1, S2 and S3.

To further investigate the mutagenic activity of Rib, mutant

spectrum complexity of the NS5A-coding region in the popula-

tions passaged at a MOI of 1 to 2 TCID50/cell was investigated by

molecular cloning and Sanger sequencing, and ultra-deep

pyrosequencing. The analysis of molecular clones (Table 2)

indicates a significant increase of mutation frequency (2.5- fold

with 75 mM Rib, and 2.8-fold with 100 mM Rib), relative to the

population passaged in the absence of Rib (p,0.05 and p,0.005,

respectively; x2 test). A significant increase of nucleotide diversity

was observed in the NS5A-coding region for populations treated

with increasing concentrations of Rib (passage 4 populations,

p,0.0017; Permutation test). Concerning the distribution of

mutation types, again while the percentage of transitions relative

to the total number of mutations did not vary as a result of Rib

treatment (82.1%, 76.6% and 88.0% in the absence and presence

of 75 mM and 100 mM Rib, respectively), the corresponding

percentage of [(GRA)+(CRU)] transitions relative to the total

number of mutations increased significantly [from 14.3% in the

absence of Rib to 59.5% and 68.0% in the presence of 75 and

100 mM Rib, respectively (p,0.05 and p,0.01, respectively; x2

Figure 2. Quantification of cytotoxicity for Huh-7.5 cells and inhibition of HCV infectious progeny production by ribavirin and
mycophenolic acid. Determinations of cytotoxic concentration 50 (CC50) (left panels) and the drug concentration required for 50% inhibition, or
inhibitory concentration 50 (IC50) (right panels) were carried out in triplicate. Values and standard deviations were calculated using the program
Sigma Plot. Experimental conditions for cell growth, HCV infection, determination of cell viability and HCV infectivity are described in Materials and
Methods.
doi:10.1371/journal.pone.0071039.g002
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test)] (Table 2 and Fig. 4b). The percentage of nonsynonymous

mutations, the amino acid substitutions, and their probability of

occurrence are given in Table S4. There is a very clear agreement

between the mutant spectrum analyses of populations resulting

from HCV infections in the presence of Rib at high and low MOI,

indicating that Rib is mutagenic for HCVp0 replicating in

hepatoma cells.

An alternative sampling method of viral mutant spectra is

provided by ultra-deep pyrosequencing (UDPS). We chose to

determine the number of haplotypes and frequency of different

transitions in six amplicons that spanned the entire NS5A-coding

region of the HCVcc populations passaged 4 times in Huh-7.5

cells either in the absence or presence of 75 mM Rib. The results

(Table 3, Fig. 4c and Table S5) indicate an increase in the number

of different mutations, polymorphic sites, haplotypes and propor-

tion of [(GRA)+(CRU)] in the populations passaged in the

presence of Rib. Thus, UDPS also indicates a mutagenic activity

of Rib on HCV.

The effect of guanosine on the inhibitory and mutagenic
activity of ribavirin. Alteration of nucleotide pools

Ribavirin is metabolized by cellular enzymes to produce the

mono- di- and tri-phosphate nucleotide derivatives (RMP, RDP,

RTP, respectively) [88,104]. RMP is a competitive inhibitor of

inosine monophosphate dehydrogenase (IMPDH), resulting in

reduced intracellular GTP levels [88,105,106]. Guanosine can

reverse the inhibitory effect of RMP on IMPDH [35,60,104,107].

Therefore, we examined the effect of guanosine alone and

guanosine plus Rib on HCV multiplication. Replication of

HCVp0 in the presence of 200 mM guanosine resulted in a 10-

to 100-fold decrease in HCV infectious progeny production and

intracellular viral RNA, and the decrease diminished with passage

number (Fig. 5a). Guanosine partially compensated the inhibition

exerted by 50 mM Rib, but only minimally the inhibition by

100 mM Rib. In all cases the presence of guanosine delayed the

Rib-mediated extinction of HCV. Only a minor reduction of

mutant spectrum complexity (that did not reach statistical

significance) was observed in the presence of guanosine at the

two Rib concentrations tested (Table 4). Likewise, the Rib-

mediated increase of nucleotide diversity and [(GRA)+(CRU)]/

[(ARG)+(URC)] ratio diminished only modestly in the presence

of guanosine (Table 4 and Fig. 4d; the amino acid substitutions are

listed in Table S6). To determine the effect of Rib treatment on

the GTP level, the intracellular amount of GTP and RTP was

measured in Huh-7.5 reporter cells at 8 h and 72 h after treatment

with 50 mM and 100 mM Rib. The results (Fig. 5b) show a 3.0- to

8.5-fold reduction in the intracellular concentration of GTP. RTP

reached maximum levels of 0.07 fmol/cell at 72 h of treatment

with 100 mM Rib. In contrast to GTP, all other nucleotides

increased their concentration as a result of Rib treatment, with

maximum increases for the pyrimidine nucleotides (4.2-fold for

UTP and 3.4-fold for CTP); the increase was partially reversed by

the presence of guanosine (Fig. 5c). Thus, addition of guanosine to

Huh-7.5 reporter cells did not restore the GTP depletion resulting

from Rib addition. In view of these results, it was interesting to

examine the effect of mycophenolic acid on HCV progeny

production and mutagenesis.

The effect of mycophenolic acid on hepatitis C virus
progeny production and nucleotide pools

Mycophenolic acid is an inhibitor of IMPDH, which contrary to

RTP or GTP cannot be incorporated into RNA [105,108–110].

To explore whether depletion of GTP by itself (in the absence of

an added mutagenic agent) could jeopardize infectious HCV

progeny production, serial passages were carried out in the

presence of mycophenolic acid in the absence or presence of

guanosine. Mycophenolic acid produced a dramatic inhibition of

HCV production that resulted in HCV extinction (Fig. 6a).

Significantly, in the transition towards extinction, loss of infectivity

preceded loss of intracellular viral RNA. The inhibitory effects of

mycophenolic acid was almost fully reversed by guanosine, a

reversal that was not observed previously with other hepatoma

cells or HCV replicons [93,111]. Depletion of GTP by

mycophenolic acid was comparable to that produced by Rib,

and also not reversed by guanosine addition, whereas the increase

in the concentration of the other standard nucleotides was 1.5- to

4-fold lower (compare Figs. 5c and 6b). Passages in the presence of

mycophenolic acid did not result in any significant increase of

mutant spectrum complexity or mutational bias (Fig. 4d and

Tables 5 and S7). Mycophenolic acid in the 2.5–5 mM range drove

viral infectivity and RNA below the limit of detection. Further-

more, no HCV RNA could be amplified from the cell culture

supernatant, using the sensitive RT-PCR protocol to diagnose

extinction (Fig. 6a). The results suggest that depletion of GTP

contributes to inhibition of HCV progeny production, without

involving a mutagenic activity (see Discussion). The inhibitory

effect of mycophenolic acid can drive HCV to extinction.

Probing features of lethal mutagenesis in the extinction
of hepatitis C virus by ribavirin and mycophenolic acid

Mutagenesis-driven extinction of FMDV and LCMV occurred

with 102-to 103-fold decreases of specific infectivity (the ratio

between viral infectivity and the amount of genomic viral RNA)

and without any detectable variation in the consensus genomic

nucleotide sequence [42,112,113]. These features are a hallmark

of virus extinction by lethal mutagenesis [reviewed in [114,115]].

Extinction by Rib occurred with a 5-fold to 23-fold decrease of

specific infectivity, as quantified by infectivity and viral RNA in

samples of the cell culture supernatants (Fig. 7a). In contrast, no

variation in specific infectivity was observed during mycophenolic

acid-mediated extinction (Fig. 7b). In both cases the consensus

sequence remained invariant. Thus, Rib-mediated, but not

Figure 3. The effect of ribavirin on infectious HCV progeny production and intracellular HCV RNA. (a) Huh-7.5 reporter cells were
infected with HCVp0 at a MOI of 1–2 TCID50/cell (10

5 Huh-7.5 reporter cells infected with 16105 to 26105 TCID50 of HCVp0), in the absence or
presence of the Rib concentrations indicated in the upper box. Infections with HCV GNN were carried out in parallel (negative control). The progeny
from each infection was used to infect fresh cells, as described in Materials and Methods. Virus infectivity was determined in the cell culture
supernatant (left panel), and intracellular viral RNA measured by quantitative RT-PCR (right panel). The discontinuous line parallel to the abscissa
indicates the limit of detection of infectivity and viral RNA. Below, RT-PCR amplification bands using a highly sensitive HCV-specific amplification
protocol that yields a 539 bp fragment, using as template total intracellular RNA from the infection series and passage numbers indicated at the top
of the corresponding lanes; +, 2: presence or absence of amplification band; the position of DNA size markers is indicated on the left. (b) Same as in
(a) but with infections carried out at an initial MOI of 0.1 – 0.2 TCID50/cell, using two different protocols: 46106 Huh-7.5 reporter cells infected with
46105 to 86105 TCID50 of HCVp0 (duplicate assays, named 1 and 2, left panels), and 46105 Huh-7.5 reporter cells infected with 46104 to 86104

TCID50 of HCVp0 (duplicate assays, named 1 and 2, right panels). Symbols and RT-PCR amplification bands shown at the bottom were obtained as is
explained in part (a). Procedures are described in Materials and Methods.
doi:10.1371/journal.pone.0071039.g003
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mycophenolic acid-mediated, HCV extinction displayed the

hallmarks of lethal mutagenesis. In conclusion, we have provided

evidence that Rib alters the mutant spectrum composition of HCV

quasispecies replicating in hepatoma cells in a manner compatible

with a mutagenic activity of Rib.

Discussion

Lethal mutagenesis is gradually finding its way as a potential

antiviral therapy with reduced probability of selection of escape

mutants [54,116,117], and with prospects of applying the same

principles to anti-cancer therapy [118–120]. The mechanism by

which Rib exerts its antiviral activity is still a debated issue since

multiple, unrelated modes of action have been observed with

different viruses [59,106,121], and more than one mechanism may

be operating on a given virus. Recent studies of antiviral designs

based on lethal mutagenesis render important a clarification of

whether mutagenesis of the viral genome occurs in the course of an

antiviral treatment. Indeed, a potential advantage of a sequential

inhibitor-mutagen administration over the corresponding combi-

nation, necessitates that a mutagenic agent be part of the therapy

[95–97]. We are currently extending to HCV our previous

approach of testing the efficacy of alternative administration

protocols [reviewed in [114]]. Rib is ideally suited for the

investigations on lethal mutagenesis of HCV because it is a

component of SOC treatment. In the present investigation, the

mutagenic activity of Rib on HCV replicating in Huh-7.5 reporter

cells has been documented by statistically significant increases of

mutant spectrum complexity and an increase of GRA and CRU

transitions. In the NS5A-coding region, UDPS identified a total of

38 and 127 different mutations in the populations passaged in the

absence and presence of Rib, respectively. The corresponding

numbers identified by molecular cloning and Sanger sequencing

were 28 and 46, respectively. Of the total number of different

mutations scored, only 5 and 12, in the absence and presence of

Rib, respectively, were common to Sanger sequencing and UDPS

(Tables S4 and S5). Thus, despite sampling different sequences,

both procedures provide evidence of a mutagenic activity of Rib

on HCV. Other activities of Rib in Huh-7.5 cells may contribute

to the anti-HCV action of Rib. It must be indicated, however, that

solely a change in mutant spectrum composition does not provide

evidence of a mutagenic activity, since a drug may alter the

relative fitness of viral subpopulations. This might cause a

variation in the broadness of the mutant spectrum. In our case,

however, it seems unlikely that such mutant spectrum reorgani-

zation would lead to a mutational bias in favor of GRA and CRU

Figure 4. Matrix of nucleotide substitutions in the mutant spectrum of hepatitis C virus populations passaged in the absence or
presence of drugs or drug combinations. Mutation types (from nucleotides written vertically to those written horizontally) are counted for the
individual components of the mutant spectrum relative to the corresponding consensus sequence of the population. Drug concentrations present
during HCV passages are written at the top of each matrix (abbreviated as: ribavirin, Rib; mycophenolic acid, MPA; guanosine, Gua). When Rib was
present, the types of mutations expected from Rib mutagenesis are highlighted in red, and their ratio to the other transition types is boxed below
each matrix. (a) HCV populations subjected to three passages at an initial MOI of 0.1–0.2 TCID50/cell; the populations are those described in Fig. 3b
and Tables 1, S1, S2 and S3. (b) HCV populations subjected to four or five passages at an initial MOI of 1–2 TCID50/cell; the populations are those
described in Fig. 3a and Tables 2 and S4. (c) Same as (b) but for HCV populations at passage 4 analyzed by UDPS, including mutations that are
repeated in different amplicons; the populations are those described in Tables 3 and S5. (d) HCV populations subjected to three passages at a MOI of
0.1–0.2 TCID50/cell in the presence of Rib or MPA with or without Gua; the populations are those described in Figs. 5 and 6, and Tables 4, 5, S6 and
S7. Procedures are described in Materials and Methods.
doi:10.1371/journal.pone.0071039.g004

Table 1. Quasispecies analysis of HCVp0 populations passaged in the absence or presence of ribavirina.

Genomic regionb
Ribavirin
conc. (mM)a

Number of nt analyzed
(clones/haplotypes)c

Mutation
frequencyd

Nucleotide
diversity e

p. 103 (95% CI)

0 15,122 (15/9) 9.361024 1.11 (0.73–1.58)

E2 (nt 1490–2590) 50 18,860 (17/14) 1.361023 1.49 (1.15–2.01)

100 20,657 (21/16) 1.561023 1.74 (1.33–2.51)

0 29,704 (22/18) 7.761024 1.16 (0.93–1.51)

NS5A (nt 6269–7666) 50 23,766 (17/17) 1.461023 1.54 (1.16–2.11)

100 21,396 (20/20) 2.161023 2.43 (1.99–3.44)

0 22,691 (18, 10/5, 3) 2.561024 0.74 (0.53–1.03)/
0.23 (0.11–0.56)

NS5B (nt 7667–8442/
8443–9442)

50 37,862 (24, 22/17, 9) 7.661024 1.60 (1.22–2.10)/
0.50 (0.26–0.87)

100 16,676 (12, 11/7, 8) 1.261023 1.25 (0.79–1.79)/
1.39 (0.74–2.30)

aThe population analyzed correspond to passage 3 of the infections at an initial MOI of 0.1 to 0.2 TCID50/cell described in Fig. 3b.
bThe HCV genome residue numbering corresponds to the JFH-1 genome (accession number #AB047639). The NS5B-coding region was covered by two overlapping
amplifications.
cThe parenthesis indicates the number of clones analyzed, followed by the number of haplotypes (number of different RNA sequences); some clones did not contain the
full length sequence; when the alignment of the sequenced region was correct such clones were entered in the calculation.
dAverage number of mutations per nucleotide relative to the corresponding consensus sequence. Mutation types are summarized in Fig. 4a and their position in the
HCV genome and deduced amino acid substitutions are given in Tables S1, S2 and S3.
eThe calculation of nucleotide diversity (p) and 95% confidence interval (CI) is explained in Materials and Methods.
doi:10.1371/journal.pone.0071039.t001
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transitions in the absence of a mutagenic activity associated with

Rib treatment.

Depletion of intracellular GTP levels does not account for the

majority of Rib-mediated mutagenesis, since no mutagenesis was

observed under the same depletion as a result of treatment with

mycophenolic acid. This immunosuppressant and some of its

prodrugs have proven effective as inhibitors of HCV multiplica-

tion in cell culture and in vivo [93,111,122,123]. Significantly,

extinction by the non-mutagenic mycophenolic acid did not alter

the specific infectivity of HCV and, with our quantification

procedures infectivity was still detectable when extracellular HCV

RNA was not. This is in contrast to the decrease in specific

infectivity associated with Rib-mediated extinction, a hallmark of

lethal mutagenesis [35,42,57,61,62,97,113] (Fig. 7).

It is not clear whether the inhibition of HCV progeny

production by Rib is directly linked to its mutagenic activity or

to some other effect on the virus or the host cell, independent of its

mutagenic activity. The difference in compensatory activity of

guanosine on the inhibition produced by 50 mM and 100 mM Rib

does not appear to be related to variations in intracellular GTP.

Rather, Rib produced a considerable increase in intracellular

ATP, CTP and UTP that was only partially compensated by

guanosine addition. Concentrations of mycophenolic acid that

depleted GTP to a similar extent than Rib led to a less accentuated

increase of ATP, CTP and UTP. Thus, imbalances in the levels of

the standard nucleotides might contribute to the inhibition

produced by Rib. Modifications of hepatocyte gene transcription

may affect completion of the virus life cycle [124]. ATP – which

underwent a 2-fold higher increase upon treatment with Rib than

with mycophenolic acid (Figs. 5 and 6) – is recruited in HCV-

infected hepatocytes where it co-localizes with non-structural

HCV proteins in cytoplasmic structures; the ATP concentration is

about 5-fold higher at these sites than elsewhere in the cell [125].

ATP levels may modify the activity of the ATP-dependent

Table 2. Quasispecies analysis of NS5A genomic residues of HCVp0 populations passaged in the absence or presence of ribavirina.

Ribavirin
conc. (mM)a

Passage
number

Number of nt analyzed
(clones/haplotypes)b

Mutation
frequencyc

Nucleotide
diversityc

p. 103 (95% CI)

0 4 23,766 (17/13) 6.761024 0.89 (0.72–1.19)

0 5 19,572 (14/8) 6.161024 0.69 (0.42–1.12)

75 4 16,766 (12/12) 1.461023 1.37 (0.96–2.05)

75 5 11,899 (9/8) 1.961023 2.34 (1.76–3.06)

100 4 13,980 (10/10) 1.861023 2.07 (1.75–2.44)

aThe populations analyzed correspond to the infections at an initial MOI of 1 to 2 TCID50/cell described in Fig. 3a. Passage 5 in the infections with 100 mM Rib did not
yield sufficient HCV RNA for analysis.The genomic residues analyzed are 6269 to 7666 of the NS5A-coding region. The HCV genome residue numbering corresponds to
the JFH-1 genome (accession number #AB047639).
bThe parenthesis indicates the number of clones analyzed, followed by the number of haplotypes (number of different RNA sequences); some clones did not contain
the full length sequence; when the alignment of the sequenced region was correct such clones were entered in the calculation.
cMutation frequency and nucleotide diversity are defined in Table 1 legend and Materials and Methods. Mutation types are summarized in Fig. 4b and their position in
the HCV genome and deduced amino acid substitutions are given in Table S4.
doi:10.1371/journal.pone.0071039.t002

Table 3. Ultra-deep pyrosequencing analysis of hepatitis C virus populations passaged in the absence or presence of ribavirina.

NS5A ampliconb

Parameter
Ribavirin
conc. (mM)a A1 A2 A3 A4 A5 A6

(6152–6454) (6446–6767) (6737–6954) (6910–7252) (7224–7550) (7432–7725)

Number of 0 3 7 5 15 4 7

different mutations 75 18 25 15 35 22 24

Number of 0 3 7 5 14 4 6

polymorfic sites 75 18 24 15 34 21 24

Number of 0 4 (3/0) 8 (7/0) 6 (5/0) 16 (12/3) 4 (2/1) 8 (6/1)

haplotypesc 75 18 (15/2) 26 (24/1) 16 (14/1) 35 (31/3) 22 (19/2) 25 (21/3)

[(GRA)+(CRU)]d 0 2 (2/1) 0 (0/6) 0.25 (1/4) 0.50 (4/8) 1 (1/1) 0.33 (1/3)

[(ARG)+(URC)] 75 3.5 (28/8) 2.83 (17/6) 6.5 (13/2) 1.45 (16/11) 13 (13/1) 3.75 (15/4)

aThe populations analyzed correspond to the infections at an initial MOI of 1 to 2 TCID50/cell described in Fig. 3a.
bThe HCV genome residue numbering corresponds to the JFH-1 genome (accession number #AB047639). Amplicon (A) length ranged between 216 and 339
nucleotides. The number of nucleotides sequenced was 2.16106 to 3.36106, and the number of reads on which the parameters were calculated was 10,000 for each
amplicon. Procedures are described in Materials and Methods.
cIn parenthesis the number of haplotypes with one and two mutations is given.
dIn parenthesis the two terms of the ratio are given. Mutation types are summarized in Fig. 4c and their position in the HCV genome and deduced amino acid
substitutions are given in Table S5.
doi:10.1371/journal.pone.0071039.t003
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molecular chaperon HSP90, which plays a critical role in HCV

NS5B phosphorylation [126]. Thus, formation and activity of

protein complexes involved in HCV replication may be more

sensitive than mutagenesis to nucleotide pool imbalances. It

cannot be excluded, however, that mycophenolic acid displays

some anti-HCV activity other than the one derived from

inhibition of IMPDH.

The addition of guanosine does not have the same effect on

different viruses replicating in the presence of Rib. In a persistent

infection of FMDV in BHK-21 cells, guanosine partially reversed

the antiviral but not the mutagenic activity of Rib, but it

compensated a modest mutagenic activity induced by mycophe-

nolic acid [35]. Guanosine greatly abolished the inhibition of

LCMV progeny production evoked by ribavirin or mycophenolic

acid [61], and it reversed the non-mutagenic inhibitory effect of

Rib exerted on porcine nidoviruses [63]. These differences may lie

in the viral polymerases (or their replication complexes) which

might vary in affinity for RTP and in misincorporations under

biased nucleotide concentrations, as well as in metabolic cell

alterations associated with the infection. The types of mutations

evoked by Rib, as well as the proportion of the nucleotides found

at the 59 side (22% A, 26% G, 8% U, and 44% C) and 39side (18%

A, 31% G, 12% U, 39% C) of the mutation site in the NS5A

region – values that mirror approximately the base composition of

this genomic region – render unlikely the participation of the

known ADAR activities on Rib-induced mutagenesis [127,128].

The documented mutagenic activity of Rib on HCV opens the

way to pursuing research on alternative anti-HCV protocols

[49,95–97], and such experiments are now in progress. A related

issue is to what extent Rib mutagenesis participates in the benefits

of SOC. One argument against a mutagenic activity of Rib during

therapy is that the intracellular hepatic levels of Rib are unlikely to

reach those used in cell culture (50 mM to 100 mM, which are 3- to

100-fold higher than those considered achievable during therapy in

vivo [129]). It must be considered, however, that a broad range of

Rib concentrations in human serum and in organs targeted by Rib

has been reported [130–137]. Moreover, neither the effective RTP

concentration in liver cells and at the membrane-bound HCV

replication complexes, nor RMP and RDP levels – which would

be informative of the potential activities of Rib metabolites during

SOC – have been measured. Therefore, it is not possible to relate

results in hepatoma cells in culture with those in vivo either to

support or to dismiss a mutagenic activity of Rib on HCV in vivo.

Several possibilities can account for conflicting results regarding

the mutagenic character of Rib for HCV: (i) A limited number of

HCV RNA replication rounds in the presence of Rib may be

insufficient to detect an increase in mutant spectrum complexity.

We have tested this possibility by carrying out a mutant spectrum

analysis of HCV after a single infection of 46106 Huh-7.5 reporter

cells with HCVp0 at a MOI of 0.2 TCID50/cell and 50 mM Rib

and 100 mM Rib. Neither the increase in mutation frequency nor

that of GRA and CRU transitions reached statistical significance

(A.M. Ortega-Prieto et al., unpublished results). (ii) Rib can

produce transient expansions of mutant spectrum complexity

[102,138], so that a mutational activity might be missed depending

on the time of sampling of the mutant spectrum. (iii) If

quantifications of template HCV RNA are not performed prior

to RT-PCR amplifications intended for molecular cloning and

Sanger sequencing or for UDPS, the repertoire of genomes

screened might not reflect the repertoire present in the natural

Figure 5. The effect of ribavirin (Rib) and guanosine (Gua) on HCV infectious progeny production and intracellular viral RNA and
nucleotide pools. (a) Huh-7.5 reporter cells were infected with HCVp0 at a initial MOI of 0.1–0.2 TCID50/cell, in the absence or presence of the Rib
and Gua concentrations indicated in the upper box. Infections with HCV GNN were carried out in parallel (negative control). The progeny form each
infection was used to infect fresh cells, as described in Materials and Methods. Viral infectivity was determined in the cell culture supernatant (upper
panels), and viral RNA quantitative RT-PCR in an extract of infected cells (lower panels). The discontinuous lines parallel to the abscissa indicates the
limits of detection of infectivity and viral RNA. Below, RT-PCR amplification bands using a highly sensitive HCV-specific amplification protocol that
yields a 539 bp fragment, using as template total intracellular RNA from the infection series and passage numbers indicated at the top of the
corresponding lanes; +, 2: presence or absence of amplification band. (b) Intracellular amount of GTP and RTP in Huh-7.5 reporter cells following 8 h
or 72 h of exposure to the indicated amounts of Rib. (c) Left: intracellular amount of the four nucleoside-triphosphates, following 72 h of exposure to
either Rib or Gua, as indicated at the bottom. Right: decrease or increase of nucleotide concentration as a result of exposure to Gua or Rib; note that
the maximum decrease possible is 100%. Procedures are described in Materials and Methods.
doi:10.1371/journal.pone.0071039.g005

Table 4. Quasispecies analysis of HCVp0 populations passaged in the absence or presence of ribavirin and guanosinea.

Ribavirin
conc. (mM)a

Guanosine
conc. (mM)a

Number of nt analyzed
(clones/haplotypes)b

Mutation
frequencyc

Nucleotide
diversityc p.
103 (95% CI)

0 0 29,704 (22/18) 7.761024 1.16 (0.93–1.51)

0 200 30,493 (24/17) 8.561024 1.36 (1.09–1.68)

50 0 23,766 (17/17) 1.461023 1.54 (1.16–2.11)

50 200 35,979 (27/17) 9.261024 1.39 (1.17–1.72)

100 0 21,396 (20/20) 2.061023 2.43 (1.99–3.44)

100 200 38,125 (28/26) 1.761023 2.36 (2.04–2.79)

aThe populations analyzed correspond to the infections at an initial MOI of 0.1 to 0.2 TCID50/cell described in Fig. 5a. About 25% to 50% of clones analyzed did not
contain the full length sequence expected from the primers used; when the alignment of the sequenced region was correct such clones were entered in the calculation.
The HCV genome residue numbering corresponds to the JFH-1 genome (accession number #AB047639). The NS5A-coding region (nucleotides 6269 to 7666) was
analyzed.
bThe parenthesis indicates the number of clones analyzed, followed by the number of haplotypes (number of different RNA sequences); some clones did not contain
the full length sequence; when the alignment of the sequenced region was correct such clones were entered in the calculation.
cMutation frequency and nucleotide diversity are defined in Table 1 legend and Materials and Methods. Mutation types are summarized in Fig. 4d and their position in
the HCV genome and deduced amino acid substitutions are given in Table S6.
doi:10.1371/journal.pone.0071039.t004
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sample. Both, molecular cloning and sequencing and deep-

sequencing methods are only sampling methods to approach the

complex reality of a viral mutant spectrum. Low viral loads such as

those produced by Rib will tend to underestimate the mutant

spectrum complexity unless the amounts of template are

normalized prior to RT-PCR amplification. (iv) In combination

therapies, the interplay between an inhibitor and a mutagenic

agent may affect the timing in which an increase in mutant

spectrum complexity can be observed [95,96]. It may be

significant that evidence of a mutagenic activity in vivo has been

obtained during Rib monotherapy [77]. These possible sources of

bias apply to determinations of mutant spectrum complexity both

in cell culture and in vivo, and should be evaluated in comparing

results from different studies.

An analysis of the molecular events that underlie the transition

towards HCV extinction has indicated an apparently stochastic

persistence of HCV RNA despite loss of HCV infectivity. There

have been clinical descriptions of presence of HCV RNA in

patients displaying a sustained response to treatment [139–141].

The nature of this persistent HCV RNA in hepatocytes has not

been studied, but its presence cannot be dismissed because it might

correspond to defective HCV RNAs. A class of defective viral

genomes termed defectors participate in lethal mutagenesis and

result in loss of infectivity preceding loss of viral RNA [42,114].

The possible involvement of lethal defectors in HCV extinction

and the biological significance of HCV RNA remnants following

an effective treatment deserve further investigation.

Materials and Methods

Cells and viruses
The origin of Huh 7.5, Huh 7-Lunet, Huh-7.5 reporter cell lines

and procedures for cell growth in Dulbecco’s modification of

Eagle’s medium (DMEM), have been previously described

[142,143]. Infected and uninfected cells were cultured at 37uC
and 5% CO2. The viruses used in the experiments are HCVcc

[Jc1FLAG2(p7-nsGluc2A)] (a chimera of J6 and JFH-1 from

genotype 2a) and GNN [GNNFLAG2(p7-nsGluc2A)] (carrying a

mutation in the NS5B RNA-dependent RNA polymerase render-

ing it replication-defective) [144]. To control for the absence of

contamination the supernatants of mock-infected cells maintained

in parallel with the infected cultures were titrated; no infectivity in

the mock-infected cultures was detected in any of the experiments.

Production of viral progeny and titration of infectivity
The procedures used to prepare the initial virus stock HCVp0

and for serial infections of the hepatoma Huh-7.5 cells have been

previously described [12]. Briefly, Huh-7-Lunet cells were

electroporated with 10 mg of the infectious transcript of HCVcc

(Jc1 or the negative control GNN) (260 volts, 950 mF). Electro-

porated cells were then passaged every 3–4 days without allowing

the cells to become confluent, passages were continued until

30 days post-electroporation, and the cell culture supernatants

were pooled. The virus was then concentrated 20 times using

10,000 MWCO spin columns (Millipore) as instructed by the

manufacturer, and stored in aliquots (at 270uC). To increase virus

infectivity, Huh-7.5 reporter cells were infected with concentrated

virus stocks at a MOI of 0.5 TCID50/cell, and the cells were

passaged to obtain the working viral stock HCVp0 [12]. For

titration of HCV infectivity, serially diluted cell culture superna-

tants were applied to Huh-7.5 cells and 3 days post-infection the

cells were washed with PBS, fixed with ice-cold methanol, and

stained using anti-NS5A monoclonal antibody 9E10, as previously

described [12,145].

Figure 6. The effect of mycophenolic acid (MPA) and guanosine (Gua) on HCV infectious progeny production and intracellular
nucleotide pools. (a) Huh-7.5 reporter cells were infected with HCVp0 at an initial MOI of 0.1–0.2 TCID50/cell, in the absence or presence of the MPA
and Gua concentrations indicated in the upper box. Infections with HCV GNN were carried out in parallel (negative control). The progeny form each
infection was used to infect fresh cells, as described in Materials and Methods. Viral infectivity was determined in the cell culture supernatant (upper
panels), and viral RNA quantitative RT-PCR in an extract of infected cells (lower panels). The discontinuous lines parallel to the abscissa indicates the
limits of detection of infectivity and viral RNA. Below, RT-PCR amplification bands using a highly sensitive HCV-specific amplification protocol that
yields a 539 bp fragment, using as template total intracellular RNA from the infection series and passage numbers indicated at the top of the
corresponding lanes; +, 2: presence or absence of amplification band. (b) Left: Intracellular amount of the four nucleoside-triphosphates, following
72 h of exposure to either MPA or Gua, as indicated at the bottom. Right: decrease or increase of nucleotide concentration as a result of exposure to
Gua or MPA; note that the maximum decrease possible is 100%. Procedures are described in Materials and Methods.
doi:10.1371/journal.pone.0071039.g006

Table 5. Quasispecies analysis of HCVp0 populations passaged in the absence or presence of mycophenolic acid and guanosinea.

Mycophenolic
acid conc. (mM)a

Guanosine
conc. (mM)a

Number of nt analyzed
(clones/haplotypes)b

Mutation
frequencyc

Nucleotide
diversityc

p. 103 (95% CI)

0 0 29,704 (22/18) 7.761024 1.16 (0.93–1.51)

0 200 30,493 (24/17) 8.561024 1.36 (1.09–1.68)

5 0 27,214 (23/15) 9.661024 1.11 (0.81–1.67)

5 200 23,766 (17/12) 1.161023 1.57 (0.90–2.45)

aThe populations analyzed correspond to passage 3 (except MPA for 5 mM which is passage 2 because at passage 3 the amount of HCV RNA template was insufficient
for the analysis) of infections at an initial MOI of 0.1–0.2 TCID50/cell described in Fig. 6a. The analyses for the control passages in the absence of mycophenolic acid are
the same reported in Table 4. They are included here to facilitate comparisons. The HCV genome residue numbering corresponds to the JFH-1 genome (accession
number #AB047639). The NS5A-coding region (nucleotides 6269 to 7666) was analyzed.
bThe parenthesis indicates the number of clones analyzed, followed by the number of haplotypes (number of different RNA sequences); some clones did not contain
the full length sequence; when the alignment of the sequenced region was correct such clones were entered in the calculation.
cMutation frequency and nucleotide diversity are defined in Table 1 legend and Materials and Methods. Mutation types are summarized in Fig. 4d and their position in
the HCV genome and deduced amino acid substitutions are given in Table S7.
doi:10.1371/journal.pone.0071039.t005
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Treatment with ribavirin, guanosine and mycophenolic
acid

Solutions of Rib (Sigma), guanosine (Sigma) and mycophenolic

acid (Sigma) were prepared at concentrations of 100 mM, 200 mM

and 50 mg/ml in PBS, DMEM and methanol, respectively. They

were sterilized by filtration, and stored at –70uC. Prior to use, the

stock solutions were diluted in DMEM to reach the desired

concentration. Huh-7.5 reporter cells were pretreated with the

appropriate drug concentrations during 16 h prior to infection.

Then, 46106 cells were infected with 86105 TCID50 of HCVp0;

the adsorption time was 5 h, and the infection continued for 72 to

96 h in the presence of Rib. For successive viral passages, 46106

Huh-7.5 reporter cells were infected with 2.5 ml of the superna-

tant from the previous infection; the MOI ranged between 0.1 and

1024 TCID50/cell; each MOI can be calculated from the

infectivity values given for each experiment. In some cases the

initial MOI was 1 to 2 TCID50/cell, as detailed in the

corresponding experiments.

Toxicity test
The CC50 of Rib, and mycophenolic acid was measured by

seeding 96-well plates with Huh-7.5 cells to 70% confluence and

exposing the cells to up to 250 mM Rib and 100 mM mycophe-

nolic acid for 72 hours. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-

Figure 7. Effect of ribavirin (Rib) and mycophenolic acid (MPA) on the specific infectivity of HCV. (a) Huh-7.5 reporter cells were infected
with HCVp0 at an initial MOI of 0.1–0.2 TCID50/cell, in the absence or presence of the Rib concentrations indicated in the upper box; infection with
GNN was used as negative control. The experiment is the one shown in Fig. 3(b). At different passages, extracellular viral RNA was measured by
quantitative RT-PCR (left panel). Specific infectivities (right panel) were calculated with the infectivities given in Fig. 3b and the RNA concentrations
indicated in the left panel. The discontinuous horizontal line indicates the limit of detection. Statistically significant differences are indicated by one
(p,0.001) or two (p,0.0001) asterisks (one way analysis of variance as detailed in Materials Methods). (b) Infections as in (a), in the absence or
presence of MPA concentrations indicated in the boxes above the panels. The experiment is the one shown in Fig. 5(a). At different passages,
extracellular viral RNA was measured by quantitative RT-PCR (left panel). Specific infectivities (right panel) were calculated with the infectivities given
in Fig. 5(a) and the RNA concentrations indicated in the left panel. The discontinuous horizontal line indicates the limit of detection. Differences were
not statistically significant. Procedures are described in Materials and Methods.
doi:10.1371/journal.pone.0071039.g007
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diphenyltetrazolium bromide] was added to each well at a final

concentration of 500 mg/ml; 4 h later crystals were dissolved in

100 ml of DMSO and the O.D. measured at 550 nm; 50%

cytotoxicity was calculated from four different determinations as

previously described [144].

Inhibitory concentration
The IC50 of Rib, and mycophenolic acid was calculated relative

to the untreated controls (defined as 100% infectivity), as described

previously [57]; determinations were carried out in triplicate.

Nucleotide pool analysis
The procedure used has been previously described [146,147].

Huh-7.5 cells (26106 cells) either untreated or treated with the

drugs indicated for each experiment were washed with PBS and

incubated on ice for 10 min with 900 ml of 0.6 M trichloroacetic

acid. A precooled mixture of 720 ml of UvasolH (1,1,2-trichlorotri-

fluoroethane, Sigma) and 180 ml of Tri-n-octylamine (Sigma) was

added to 900 ml of the supernatant, vortexed for 10 s and

centrifuged 30 s at 12,000 g at 4uC and stored at 280uC until

further analysis. Nucleotides were separated in a Partisil 10 SAX

analytical column (4.6 mm6250 mm) (Whatman) with a Partisil

10 SAX guard cartridge column (4.6630 mm) (Capital HPLC).

Each sample (100 ml) was injected into an Alliance 2695 HPLC

system connected to a 2996 photodiode array detector (Waters);

the eluent flow rate was 0.8 ml/min, and the nucleotides were

detected at a wavelength of 254 nm, except Rib that was detected

at 220 nm. Prior to injections, the column was equilibrated with

60 ml of 7 mM NH4H2PO4, pH 3.8 (buffer A). The separation

program started with 22.5 min of an isocratic period with buffer A

followed by a linear gradient of 112.5 min to the high

concentration buffer 250 mM NH4H2PO4, 500 mM KCl,

pH 4.5 (buffer B) and a final isocratic period of 37.5 min with

buffer B. Prior to sample analysis, 50 ml of 20 pmol/ml UTP, CTP,

ATP and GTP, and 80 pmol/ml Ribavirin (Jena Bioscience), were

separated to create a processing method using the Waters

EmpowerTM Chromatography Data Software. Determinations

were carried out with two independent biological samples, each

one in triplicate. The amount of each nucleotide in cell extracts

was normalised relative to the number of cells.

RNA extraction, cDNA synthesis, PCR amplification and
nucleotide sequencing

Intracellular viral RNA was extracted from infected cells using

the Qiagen RNeasy kit according to the manufacturer’s instruc-

tions (Qiagen, Valencia, CA, USA). RT-PCR amplification was

carried out using AccuScript (Agilent), as specified by the

manufacturers. Several genomic regions were amplified using

specific oligonucleotides as primers (Table S8). Nucleotide se-

quences of genomic HCV RNA were determined using the 23 ABI

3730XLS sequencer. To evaluate the complexity of mutant

spectra, HCV RNA was extracted as described above and

subjected to RT-PCR to amplify the E2-, NS5A- and NS5B-

coding regions as previously described [12]. Amplification

products were analyzed by agarose gel electrophoresis using

HindIII-digested F-29 DNA as molar mass standards. Negative

controls (amplifications in the absence of RNA) were included in

parallel to ascertain absence of contamination by template nucleic

acids. To ensure an excess of template in the RT-PCR

amplifications for quasispecies analysis, and to avoid complexity

biases due to redundant amplifications of the same initial RNA

templates, amplifications were carried out with template prepara-

tions diluted 1:10, 1:100 and 1:1000; only when the 1:100 diluted

template produced a visible DNA band was molecular cloning

pursued using the DNA amplified from undiluted template [35].

Controls to ascertain that mutation frequencies were not affected

by the basal error rate during amplification have been previously

described [148].

For the UDPS analysis (GS-FLX platform, 454 Life Sciences-

Roche), RT-PCR was performed using Accuscript (Agilent). To

cover the complete NS5A region, and considering that the GS-

FLX Titanium chemistry allows sequencing fragments of 400–500

nucleotides, this genomic region was divided into six overlapping

amplicons, and amplification products obtained using specific

primers (Table S8). To minimize the errors due to PCR reactions,

RT-PCR amplifications were performed in triplicate and mixed

equimolarly prior to the analysis. Then, PCR products were

purified (Ampure Beads), quantified (Pico Green Assay), and

analyzed for quality (Bioanalyzer) prior to the UDPS procedure.

Negative controls (without template RNA) were run in parallel to

ascertain absence of contamination with undesired templates.

Data analysis was based on the fasta files obtained from the 454

GS system software which includes quality controls to guarantee

the integrity of the amplicons. Data processing was done on the

open source R environment [149], using Bioconductor [150] and

the Biostrings library [151] for pattern matching, sequence

alignment and functions developed for this purpose. Two levels

of errors were considered: a background level of noise that affected

both strands, and at a higher level which was neighborhood and

structure-dependent, and therefore strand-specific. For reads data

processing a demultiplexing step where the reads were assigned to

samples and amplicons was followed by a quality filter and repair

step, and by the intersection of haplotypes in the forward and

reverse strands, and an abundance filter for these consensus

haplotypes above 0.25% [152]. Accuracy validations were

performed using published procedures [150,153–155]; the same

conclusions on Rib mutagenesis were obtained with a cut-off value

of 1.0%.

Population complexity
Population complexity was measured by determining mutation

frequency, number of polymorphic sites and haplotypes as

described in the corresponding tables. Nucleotide diversity (p)

(average number of nucleotide differences per site between any

two RNA sequences of the same mutant spectrum and genomic

region) was calculated according to the formula p= n (n21)/2 Sij

pij (i,j) where n is the number of clones, and pij is the number of

different nucleotides between the pair of sequences ij divided by

the sequence length in nucleotides [156]. Confidence intervals for

nucleotide diversities were calculated using bias-corrected boot-

strap resampling method.

Statistical analyses
The statistical significance of differences between mutation

frequencies or repertoires of mutation types was evaluated by the

chi-square test (x2 test). To determine the significance of increases

of nucleotide diversity associated with drug treatments, permuta-

tion tests were carried out on the regression slope of nucleotide

diversity as a function of drug concentration, with 10,000

permutations per test. Briefly, sequences were randomly assigned

to one of the possible groups, keeping the group size as in the

sample under analysis. For each permutation, a linear regression

of the nucleotide diversity versus drug concentration was obtained,

and the value of the slope was stored. In this manner, the

distribution of the regression slope was obtained for the case in

which differences in nucleotide diversity were due solely to

random sampling. Then, a p-value for the observed slope was
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calculated as the number of times that an equal or higher slope

than the observed was found in the null distribution divided by the

number of permutations. Both, p-values from permutations tests

and bias-corrected bootstrap confidence intervals were obtained

using ad hoc scripts developed for MATLABH (code available

upon request).

To probe statistical significance of the differences in specific

infectivity, one-way analysis of the variance was performed with

statistical package SPSS 13.0 (SPSS, Inc.). For multiple compar-

isons, Bonferroni’s correction was applied. The data are presented

as mean values and standard deviations.

Quantification of HCV RNA
Real time quantitative RT-PCR was carried out using the Light

Cycler RNA Master SYBR Green I kit (Roche), according to the

manufacturer’s instructions, as previously described [157]. The 59-

UTR non-coding region of the HCV genome was amplified using

as primers oligonucleotide HCV-5UTR-F2 (59- TGAGGAAC-

TACTGTCTTCACGCAGAAAG; sense orientation; the 59

nucleotide corresponds to genomic residue 47), and oligonucleo-

tide HCV-5UTR-R2 (59- TGCTCATGGTGCACGGTCTAC-

GAG; antisense orientation; the 59 nucleotide corresponds to

genomic residue 347). Quantification was relative to a standard

curve obtained with known amounts of HCV RNA, synthesized

by in vitro transcription of plasmid GNN DNA. The specificity of

the reaction was monitored by determining the denaturation curve

of the amplified DNAs. Negative controls (without template RNA

and RNA from mock-infected cells) were run in parallel with each

amplification reaction, to ascertain absence of contamination with

undesired templates.

Assessment of HCV extinction
We have taken as criteria to consider HCV extinct those

previously described for lethal mutagenesis of FMDV [48,49].

HCV was considered extinct when no virus infectivity was

detected and no viral RNA was amplified using a sensitive RT-

PCR amplification protocol, either from the supernatant of the cell

culture that contains the putatively extinguished virus, or following

3 blind passages of the cell culture supernatants using Huh-7.5

reporter cells in the absence of any drug. The highly sensitive RT-

PCR consists in the amplification using the primers JC1-NS5A F1

and JC1-NS5A R1 (Table S8). It should be noted that infectivity

below the level of detection did not necessarily imply extinction

according to these criteria, and this is indicated in the

corresponding results.
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I. Gallego for expert technical assistance, and A. Vázquez for help with

statistical analyses.

Author Contributions

Conceived and designed the experiments: ED AMO-P CP. Performed the

experiments: AMO-P JS CP. Analyzed the data: AMO-P HT AG-P JG JQ

JIE CP. Contributed reagents/materials/analysis tools: ED AG-P JQ.

Wrote the paper: ED CP.

References

1. Ploss A, Dubuisson J (2012) New advances in the molecular biology of hepatitis

C virus infection: towards the identification of new treatment targets. Gut 61

Suppl 1: i25–35.

2. Deuffic-Burban S, Poynard T, Sulkowski MS, Wong JB (2007) Estimating the

future health burden of chronic hepatitis C and human immunodeficiency virus

infections in the United States. J Viral Hepat 14: 107–115.

3. Quer J, Martell M, Rodriguez A, Bosch A, Jardi R, et al. (2008) The impact of

Rapid Evolution of Hepatitis Viruses, p. 303–350. In Origin and Evolution of

Viruses. Domingo, E., Parrish, C. and Holland, J.J. (eds.). Elsevier, Oxford.

4. Williams R (2006) Global challenges in liver disease. Hepatology 44: 521–526.

5. Farci P (2011) New insights into the HCV quasispecies and compartmental-

ization. Sem Liver Disease: 356–374.

6. Martell M, Esteban JI, Quer J, Genesca J, Weiner A, et al. (1992) Hepatitis C

virus (HCV) circulates as a population of different but closely related genomes:

quasispecies nature of HCV genome distribution. J Virol 66: 3225–3229.

7. Pawlotsky JM (2006) Hepatitis C virus population dynamics during infection.

Current Topics in Microbiol and Immunol 299: 261–284.

8. Fried MW, Shiffman ML, Reddy KR, Smith C, Marinos G, et al. (2002)

Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection.

N Engl J Med 347: 975–982.

Lethal Mutagenesis of Hepatitis C Virus

PLOS ONE | www.plosone.org 15 August 2013 | Volume 8 | Issue 8 | e71039



9. Ghany MG, Strader DB, Thomas DL, Seeff LB (2009) Diagnosis,
management, and treatment of hepatitis C: an update. Hepatology 49:

1335–1374.

10. Chevaliez S, Pawlotsky JM (2007) Interferon-based therapy of hepatitis C. Adv

Drug Deliv Rev 59: 1222–1241.

11. Hadziyannis SJ, Sette H Jr, Morgan TR, Balan V, Diago M, et al. (2004)

Peginterferon-alpha2a and ribavirin combination therapy in chronic hepatitis
C: a randomized study of treatment duration and ribavirin dose. Ann Intern

Med 140: 346–355.

12. Perales C, Beach NM, Gallego I, Soria ME, Quer J, et al. (2013) Response of

hepatitis C virus to long-term passage in the presence of alpha interferon.
Multiple mutations and a common phenotype. J Virol 87: 7593–7607.

13. Lange CM, Sarrazin C, Zeuzem S (2010) Review article: specifically targeted

anti-viral therapy for hepatitis C – a new era in therapy. Aliment Pharmacol

Ther 32: 14–28.

14. Kwong AD, Najera I, Bechtel J, Bowden S, Fitzgibbon J, et al. (2011) Sequence
and Phenotypic Analysis for Resistance Monitoring in Hepatitis C Virus Drug

Development: Recommendations From the HCV DRAG. Gastroenterology.

15. Feld JJ (2012) Is there a role for ribavirin in the era of hepatitis C virus direct-

acting antivirals? Gastroenterology 142: 1356–1359.

16. Thomas E, Ghany MG, Liang TJ (2012) The application and mechanism of

action of ribavirin in therapy of hepatitis C. Antivir Chem Chemother 23: 1–
12.

17. Gelman MA, Glenn JS (2011) Mixing the right hepatitis C inhibitor cocktail.
Trends Mol Med 17: 34–46.

18. Cubero M, Esteban JI, Otero T, Sauleda S, Bes M, et al. (2008) Naturally
occurring NS3-protease-inhibitor resistant mutant A156T in the liver of an

untreated chronic hepatitis C patient. Virology 370: 237–245.

19. Domingo E (2003) Quasispecies and the development of new antiviral

strategies. Progress in Drug Res 60: 133–158.

20. Richman DD, editor (1996) Antiviral Drug Resistance. New York: John Wiley
and Sons Inc.

21. Mas A, Lopez-Galindez C, Cacho I, Gomez J, Martinez MA (2010) Unfinished
stories on viral quasispecies and Darwinian views of evolution. J Mol Biol 397:

865–877.

22. Domingo E, Biebricher C, Eigen M, Holland JJ (2001) Quasispecies and RNA

Virus Evolution: Principles and Consequences. Austin: Landes Bioscience.

23. Kuntzen T, Timm J, Berical A, Lennon N, Berlin AM, et al. (2008) Naturally

occurring dominant resistance mutations to hepatitis C virus protease and
polymerase inhibitors in treatment-naive patients. Hepatology 48: 1769–1778.

24. Sarrazin C, Zeuzem S (2010) Resistance to direct antiviral agents in patients

with hepatitis C virus infection. Gastroenterology 138: 447–462.

25. Margeridon-Thermet S, Shafer RW (2010) Comparison of the Mechanisms of

Drug Resistance among HIV, Hepatitis B, and Hepatitis C. Viruses 2: 2696–

2739.

26. Eigen M (2002) Error catastrophe and antiviral strategy. Proc Natl Acad Sci
USA 99: 13374–13376.

27. Schuster P, Stadler PF (2008) Early Replicons: Origin and Evolution. In:
Domingo E, Parrish CR, Holland JJ, editors. Origin and Evolution of Viruses

2nd edition. Oxford: Elsevier. 1–42.

28. Bull JJ, Sannjuán Ra, Wilke CO (2008) Lethal mutagenesis. In: Origin and

Evolution of Viruses: (Domingo, E, Parrish, C and Holland, J.J. eds.). Elsevier,
207–218.

29. Ochoa G (2006) Error thresholds in genetic algorithms. Evol Comput 14: 157–
182.

30. Alves D, Fontanari JF (1998) Error threshold in finite populations. Physical

Review E 57: 7008–7013.

31. Takeuchi N, Hogeweg P (2007) Error-threshold exists in fitness landscapes with

lethal mutants. BMC Evol Biol 7: 15; author reply 15.

32. Chen P, Shakhnovich EI (2009) Lethal mutagenesis in viruses and bacteria.

Genetics 183: 639–650.

33. Schuster P (2011) Lethal mutagenesis, error thresholds, and the fight against

viruses: Rigorous modeling is facilitated by a firm physical background.
Complexity. 5–9.

34. Wylie CS, Shakhnovich EI (2012) Mutation induced extinction in finite
populations: lethal mutagenesis and lethal isolation. PLoS Comput Biol 8:

e1002609.

35. Airaksinen A, Pariente N, Menendez-Arias L, Domingo E (2003) Curing of

foot-and-mouth disease virus from persistently infected cells by ribavirin
involves enhanced mutagenesis. Virology 311: 339–349.

36. Anderson JP, Daifuku R, Loeb LA (2004) Viral error catastrophe by mutagenic

nucleosides. Annu Rev Microbiol 58: 183–205.

37. Crotty S, Cameron CE, Andino R (2001) RNA virus error catastrophe: direct

molecular test by using ribavirin. Proc Natl Acad Sci USA 98: 6895–6900.

38. Day CW, Smee DF, Julander JG, Yamshchikov VF, Sidwell RW, et al. (2005)

Error-prone replication of West Nile virus caused by ribavirin. Antiviral Res
67: 38–45.

39. Domingo E (ed) (2005) Virus entry into error catastrophe as a new antiviral
strategy. Virus Res 107: 115–228.

40. Graci JD, Cameron CE (2008) Therapeutically targeting RNA viruses via
lethal mutagenesis. Future Virol 3: 553–566.

41. Graci JD, Harki DA, Korneeva VS, Edathil JP, Too K, et al. (2007) Lethal

mutagenesis of poliovirus mediated by a mutagenic pyrimidine analogue. J Virol

81: 11256–11266.
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