
Am J Transl Res 2013;5(5):470-480
www.ajtr.org /ISSN:1943-8141/AJTR1305009

Review Article
The role of IL-27 in the induction of anti-tumor 
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Abstract: Cytotoxic T lymphocyte (CTL) response is a critical component of the immune response to tumors, there-
fore optimal induction of CTL responses to tumor antigens is highly desired for developing efficient cancer immuno-
therapy. IL-27 is a member of the IL-12 family of cytokines that is comprised of an IL-12 p40-related protein subunit, 
EBV-induced gene 3 (EBI3), and a p35-related subunit, p28. IL-27 functions through IL-27R and has been shown 
to have potent anti-tumor activity via activation of a variety of immune components, including anti-tumor CD8+ T 
cell responses. However, the exact mechanisms of how IL-27 enhances anti-tumor CD8+ T cell responses are not 
fully understood. In this paper we mainly discuss the evidences that suggest novel mechanisms by which IL-27 
enhances anti-tumor CTL responses, including IL-27 inhibition of activation-induced cell death; the phenotypes of 
IL-27-stimulated CTLs; IL-27-induced CTL IL-10/IL-21 production and IL-27-mediated suppression of regulatory T cell 
responses. These evidences suggest that IL-27 may have a great potential to be utilized in boosting anti-tumor CTL 
responses in human cancer patients.
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Introduction

Cytotoxic T lymphocyte (CTL) response is a criti-
cal component of the immune response to 
tumors, therefore optimal induction of CTL 
responses to tumor antigen is highly desired for 
developing efficient cancer immunotherapy. 
Previous studies have revealed that some cyto-
kines, such as interleukin-12 (IL-12) and a vari-
ety of other cytokines [1-12], are potent stimu-
lators of anti-tumor CTL responses. IL-12 is 
recognized as a master regulator of Th1/Tc1 
responses [13, 14]. However, in contrast to its 
significant anti-tumor and anti-metastatic activ-
ities documented in preclinical studies, clinical 
trials with IL-12 used as a single agent, or as a 
vaccine adjuvant, have shown limited efficacy 
in most cases [14, 15]. It has recently been 
found that IL-12 up-regulates Tim-3 expression 
in T cells and induces T cell exhaustion, and 
thus IL-12-induced T cell responses could not 
be sustained to resulting in tumor rejection 
[16]. Thus, more effective application of IL-12, 
and of newly identified IL-12 family members 
such as IL-27, should be evaluated as therapeu-

tic agents, as it may has more potential in the 
treatment cancer patients.

Since IL-27 was first reported having anti-tumor 
activity in 2004 [8, 9], the potent antitumor 
activity of IL-27 has been verified in various 
tumor models, and many studies have shown 
CD8+ T cell-dependent tumor rejection [8-10, 
12, 17]. The enhancing roles of endogenous 
IL-27 in the generation of anti-tumor CTL 
responses were also demonstrated using 
IL-27Rα-deficient mice [18-20]. Although these 
studies provide a strong case for the role of 
IL-27 in inducing anti-tumor CTL responses, it is 
not fully understood how IL-27 enhances anti-
tumor CTL responses. In this paper we review 
the evidences that suggest novel mechanisms 
by which IL-27 enhances anti-tumor CTL 
responses.

IL-27 biology

IL-27 is a heterodimeric cytokine composed of 
two subunits: EBI3 and p28 [21]. Since it is 
structurally and functionally similar to IL-12, it 
was classified into the IL-12 cytokine family. 
Co-expression of EBI3 and p28 within the same 
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cell is required for IL-27 to employ its biological 
functions [21]. Early studies demonstrated that 
activated antigen-presenting cells are the main 
source of both human and murine IL-27. The 
expression of human IL-27 has been detected 
in monocytes, dendritic cells, endothelial cells, 
and trophoblast cells [21, 22], while the expres-
sion of murine IL-27 has been detected in acti-
vated macrophages and microglia cells [21, 
23]. IL-27 receptor (IL-27R) is also a heterodi-
meric molecule that consists of WSX-1 (IL-27Rα) 
and gp130. They have been shown to coex-
press on a variety of immune cell types, includ-
ing CD4+ T cells, CD8+ T cells, NK cells, mono-
cytes, mast cells, neutrophils, and B cells [24, 
25]. Therefore, IL-27 has pleiotropic functions 
that depend on the cell type on which IL-27R is 
expressed. Although WSX-1 has high affinity to 
IL-27 in the absence of gp130 [21], it is insuffi-
cient to mediate IL-27 signal transduction [24]. 
In contrast, IL-27 does not bind to gp130 in the 
absence of WSX-1 [26]. Thus, coexpression of 
WSX-1 and gp130 in the same cell is pivotal for 
IL-27 to execute its biological activities.

The interaction of IL-27 with IL-27R has been 
shown to activate Janus Kinase (JAK) 1-2, 
Tyrosine kinase (TYK) 2, STAT 1-5 in naïve CD4+ 
T cells [27]. Co-immunoprecipitation studies 
and pull-down assays show that the intracellu-
lar domain of WSX-1 is constitutively associat-
ed with JAK1 and contributes to tyrosine phos-
phorylation of STAT1 [28], while gp130 consti-
tutively interacts with JAK1/TYK2 and elicits a 
strong activation of STAT3 [24, 29]. By studying 
STAT1-/- and STAT3-/- murine T cells, STAT3 was 
shown to be indispensable for IL-27-mediated 
proliferative effect on naïve CD4+ T cells, while 
STAT1 was found to be dispensable [29]. In con-
trast, Yoshimura et al. reported that IL-27 pref-
erentially induces STAT3 in fully activated CD4+ 
T cells, while both STAT1 and STAT3 are acti-
vated in early activated T cells upon IL-27 stim-
ulation [30]. Since IFN-α/β/γ utilize JAK1/2, 
TYK1/2, and STAT1 [31, 32], IL-6 has the ability 
to activate JAK1/2, TYK2, STAT1/3 [33, 34], 
IL-27 was considered to have similar biological 
actions to IFN-α/β/γ and IL-6. IL-27 is a pleiotro-
pic cytokine capable of regulating Th1, Th2, 
Th17, and FoxP3+ Treg responses [35]. IL-27 
was initially found to induce T-bet expression 
and promote Th1 responses [36]; later studies 
using IL-27Rα-/- mice and pathogen/autoim-
mune disease models have revealed that IL-27 

actually inhibits Th1 responses [37, 38]. 
However, the molecular mechanisms of IL-27-
mediated Th1 suppression remain unclear. It is 
well established that IL-27 inhibits Th2 and 
Th17 responses via blocking the expression of 
transcription factors GATA-3 (Th2) and RoRγt 
(Th17) [27, 39]. IL-27 also appears to inhibit 
CD4+ CD25+ Foxp3+ regulatory T cell (Treg) 
responses [40, 41]. Another notable function of 
IL-27 is its ability in inducing IL-10 production in 
essentially all subtypes of T lymphocytes [42-
46]. A variety of mechanisms, including activa-
tion of STAT1/STAT3 [42], induction of ICOS, 
c-Maf and IL-21 [47-49] have been proposed. 
IL-27 induces IL-21 production mainly by CD4+ T 
cells [47, 50, 51].

The multi-faced anti-tumor activities of IL-27

In the past decade, IL-27 has attracted consid-
erable interest as a potent antitumor cytokine 
due to its similarities to IL-12. IL-12 has been 
proven to be effective in controlling tumor 
growth and metastases. The mechanisms 
responsible for the anti-tumor effects of IL-12 
include: promoting IFN-γ production, anti-angio-
genesis, triggering programmatic changes in 
suppressive cellular components within tumors, 
and enhancing lytic abilities of CTLs, NK cells 
and NKT cells to eradicate tumors [52, 53]. 
However, IL-12 treatment of human cancer 
patients is associated with severe side effects, 
which may be due to its excessive pro-inflam-
matory effects. Since IL-27 was discovered in 
2002, the potent anti-tumor effect of IL-27 has 
come into agreement in almost all literatures 
with multiple mechanisms involved [19, 54]. 
However, the mechanisms by which IL-27 exerts 
its anti-tumor activity vary among different 
types of tumors. The potent antitumor activity 
of IL-27 has been verified in various immuno-
genic tumor models, and many studies have 
shown CD8+ T cell-dependent tumor rejection 
[8-10, 12, 17]. While in other tumor models, 
IL-27 also exerted its antitumor activity through 
various other mechanisms. For instance, in 
poorly immunogenic tumors such as B16F10 
melanoma, IL-27 can enhance NK cell response 
[55], inhibit angiogenesis [56], and directly sup-
press tumor cell proliferation [57]. IL-27 can 
also suppress NK-resistant head and neck 
squamous cell carcinoma through inducing 
antibody-dependent cellular cytotoxicity [58]. 
In lung cancer model, over-expression of IL-27 
or treatment with recombinant IL-27 can 
decrease expressions of vimentin, COX-2, and 
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its metabolite (PGE2) in lung cancer cells [59], 
which results in the reduction of cancer cell 
migration and invasion. IL-27 is also capable of 
inhibiting human multiple myeloma cell growth 
as well as osteoclast activity [60]. Collectively, 
these studies suggest that IL-27 can exert its 
anti-tumor activity through direct inhibition can-
cer cell growth, proliferation and migration; 
inhibiting tumor angiogenesis, enhancing NK 
activity and more importantly, enhancing 
tumor-specific CTL responses.

The roles of IL-27 in CTL differentiation and 
survival

Although previous studies [19, 54] provide a 
strong case for the role of IL-27 in inducing anti-
tumor CTL responses, it is not fully understood 
how IL-27 enhances anti-tumor CTL responses. 

In the literature, IL-27 has been shown to be 
able to directly stimulate CD8+ T cells. IL-27 was 
shown to activate STAT1 and subsequently aug-
mented the expression of two related T-box 
transcriptional factors: T-bet and Eomes [19, 
61], enhance proliferation and IFN-γ production 
by CD8+ T cells [19], and promote CD8+ T cells 
to express IL-12Rβ2 and granzyme B [61, 62]. 
IL-27-induced IL-21 was shown to be pivotal for 
CD8+ T cells to produce granzyme B [63]. We 
recently [64] analyzed the direct effects of IL-27 
on tumor antigen specific CD8+ T cells using the 
tumor P1CTL T cell receptor (TCR) transgenic 
model [65]. As outlined in Figure 1, we have 
found that IL-27 exerts three STAT1/STAT3 acti-
vation-mediated effects on tumor antigen spe-
cific CD8+ T cells, which provides new explana-
tions for why IL-27 enhances anti-tumor CTL 

Figure 1. IL-27 directly stimulates CD8+ T cells and programs them into memory effector CTL cells.
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responses. First, IL-27 up-regulates anti-apop-
totic molecules such as Bcl-2 and inhibits acti-
vation of Caspase 3 in activated CD8+ T cells, 
which leads to improved survival of activated 
CD8+ T cells. The survival enhancing effect of 
IL-27 on CD8+ T cells is consistent with a recent 
study showing that IL-27 can inhibit activation-
induced cell death and enhance the survival of 
CD4+ T cells [66]. The strong anti-apoptosis 
effect of IL-27 could explain why, in tumor mod-
els, more CTLs accumulate in the IL-27-positive 
tumor microenvironment. Second, IL-27 induc-
es a unique memory precursor cell (MPC)/
effector phenotype in activated CD8+ T cells, 
characterized by up-regulation of SOCS3, Bcl-
6, Sca-1, T-bet, Blimp1 and Perforin, and down-
regulation of Eomes and IFN-γ. SOCS3 and 
Bcl-6 have recently been shown to be critical in 
establishing CD8+ T cell memory [67]. Sca-1 is 
a cell membrane molecule usually expressed 
on self-renewing stem cells and is a marker of 
central memory CD8+ T cells [68, 69]. 
Up-regulation of T-bet and down-regulation of 
Eomes have been demonstrated in IL-12-
stimulated CD8+ T cells previously [52], and are 
associated with CD8+ T cell differentiation into 
effector but not memory T cells [52, 67]. The 
controversy of up-regulation of T-bet with down-
regulation of IFN-γ in P1CTL can be explained 
by IL-27 induction of Bcl-6, which has been 
shown to inhibit T-bet induced IFN-γ production 
[70]. Unlike previous studies, we actually 
observed deceases of Granzyme B and IFN-γ by 
CD8+ T cells after IL-27 stimulation. Collectively, 
these results suggest that IL-27 programs 
tumor antigen specific CD8+ T cells into MPC-
like effector cells. This phenotype can poten-
tially increase CTL “stemness”, without affect-
ing their effector functions such as cytotoxicity 
[64]. Consistent with the anti-tumor effects of 
IL-27, recent other studies [71, 72] have 
revealed that T cells with concomitant memory 
and terminally differentiated phenotype are 
more efficient in rejecting tumors than T cells 
that are extreme in Th1/Tc1 differentiation. 
Third, IL-27 induces high amount of IL-10 pro-
duction by CTL and our study suggests that 
IL-27-induced CTL IL-10 production contributes 
to MPC phenotype, T cell memory and tumor 
rejection [64]. 

The roles of IL-27/IL-21/IL-10 axis in anti-
tumor CTL responses and CTL memory

A notable function of IL-27 is its ability in induc-
ing IL-10 production in essentially all subtypes 

of T lymphocytes [42-46]. Although the role of 
IL-10 in tumor immunity is often controversial, 
increasing evidence suggests a positive role of 
IL-10 in the induction of anti-tumor CTL respons-
es. For instance, in IL-10-deficient mice, anti-
tumor CTL responses were weakened [3] and 
increased numbers of FoxP3+ Treg cells were 
found [73]; whereas in IL-10 transgenic mice, 
anti-tumor CTL responses were primed and 
shown to be responsible for tumor rejection [3, 
74]. In our recent study, we have shown that 
IL-27-induced CTL IL-10 production contributes 
to CTL-mediated tumor rejection [64]. This con-
clusion is supported by three lines of evidence. 
First, adoptive transfer of IL-27-stimulated 
P1CTL cells, which produce high amounts of 
IL-10, had better therapeutic efficacy than 
IL-27-stimulated IL-10-deficient P1CTL. Second, 
adoptive transfer of P1CTL or IL-10-/- P1CTL 
cells into Rag2-/- or Rag2-/- IL-10-/- mice with esta- 
blished J558-IL-27 tumors shows that P1CTL 
cells can reject tumors better than IL-10-/-  

P1CTL cells. Third, J558-IL-27 tumor cells, 
which failed to grow into tumors in BALB/c mice 
due to a potent anti-tumor CTL response, could 
grow into tumors in IL-10-/- BALB/c mice. IL-10 
producing CD8+ T cells are usually considered 
as suppressor cells that down-regulate T cell 
responses [75]. However, some studies showed 
that IL-10 producing CTLs were more highly 
activated and cytolytic than IL-10-deficient 
CTLs [3, 76]. In our recent study, we found that 
IL-27-stimulated IL-10-deficient CTLs expressed 
similar levels of IFN-γ, Granzyme B and perforin, 
and exhibited similar levels of cytotoxicity to 
target cells compared to their WT counterparts. 
However, IL-10-deficiency significantly reduced 
the expression of IL-27-induced survival mole-
cules, such as SOCS3, Bcl-2, and Bcl-6 in CTLs. 
Thus, IL-27 induced CTL IL-10 production 
increases their survival potential, which can 
lead to stronger CTL responses. Our finding that 
IL-27 induced CTL IL-10 production contributes 
to their efficacy in tumor rejection suggests 
that IL-10 producing CTLs are better effectors 
rather than suppressor cells.

IL-27 also induces IL-21 production by CD4+ [47, 
50, 51] and CD8+ T cells [63]. IL-21 is a member 
of the IL-2 family of cytokines. It is mainly pro-
duced by CD4+ T cells and acts on T cells, B 
cells, NK cells and dendritic cells [77, 78]. IL-21 
signals through IL-21R and activates Jak1 and 
Jak3, leading to activation of STAT1, 3 and 5; 
however, the activation of STAT3 appears to be 
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the most important STAT protein for IL-21 sig-
naling [79]. IL-21 induces Granzyme B expres-
sion in CD8+ T cells [63] and enhances anti-viral 
CTL responses [80-83] and CTL-mediated 
tumor rejection [4-7, 84]. Recently, IL-21-
induced STAT3 activation has been shown to 
play a critical role in the survival and memory 
responses of CD8+ T cells [67, 85]. Given that 
IL-21 has similar effects of IL-10 in anti-tumor 
immunity, we expect that IL-27-induced CTL 
IL-21 production by T cells also contribute to 
the induction of anti-tumor CTL responses. 
However, this hypothesis remains to be tested. 
The roles of IL-27-induced IL-10 and IL-21 pro-
duction by CD4+ T cells also remain to be 
determined.

IL-10 has also been shown to play a vital role in 
CD8+ T cell memory [86], presumably via induc-
tion of SOCS3 [67]. In our recent study we find 
that in the absence of IL-10, the capacity for 

IL-27 induction of MPC phenotype in CD8+ T 
cells is greatly diminished, which is mainly 
reflected by reduced expression of SOCS3, Bcl-
2, and Bcl-6. Adoptive transfer experiments 
suggest that IL-10-deficient CD8+ T cells do not 
give rise to good memory response compared 
to IL-27-stimulated WT P1CTL cells. Thus, IL-27 
induced CTL IL-10 production contributes to 
CTL memory response.

IL-27 suppresses treg responses in the tumor 
microenvironment 

A few lines of evidence suggest that IL-27 has a 
profound impact on the homeostasis of Foxp3+ 

regulatory T cells. IL-27 has been shown to 
inhibit the conversion of inducible T regulatory 
cells (iTreg) by inhibiting the expression of 
Foxp3, CD25 and CTLA4 [40, 41]. IL-27Rα-
deficient (WSX-1-/-) [87] and IL-27 EBI3-/- mice 
[88] exhibit increased Treg conversion and 

Figure 2. IL-27 affects tumor specific CTL responses via a variety of mechanisms. TAMC: tumor associated myeloid 
cells.
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expansion during autoimmune responses. IL-27 
transgenic mice are deficient for Treg cells and 
develop systemic inflammation at 8-11 week of 
age [89]. However, recent evidences also sug-
gest that IL-27 may be needed for Treg survival 
[66, 90]. These features of IL-27 suggest that 
Treg responses, and subsequently CTL respons-
es in the tumor microenvironment may be 
affected by IL-27. Indeed, studies using tumor 
models have revealed reduced numbers of 
Foxp3+ Treg cells and increased CTL responses 
in the tumor microenvironment of IL-27-positive 
tumors [12, 20, 59]. Our recent study (Liu et al, 
submitted) shows that the frequencies of 
Foxp3+ CD4+ Treg cells in tumors are significant-
ly decreased in IL-27-overexpressed tumors, 
while Treg numbers increased in tumors from 
EBI3-/- mice. While these results suggest nega-
tive correlation of Treg response and IL-27, it 
remains unclear if IL-27 directly mediate Treg 
suppression in the tumor microenvironment or 
alternatively via suppression of IL-2 production 
[89]. Regardless of the mechanisms, it is likely 
that IL-27 can enhance anti-tumor CTL respons-
es via inhibition of Treg responses.

Concluding remarks and future directions

Accumulating evidences suggest that IL-27 pro-
motes anti-tumor CTL responses in general [19, 
54]. As demonstrated in Figure 1, IL-27 can 
enhance anti-tumor CTL responses via directly 
stimulating CD8+ T cells, inhibiting activation 
induced cell death and programming CTLs into 
memory effector cells with unique features 
[64]. Some of the features, such as enhancing 
CTL survival without reducing cytolytic activity, 
can clearly benefit anti-tumor CTL response; 
whereas other features, such as inhibition of 
CTL IFN-γ production, may affect CTL-mediate 
tumor rejection. IL-27-induced CTL IL-10 pro-
duction actually benefits CTL survival and CTL-
mediated tumor rejection. IL-27 is also likely to 
influence CTL responses via affecting Treg, 
Th17, Tr1 (producing IL-10 and IL-21) and 
myeloid cells [46, 54] (Figure 2). Recently, IL-27 
is shown to induce the expression of PD-L1 in 
CD4+ T cells [91], a major mediator of T cell 
exhaustion [92, 93]. It remains unclear if IL-27 
induces PD-L1 expression in CTL cells; if so, it 
may represents another negative factor for the 
generation of CTL responses. Selective induc-
tion positive features and blocking negative 
molecules such as PD-L1 will further enhance 
IL-27-mediated anti-tumor CTL response. 

Currently, cytokine based cancer therapy are 
mainly used in the following ways, namely, sys-
temic administration; local delivery; cytokine-
secreting tumor cell vaccination; and the use of 
cytokines as adjuvant for cancer vaccine and 
adoptive cell therapy. A recent study [94] sug-
gests that irradiated, IL-27-positive cancer cells 
induced protective T cell responses against 
subsequent tumor cell challenge. However, our 
recent experiments using irradiated, IL-27-
secreting B16F10 cells failed to generate pro-
tective CTL responses (Liu et al, unpublished). 
This finding is supported by another report that 
using IL-12 and IL-27 combined gene therapy. It 
was found that potent CTL responses can only 
be induced by delivery of IL-12 first, followed by 
IL-27 delivery [17]. Thus, IL-27 does not induce, 
but amplify existing CTL responses. As such, 
IL-27 should be used with other vaccines to 
amplify CTL responses. It is also expected that 
IL-27 can enhance cancer vaccine induced CTL 
memory. Future research should be focused on 
identification of the most appropriate ways to 
use IL-27 as a therapeutic for the generation of 
anti-cancer CTL responses.
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