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A multiphysics computational model of the focusing of an acoustic pulse and subsequent shock

wave formation that occurs during extracorporeal shock wave lithotripsy is presented. In the elec-

tromagnetic lithotripter modeled in this work the focusing is achieved via a polystyrene acoustic

lens. The transition of the acoustic pulse through the solid lens is modeled by the linear elasticity

equations and the subsequent shock wave formation in water is modeled by the Euler equations

with a Tait equation of state. Both sets of equations are solved simultaneously in subsets of a single

computational domain within the BEARCLAW framework which uses a finite-volume Riemann

solver approach. This model is first validated against experimental measurements with a standard

(or original) lens design. The model is then used to successfully predict the effects of a lens modifi-

cation in the form of an annular ring cut. A second model which includes a kidney stone simulant

in the domain is also presented. Within the stone the linear elasticity equations incorporate a simple

damage model. VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4812881]

PACS number(s): 43.25.Jh [MDV] Pages: 1598–1609

I. INTRODUCTION

Extracorporeal shock wave lithotripsy (ESWL) is a non-

invasive medical procedure that uses focused acoustic waves

to break up kidney stones into small enough pieces for a

patient to pass naturally. In an ESWL procedure a strong

acoustic pulse is generated outside of the patient in a water-

filled casing and is then focused toward the kidney stone by

one of several standard methods. The pulse either begins as

a shock wave or forms into one during transit due to nonlin-

ear steepening, depending on the type of lithotripter. The

stone is fractured and subsequently comminuted by a variety

of mechanisms including compression-induced tensile frac-

ture, spallation, squeezing, and cavitation effects.1

The three common types of lithotripters are based on

electrohydraulic (EH), electromagnetic (EM), and piezoelec-

tric (PE) principles and the use of various devices for pulse

generation and focusing. In an EM lithotripter, an acoustic

pulse is formed by an electromagnetic actuator and is usually

focused by an acoustic lens or parabolic reflector. In con-

trast, an EH lithotripter uses a spark discharge between elec-

trodes and an ellipsoid reflector and a PE lithotripter uses

piezoelectric actuators arranged on a spherical cap.

Since the 1980 development of the procedure2 and the

1984 clinical introduction of the Dornier, Wessling,

Germany, HM3 EH lithotripter,3 ESWL has become the

preferred treatment of choice for most stones with size less

than 2.5 cm.4 Despite much success, EH lithotripters suffer

from the short lifespan of the electrodes as well as high vari-

ability in shock features such as rise time and peak pres-

sures.5 This led to the popularity of EM lithotripters which

greatly improved on these issues.1 In fact, most lithotripters

developed during the 1990s were EM lithotripters.4 PE lith-

otripters also addressed these problems, but poorer clinical

showings have kept them from gaining popularity.4

Unfortunately, modern EM lithotripters do not achieve

the stone-free success rates of the HM3 and have lead to a

higher re-treatment rate.5,6 Some reasons for the successful

efficacy of the HM3 likely include the wider beam width and

cavitation resulting from the long tensile portion of the

pulse. These features can potentially be addressed in refract-

ing EM lithotripters through introduction of new lens

designs. Qin7 proposed a design with an annular ring cut

which increases the beam width and reduces the secondary

compression of the pulse profile resulting in pressure wave-

forms, and therefore cavitation behavior, closer to that of the

HM3. Zhong and colleagues8 have reported a prototype

design of this new lens that demonstrates improved stone

comminution both in vitro and in vivo compared to the origi-

nal lens. One benefit of designing new lenses as a means to

increase EM lithotripter efficacy is the ease of replacing

existing lenses while leaving the remainder of the lithotripter

intact. In this paper, a computational model of an EM litho-

tripter is presented to aid in the design of improved lenses.

Despite the prevalence of EM lithotripters, almost all

existing numerical models of acoustic wave propagation in

lithotripsy have either been of EH or PE lithotripters and none
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model refracting EM lithotripters. Coleman et al.9 solved the

one-dimensional Khokhlov–Zabolotskaya–Kuznetsov (KZK)

equation, similar to Burgers’ equation, with the HM3 geome-

try. Hamilton10 developed a linear focusing solution on the

axis of symmetry of a concave ellipsoidal mirror following

the production of a spherical wave at the first focus. This

model was later used by Sankin et al.11 to investigate optical

breakdown as a shock wave generation mechanism.

Christopher12,13 developed a nonlinear acoustic model

accounting for diffraction and attenuation and applied it to the

HM3. This model also solved Burgers’ equation to account

for nonlinear effects. Steiger14 presented a finite difference

model of a reflecting EM lithotripter and accounted for attenu-

ation in tissue. Averkiou and Cleveland15 solved the two-

dimensional (2D) KZK equation to model an EH lithotripter.

Zhou and Zhong16 expanded on this model to investigate

reflector geometry modifications. Ginter et al.17 modeled a

reflecting EM lithotripter by solving nonlinear acoustic equa-

tions by a 2D FDTD method. Tanguay18 used a weighted

essentially non-oscillatory method to solve the Euler equations

for two phase flow in order to investigate the bubble cloud

that forms due to the shock wave. Krimmel, Colonius, and

Tanguay19 expanded on this model to investigate the effect of

bubbles on the focusing and shock wave formation in both EH

and PE lithotripters. Iloreta et al.20 investigated possible

inserts into an EH lithotripter and the effect on cavitation

potential by solving the Euler equations using

CLAWPACK.21

The majority of the works in the preceding paragraph

involve computational solutions of wave propagation and

nonlinear steepening in water. These solutions allow model-

ing of EH, PE, and reflecting EM lithotripters where the fo-

cusing and steepening occur in water. To model a refracting

EM lithotripter, the wave propagation within the solid lens

must also be computed. This requires the computation to

have a multiphysics aspect. In this work, a multiphysics com-

putational model is developed and validated against pressure

measurements from an EM lithotripter. The experimental

setup that is modeled is aimed at testing different lens designs

and does not include tissue or kidney stone material or simu-

lant. The region normally occupied by the patient is approxi-

mated in the experiment by additional water. Further details

of the experimental procedure used to collect data for com-

parison are described in Sec. II. Following this, the numerical

model will be described. This model is first validated by com-

paring to experiment for a standard lens design. Then, it is

shown that the model correctly predicts parameters of the

pulse, including peak pressures, beam width, acoustic energy,

and pulse durations, for a modified lens. Finally, the model is

extended to include a cylindrical kidney stone simulant in the

domain.

II. EXPERIMENTAL METHODS

The processes in an experimental EM lithotripter can

be segmented into stages. First is the creation of the acous-

tic pulse by the electromagnetic actuator (i.e., the shock

wave source). After traveling through a small portion of

water the acoustic pulse enters the lens and refracts. Upon

exiting the lens, the pulse is directed toward the geometri-

cal focus of the lens. Up to this point all wave propagation

has been approximately linear. As the pulse proceeds

through the water and converges toward the focus, the am-

plitude increases. Eventually, the pressures are high enough

to cause significant nonlinear steepening of the pulse and

finally, shock wave formation.

The essential components of the experiment are a tank

of water, an electromagnetic actuator, an acoustic lens, and a

hydrophone. These components can be seen in the diagram

in Fig. 1. Cross section diagrams of the original lens used for

validation of the model and the new lens used to show the

predictive capabilities of the model are shown in Fig. 2. The

acoustic lens fits directly on top of the actuator with a small

fraction of water in between. The lenses are made from poly-

styrene and its material properties are given in Sec. III.

Dimensions in the experiment and computation are given in

cylindrical coordinates ðz; r; hÞ, where r ¼ 0 is the center

axis of the actuator and lens and z ¼ 0 is the surface of the

actuator. The actuator extends from r ¼ 15 to r ¼ 70 mm,

the lens extends to r ¼ 72 mm, and the geometrical focus of

the lens is at z ¼ 181:8 mm.

The 40� 30� 30 cm Lucite, Southampton, United

Kingdom, tank is filled with 0.2 micrometer-filtered and

degassed water (<3 mg/L oxygen concentration, 23 �C). The

electromagnetic actuator is powered by a high voltage pulse

generator with a 1.2 microfarad capacitor and a dynamic

range of 9.5–19.3 kV. Pressure measurements are recorded

by a fiber optic hydrophone (FOPH) 500 from RP Acoustics,

Leutenbach, Germany. Pressure is sampled at 100 MHz from

the photovoltage signal by a LeCroy, Chestnut Ridge, New

York, oscilloscope.

A similar experimental setup is used to measure the

pulse input for the computational model. This input consists

FIG. 1. (Color online) Diagram of the experimental setup with the tank, ac-

tuator, and lens in the center. Arrows show the FOPH setup and the flow of

water to the space behind the lens. Also shown is the 3D positioning system

used to position the FOPH for pressure measurement.
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of pressure data as a function of the radial coordinate ðrÞ,
time ðtÞ, and the source voltage ðVÞ. This data corresponds

to the direct wave created by the actuator. In this experiment

the lens is removed and the optical fiber of the hydrophone

is placed close to the actuator at z � 5 mm.

To create the input pressure data, three source voltages

(12.8, 15.8, and 18.8 kV) were used. The radial profile of the

pulse was characterized by FOPH pressure measurements at

Dr ¼ 5 mm steps over the interval 25 � r � 60 mm. Near

the edges of the actuator where the profile changes more rap-

idly, 15 � r � 25 mm and 60 � r � 70 mm, a smaller step

size of Dr ¼ 2:5 mm was used. Elsewhere, r � 15 mm and

r � 70 mm, the incoming pressure is assumed to be zero.

This data was curve fitted as functions of r, t, and V in order

to interpolate and extrapolate input pressure data over these

variables (Sec. IV).

A. Post-processing of data

The hydrophone measurements are averaged over four

samples, which reduces noise to an acceptable level for com-

parison to the model. Measurements are post-processed

using MATLAB. The lithotripter field parameters are calculated

following the International Electrotechnical Commission

standard 61846. The compressive and tensile pulse dura-

tions, tþ and t�, respectively, are calculated based on the first

and last point where 10% of the peak pressure of that portion

of the wave is encountered. The rise time, tr, is calculated as

the time for the leading compressive wave to increase from

10% to 90% of the peak pressure. Beam width is calculated

as the diameter of the circle in the focal plane, perpendicular

to the propagation axis, defined by where the pressure is

50% of the peak pressure of the leading compressive wave.

The effective acoustic pulse energies are defined as

EEff ¼ 2p
ðRh

0

PIIðrÞr dr; (1)

where Rh is the radius of the region over which the energy is

calculated. In this work, Rh ¼ 6 mm which encompasses

most stones treated with ESWL. PII is the pulse intensity in-

tegral given by

PIIðrÞ ¼ 1

Z0

ðt2

t1

Pðz; r; tÞ2 dt; (2)

where Pðz; r; tÞ is pressure, Z0 is the acoustic impedance of

water, and t1 and t2 are the first and final crossing points,

respectively, of 10% of the peak pressure of the region in

question. Here, acoustic energies are calculated only in the

geometric focal plane of the lens so that z ¼ 181:8 mm.

Numerical data is produced in the same format [pressure

over time at certain ðz; rÞ coordinates] and therefore the

same post-processing of parameters is used.

III. NUMERICAL MODEL

The computational model described in this section simu-

lates the focusing of an acoustic pulse by a lens and the sub-

sequent shock wave formation as would occur in a refracting

EM lithotripter. The model can also include a stone region in

order to simulate the interaction of the shock wave and

stone. The developing shock wave in the solution requires

the use of numerical methods capable of handling this dis-

continuity. Here, a finite-volume conservative-law Riemann

solver21,22 is used within the BEARCLAW framework

developed by Mitran.23 The user of BEARCLAW supplies

the system matrix decomposition and the appropriate waves

and speeds in the Riemann solver sense. The user also speci-

fies other details of the computation such as initial condi-

tions, boundary conditions, source term solutions, and

spatially dependent coefficients of the equations.

The model presented here solves the linear elasticity

equations and the Euler equations simultaneously in arbitrary

subsets of the full computational domain. Figure 3 shows the

extent of the domain, and the location and orientation of the

lens and stone as well as the regions in which either the elas-

ticity equations or the Euler equations are solved. Essentially,

both sets of equations are solved across the entire domain.

Where solution values of one set of equations are not needed,

they are discarded and replaced with transformed versions of

the other solution values. For example, Euler values within

the lens are not needed and so only the elasticity values are

kept in that region. A small portion of elastic water is needed

as a transition area between the elastic solids and the Euler

water. This is because the transformation of solution values

between elasticity and Euler is only valid for water, where

there is no shear stress.

For ease of application programming, the linear elastic-

ity equations are first solved across the entire domain to

model the transition of the pulse through the lens and rela-

tively small portions of water surrounding the lens. At a later

time, ts, the computation is switched and the Euler equations

are solved once the pulse has passed completely through the

lens in order to model the shock wave formation. For the

results given in this paper, ts ¼ 28 ls. This value allows just

enough time for the pulse to pass completely through the

lens and into the water. At later times, the computational

model tracks penetration of the shock wave into a kidney

FIG. 2. Cross section diagrams of the two lenses used. On the left is the origi-

nal lens used for validation of the model. On the right is the new lens with the

cut, a feature of clinical interest, which exhibits a longer axial extent of the

focal region. r ¼ 0 corresponds to the central axis of the lenses.
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stone simulant where the heterogeneous elasticity equations

are solved with a simple damage model.

In the computation, the electromagnetic actuator is not

modeled explicitly. Instead the pulse enters the domain

through an elasticity boundary condition at z ¼ 0, represent-

ing the surface of the actuator near the proximal surface of

the lens, as seen in Fig. 3. The stability condition for the

solver is the Courant–Friedrichs–Lewy condition,

CFL ¼ Dtcmax=Dx � 1, where Dt is the time step and Dx is

the spatial step. A variable timestepping technique is used

here with a desired CFL of 0.98. The time step is chosen

based on the desired CFL and maximum wave speed (cmax)

encountered on the previous time step. The lenses currently

being modeled are axisymmetric and so the axisymmetric

versions of the elasticity and Euler equations are used.

A. Linear elasticity equations

The axisymmetric linear elasticity equations in cylindri-

cal coordinates ðz; r; hÞ are

rzz
t � ðkþ 2lÞuz � kvr ¼

k
r
v;

rrr
t � kuz � ðkþ 2lÞvr ¼

k
r
v;

rhh
t � kuz � kvr ¼

kþ 2l
r

v;

rzr
t � lvz � lur ¼ 0;

ut �
1

q
rzz

z �
1

q
rzr

r ¼
1

qr
rzr;

vt �
1

q
rzr

z �
1

q
rrr

r ¼
1

qr
ðrrr � rhhÞ; (3)

where rzz, rrr, rzr, and rhh are elements of the stress tensor,

u and v are displacement velocities in the z and r directions,

respectively, q is density, and k and l are the first and sec-

ond Lam�e parameters, respectively (l is also called the shear

modulus).22,24,25 The Lam�e parameters are related to

Poisson’s ratio, �, and Young’s modulus, E, by

k ¼ �E

ð1þ �Þð1� 2�Þ ; l ¼ E

2ð1þ �Þ ; (4)

and to the longitudinal wave speed, cp, and the shear wave

speed, cs, by

cp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 2l

q

s
; cs ¼

ffiffiffi
l
q

r
: (5)

The hyperbolic system of equations (3) models longitu-

dinal waves and shear waves with motion in the zr plane.

The main elements of the employed Riemann solver will

briefly be discussed. Consider Eq. (3) written in vector form

as

qt þ Aqz þ Bqr ¼ Cq; (6)

where

q ¼ ð rzz rrr rhh rzr u v ÞT : (7)

An analytic eigendecomposition of the system matrices, A
and B, before the computation, reveals the waves and wave

speeds of the system, which are the eigenvectors and eigen-

values, respectively. The wave speeds in this system are

�cp, cp, �cs, and cs. The form of the coefficients of this

decomposition, when applied to the solution differences

between adjacent cells, is also computed beforehand. Along

with the eigensystem values, these coefficients are used to

form the flux terms at the cell boundaries, A6DQi�1=2; j and

B6DQi; j�1=2, in the update formula given by

Qnþ1
i;j ¼ Qn

i;j �
Dt

Dz
ðAþDQi�1=2;j þ A�DQiþ1=2;jÞ

� Dt

Dr
ðBþDQi;j�1=2 þ B�DQi;jþ1=2Þ

� Dt

Dz
ð ~Fiþ1=2;j � ~Fi�1=2;jÞ

� Dt

Dr
ð ~Gi;jþ1=2 � ~Gi;j�1=2Þ; (8)

where Qn
i; j are the solutions values at the nth time step and in

finite volume cell ði; jÞ, Dt is the time step, and Dx and Dy
are the spatial steps. ~F and ~G are the correction terms which

incorporate the higher order wave limiters and the transverse

waves. The basic iteration used here is described by

LeVeque.21,22

In this simulation, the lens, stone, and regions of water

surrounding the lens and stone are modeled with the elastic-

ity equations. The elasticity equations will not capture the

nonlinear steepening effect that occurs in water. Over the

FIG. 3. (Color online) Diagram of the computational domain. The z-axis is the axis of symmetry. The incoming pulse enters along the left boundary. The geo-

metric focus of the acoustic lens is near the proximal surface of the stone at z¼ 181.8 mm. The thickness of the elasticity water regions are exaggerated.
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small regions of water where the elasticity equations are

used, this effect is negligible due to the short distance trav-

eled and the low amplitude of the wave.

The variable coefficient elasticity equations must be

used to differentiate between the water, lens, and stone areas.

The material parameters become

q ¼ qðz; rÞ;
k ¼ kðz; rÞ;
l ¼ lðz; rÞ: (9)

If a finite volume cell is completely within the lens, the cell

receives lens material parameters; if it is completely within

the water, it receives water material parameters. If the cell

covers both lens and water, then averaging of the material

properties is used. The density is found by arithmetic averag-

ing and the Lam�e parameters are found by harmonic averag-

ing.26 The wave speeds are then computed from these

averaged values. The formulas are

qA ¼ fLqL þ fWqW ;

kA ¼ 1

�
fL

kL
þ fW

kW

� �
;

lA ¼ 1

�
fL

lL

þ fW

lW

� �
; (10)

where the subscripts A, L, and W refer to averaged, lens, and

water values, respectively, and fL and fW are the lens and

water fractions. Near the stone, cells are simply defined by

which material the cell center falls within.

The material property values used for these simulations

are given in Table I. The stone material properties are based

on Ultracal-30 gypsum.27 The water values are set so that

the water regions will not support shear waves. Without

shear waves, the elasticity equations revert to the wave equa-

tion. A strictly zero value for the shear modulus in water cre-

ates instabilities at the lens-water boundary and so a small

non-zero value is chosen. The exact value is not crucial

because a very small wave speed will cause the waves to dis-

sipate quickly due to numerical viscosity and the effect will

be negligible. That being said, a value of the shear modulus

consistent with what is found in the literature is used.28

Within the stone, a damage model is included which

influences the material parameters.29 At every time step, the

maximum principal stress, r1, is calculated in every cell in

the stone and surrounding water. The maximum principal

stress is the largest eigenvalue found from an eigendecompo-

sition of the stress tensor in each cell. The simple isotropic

damage growth model used here is

dD

dt
¼ aðr1 � rcÞ; (11)

where D is the damage variable, rc is a critical stress value,

and a is a scalar multiplier. The damage can range from an

undamaged state to some critical value, i.e., 0 � D � Dc < 1.

The damage only increases if r1 > rc, otherwise dD=dt ¼ 0.

The inclusion of damage here is preliminary and is meant to

show capabilities of the model. For that reason, little emphasis

is placed on selecting the damage parameters in this

work. For these computations, Dc ¼ 0:5, rc ¼ 10 MPa, and

a ¼ 0:004 are chosen. The damage variable affects the wave

propagation through the Lam�e parameters. The two parame-

ters become functions of time as the damage changes

k ¼ kðz; r; tÞ ¼ kðz; rÞð1� DðtÞÞ;
l ¼ lðz; r; tÞ ¼ lðz; rÞð1� DðtÞÞ: (12)

The initial pulse enters entirely into the elasticity do-

main. The exact shape of this pulse will be discussed in

Sec. IV. The pulse is modeled by setting the values of the

ghost cells along the z ¼ 0 boundary. The input is generally

formatted as pressure values for certain radial positions and

times. These values are interpolated in space and time to

match the current time of the simulation and the radial posi-

tions of the cell centers. Let pn
j be the interpolated pressure

value for the nth time step and jth finite volume cell along

the boundary. Assuming isotropy, the solution values in the

ghost cell region are set by

ðrzzÞnj ¼ 2pn
j ; ðrrrÞnj ¼ 2pn

j ; ðrhhÞnj ¼ 2pn
j ;

ðrzrÞnj ¼ 0; un
j ¼ 0; vn

j ¼ 0: (13)

The pressure values are doubled because the initial pulse

will split into left-going and right-going halves and only the

right-going half will enter the domain.

B. Euler equations

The Euler equations describe sound wave propagation and

fluid flow in compressible inviscid fluids and are used here to

model the transition of the focused acoustic pulse through

water which includes a nonlinear steepening effect. The equa-

tions are derived from the conservation of mass, momentum,

and energy. The axisymmetric equations are found from the

cylindrical equations by removing h derivatives and assuming

no flow in the h direction. The equations are

qtþ ðquÞz þ ðqvÞr ¼ �
1

r
ðqvÞ;

ðquÞt þ ðqu2þ pÞz þ ðquvÞr ¼�
1

r
ðquvÞ;

ðqvÞt þ ðquvÞz þ ðqv2þ pÞr ¼�
1

r
ðqv2Þ;

ðqEÞt þ ðuðqEþ pÞÞz þ ðvðqEþ pÞÞr ¼ �
1

r
ðvðqEþ pÞÞ:

(14)

Closing the equations requires an equation of state

(EOS) relating pressure to the solution variables. A

TABLE I. Material properties used in the linear elasticity equations for

water, lens (polystyrene), and kidney stone simulant (Ultracal-30).

Material q (kg/ m3) k (Pa) l (Pa) cp (m/s) cs (m/s)

Water 1000 2:217� 109 10�5 1489 10�4

Lens 1060 2:951� 109 1:418� 109 2337 1157

Stone 1700 6:759� 109 3:476� 109 2840 1430
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commonly used EOS for compressible water is the modified

Tait EOS, also called the stiffened EOS.30 This is the EOS

used by Krimmel et al.19 and Iloreta et al.20 when solving

the Euler equations to model shock wave lithotripsy. Here,

the following forms of the EOS are used:

pþ B

p0 þ B
¼ q

q0

� �c

(15)

and

p ¼ ðc� 1Þq Eþ 1

2
ðu2 þ v2Þ

� �
� B; (16)

where c and B are the two parameters of the EOS. This

EOS is a simple translation by B of the ideal gas law

and c takes the place of the adiabatic index. This means

a standard Riemann solver for the Euler equations with

the ideal gas law can be used here as long as the varia-

bles are initialized with the modified Tait EOS. Typical

values of the parameters for water are c ¼ 7 and B ¼
300 MPa. In this simulation, c ¼ 7:388 so that the speed

of sound, given by

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðpþ BÞ

q

s
; (17)

will be approximately equal to 1489 m/s with the atmos-

pheric conditions, p ¼ 0:1 MPa and q ¼ 1000 kg/m3.

Like the elasticity equations, the Euler equations can be

written in vector form as

qt þ AðqÞz þ BðqÞr ¼ CðqÞ; (18)

where the system matrices are now functions of the solution

variables. A linearized Riemann solver is used here which

employs the Jacobian to transform Eq. (18) into

qt þ A0ðqÞqz þ B0ðqÞqr ¼ CðqÞ: (19)

The solution values within the Jacobian matrices are approxi-

mated by Roe averages and the standard entropy fix is used.

C. Multiphysics

To connect the elasticity and Euler regions, the

stresses and displacement velocities of the elasticity

equations must be transformed to the mass, momentum,

and energy of the Euler equations and vice versa. In the

following equations, the E subscript denotes elasticity

values and the F subscript denotes fluid or Euler values.

To convert from elasticity to Euler, the pressure is first

calculated from the average of the normal stresses. The

negative is taken because of the opposite conventions in

elasticity and fluids. The equations for determining the

density and energy are the modified Tait EOS. The mo-

mentum values simply come from the density and veloc-

ities. The transformation is

p ¼ �ðrzz
E þ rrr

E þ rhh
E Þ=3;

qF ¼ q0

pþ B

p0 þ B

� �1=n

;

ðquÞF ¼ qFuE;

ðqvÞF ¼ qFvE;

ðqEÞF ¼
pþ B

c� 1
þ 1

2
ððquÞFuE þ ðqvÞFvEÞ; (20)

where q0 and p0 refer to the initial water density and initial

pressure, respectively. To convert from Euler to elasticity

the displacement velocities are first calculated and then the

EOS is used to determine the pressure. The normal stresses

are set to the negative of the pressure and the shear stress is

set to zero. The transformation is

uE ¼
ðquÞF
qF

;

vE ¼
ðqvÞF
qF

;

p ¼ ðc� 1Þ ðqEÞF �
1

2

�
ðquÞFuE þ ðqvÞFvE

�� 	
� B;

rzz
E ¼ rrr

E ¼ rhh
E ¼ �p;

rzr
E ¼ 0: (21)

These transformations are only valid for the solution

values within water, i.e., cells with no appreciable shear

stress. Therefore a small boundary region of water modeled

with elasticity between the elastic solids and the fluid is

needed. This ensures that cells in the Euler region are only

influenced by elasticity cells with a physically correct trans-

formation. The cells adjacent to any Euler cell must either be

Euler or elastic water so that the Riemann solves which

influence the Euler cell contain the correct values.

The CFL is based on the highest wave speed, so parts

of the solution moving at lower wave speeds essentially run

at a lower CFL and see more numerical viscosity as a result.

To avoid a low CFL while the shock is developing, the lens

is switched to have water wave speeds once the pulse has

completely passed through. Similarly, the stone region is

not given stone wave speeds until the shock has almost

reached it.

D. Other details

Dynamic adaptive mesh refinement (AMR) is used in

this simulation in a physically inspired fashion. A single area

of refinement is manually controlled to move along with the

pulse, left to right, across the domain. The root level grid has

a grid spacing of 1.5 mm. The refinement ratio is 48 leading

to a grid spacing of 31.25 lm on the fine grid. Any results

that include a stone were run with a refinement ratio of 32.

The lower refinement ratio was chosen to reduce computa-

tional time. As these results are not compared to experiment

but are meant to showcase capabilities of the method, the full

resolution is not used.

As stated earlier, the time step is chosen based on a

desired CFL and the maximum wave speed encountered on
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the previous time step. With a refinement ratio of 48, this

leads to a timestep of about 13.1 ns during the elasticity

portion. Early in the Euler portion the timestep is about

20.7 ns, but as the pulse focuses and the shock develops the

time step decreases to account for the increase in wave

speed.

The initial conditions are hydrostatic atmospheric condi-

tions. In the elasticity regions the normal stresses are set to

p0 ¼ 0:1 MPa and the remaining variables, the shear stress,

and displacement velocities, are set to zero. In the Euler

regions, the variables are set using q0 ¼ 1000 kg/m3 and

p0 ¼ 0:1 MPa with zero initial momentum. The z ¼ 0

boundary sets the incoming pulse. Once the pulse has fin-

ished, that boundary is set to a solid wall boundary condition

where the ghost values equal the corresponding interior val-

ues except for the velocity normal to the boundary which is

negated. The same condition is used along the r ¼ 0 bound-

ary to enforce the axisymmetry. The remaining two bounda-

ries at z ¼ 255 mm and r ¼ 75 mm are set to zero-order

extrapolation outflow conditions to simulate that the tank in

the experiment is larger than the computational domain.

The source terms for both sets of equations are updated

with Strang splitting using the exact solutions of the ordinary

differential equations after removing spatial derivatives from

the partial differential equations. The method is second order

and uses the monotized central-difference wave limiter. The

simulations are run in serial with a 3.3 GHz Intel (Santa

Clara, California) Xeon X5680 CPU and take about 70 h to

complete. Figure 4 shows results at select times during an

example simulation with the original lens and a stone

simulant.

IV. RESULTS

The first result presented is the characterization of the

direct pulse produced by the electromagnetic actuator, as

mentioned in Sec. II. This is used to create the input for the

computational model. The peak pressure of the plane wave

created by the actuator,

p0ðVÞ ¼ 5:16� 10�4 V1:895; (22)

is approximately proportional to the square of the source

voltage ðVÞ.31 The radial profile of the pulse is fit by

prðr;VÞ ¼ p0ðVÞ 1þ ðr � r0Þ2

r2
1

� ðr � r0Þ4

r4
2

 !
; (23)

where r0 ¼ 43:5 mm, r1 ¼ 93:5 mm, and r2 ¼ 28:0 mm.

Finally, the function

pinputðr;V; tÞ ¼
a1prðr;VÞsin2ða2tÞexpða3tÞ; pr � 0

0; pr < 0

(

(24)

is used to define the pressure over the time interval 0 � t
� 20 ls, where a1 ¼ 147, a2 ¼ 0:454� 106 rad/s, and a3

¼ �0:25� 106 s�1. Example plots of the pressure over time

and radial distance are shown in Fig. 5.

A. Validation using original lens

Comparisons of pressure profiles, peak pressures, and

calculated lithotripter parameters are presented in order to

validate the computational model against experiment. In this

section and Sec. IV B, the plots showing pressure profiles

have had the numerical data shifted slightly left or right to

align the shock front for aiding visualization. These shifts in

time vary from plot to plot and are less than 0.3 ls. No sig-

nificant change in the shape of the pulse would occur from

correcting for this by using small changes in the wave speed

parameters, so a simple translation is used.

FIG. 4. Progression of the computational solution at selected times. On the

left, the focusing and shock wave formation over the entire computational

domain is shown. On the right, the interaction of the shock wave in the fluid

region and elastic stone is shown. The original lens and 15.8 kV input is

used here. Within the elastic regions, the average of the normal stresses is

displayed as pressure.

FIG. 5. (Color online) Example plots of the incoming pulse for the three

voltage levels predominantly used here. (a) Pressure distribution in the ra-

dial direction at t ¼ 3 ls. (b) Pressure over time at r ¼ 40 mm.
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Figure 6 shows good agreement between experimental

and numerical pressure profiles including easily discernible

parameters such as peak pressures, Pþ and P�, and pulse

durations, tþ and t�. Figures 6(a) and 6(b) show pressure

profiles along the propagation axis (r ¼ 0 mm), at z ¼ 121.8,

151.8, 181.8 (focus), 211.8, and 241.8 mm, with 13.8 kV and

15.8 kV input, respectively. Figures 6(c) and 6(d) show pres-

sure profiles in the focal plane (z ¼ 181:8 mm), at r ¼ 0, 2,

4, 8 mm, with 13.8 kV and 15.8 kV input, respectively. In

these latter images it is apparent that the duration of the ten-

sile portion of the pulse (t�) is less in experiment than in the

model. This may be due to the effect of tensile wave shorten-

ing from the cavitation that is produced by the tensile

portion.32–35 Since the computation does not include cavita-

tion, this effect is not modeled and the numerical result con-

tains the full non-attenuated tensile portion.

Figure 7 shows that the distribution of peak pressures in

the focal plane for 13.8 and 15.8 kV input is well captured by

the model except for an approximate 10% difference in Pþ
near the focus. These plots can also provide a visual estimate

of the beam width. Figure 8 shows the peak positive and

negative pressures and the beam width in the focal plane over

the dynamic range of the lithotripter. This plot also shows fit-

ted polynomial curves of the data. Peak negative pressures

are very well matched with numerical values consistently

only slightly lower (in absolute value) than experimental val-

ues. Although less data is available, beam width values match

very well. Peak positive pressure matches well for the mid

range input voltages which are typical of the source voltages

used in the medical procedure.36 Experimental Pþ is up to

30% lower than numerical for lower voltage input pulses

(<12:8 kV) which may be due to extrapolation error in the

numerical input. For the strongest input pulses, the experi-

mental Pþ is up to 13% higher than the numerical Pþ. This

may be improved by further refinement of the finite volume

grid. Though in order to retain moderate runtimes for the

most relevant input voltages, finer grids were not used.

Table II presents lithotripter parameters calculated

from the experimental and numerical pressure profiles at

the focus and in the focal plane. The pulse parameters, Pþ,

P�, tþ, and t�, match very well for both input voltages.

Percent error for these parameters ranges from 2.4% to

FIG. 6. (Color online) Plots of experimental and numerical pressure profiles along the propagation axis, r ¼ 0, and in the focal plane, z ¼ 181:8 mm for the

original lens. (a) Propagation axis with 13.8 kV input. (b) Propagation axis with 15.8 kV input. (c) Focal plane with 13.8 kV input. (d) Focal plane with

15.8 kV input.
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12.7%. The larger discrepancy in the rise time may be

attributed to the chosen coarseness of the grid since this

involves a measurement of the shock. Beam width error

ranges from 2.7% to 10.7% over the input values and acous-

tic energy error ranges from 4.3% to 34.9%. The FOPH

pressure measurements are estimated to have at least 5%

error.35 Since FOPH measurements were used to create the

input, the numerical model is considered to carry the same

degree of uncertainty.

B. Prediction of new lens parameters

In this section the model is shown to accurately predict

pressure profiles near the focus with the new lens design.

This model was developed and its parameters were estab-

lished using the original lens geometry. For modeling the

shock wave focusing produced by the new lens, the only

model parameters that are changed govern the geometry of

the lens. All other aspects of the model remain the same.

The new lens geometry is tested using 15.8 and 16.8 kV

input, as opposed to the lower amplitude input used for the

original lens. The interference from the delayed wave

caused by the lens cut leads to reduced acoustic pressures at

the focus. In order to compare pulses with similar effective

acoustic energies, higher amplitude inputs are used.

This section will present data in the same manner as in

the original lens section. Figure 9 shows pressure profiles

along the propagation axis and in the focal plane for 15.8 and

16.8 kV input. As with the original lens there is good agree-

ment between the overall shapes of the profiles. The model

accurately captures the weakening and elongation of the ten-

sile portion caused by the lens cut. Also noticeable in the ra-

dial plots, Figs. 9(c) and 9(d), is the agreement of the

suppressed secondary compressive wave. Except for a small

spike in the numerical solution better overall agreement is

seen compared to the same plots for the original lens. The

numerical spike does not substantially contribute to

the effective acoustic energy as seen in Table III and appears

exaggerated in the propagation axis plots, Figs. 9(a) and 9(b).

Figure 10 shows the peak positive and peak negative

pressures in the focal plane, again for 15.8 and 16.8 kV

input. These plots show that the model correctly predicts the

increase in beam width caused by the lens cut. Figure 11

shows numerical peak positive pressure, peak negative pres-

sure, and beam width over the dynamic range of the

FIG. 7. (Color online) Plots of peak positive and peak negative pressure in

the focal plane (z ¼ 181:8 mm) for the original lens. Experimental data is

recorded in four directions from the z-axis ðxþ; x�; yþ; y�Þ. Numerical

data is mirrored across r ¼ 0 to aid in visualization. (a) 13.8 kV. (b)

15.8 kV.

FIG. 8. (Color online) Comparison of peak positive pressure ðPþÞ, peak

negative pressure ðP�Þ, and beam width for the original lens over the

dynamic range of the lithotripter. Polynomial fits are also shown (dotted

lines for numerical and solid lines for experiment).

TABLE II. Comparison of lithotripter parameters calculated from experi-

mental and numerical pressure profiles at the focus for the original lens

design. Energy subscripts þ1, �1, and þ2 refer to the first compressive, first

tensile, and second compressive wave, respectively. Rh ¼ 6 mm was used

for all pulse energy calculations.

Source

voltage (kV)

Pþ
(MPa)

P�
(MPa)

tþ
(ls)

t�
(ls)

tr
(ns)

Experimental 13.8 46.3 �10.2 1.62 3.49 145.0

15.8 56.4 �11.0 1.59 3.31 16.2

Numerical 13.8 45.2 �8.9 1.57 3.40 50.2

15.8 52.2 �10.6 1.63 3.69 37.3

Source

voltage (kV)

Beam

width (mm)

Eþ1

(mJ)

E�1

(mJ)

Eþ2

(mJ)

Etotal

(mJ)

Experimental 13.8 7.4 33.2 17.2 1.5 53.2

15.8 7.5 51.7 18.3 4.3 74.7

Numerical 13.8 7.6 30.1 13.5 1.6 45.3

15.8 8.3 48.0 20.3 2.8 71.5
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lithotripter. The numerical parameter results appear to match

the available experimental data.

Lithotripter parameters calculated from pressure pro-

files taken from the focus and focal plane are presented in

Table III. There is good agreement between model and

experiment for Pþ, tþ, and t�. Error ranges from 1.1% to

8.3%. Error for P� is slightly higher at 18.9% and 20.5%.

As with the original lens, error is high for rise time presum-

ably due to grid refinement. Beam width is captured very

well at 0.9% and 3.8% error and acoustic energy has error

ranging from 8.0% to 22.3%.

C. Inclusion of kidney stone simulant

Last, results which include a cylindrical kidney stone

simulant in the domain are shown. The stone has height

7 mm and radius 3 mm and is placed so that the proximal

surface is at the geometrical focus of the lens, z ¼ 181:8
mm, as shown in Figs. 3 and 4. Figure 12 shows a compari-

son of the maximum principal stress over time and the dam-

age for the original lens with 13.8 kV input and the new lens

with 16.8 kV input. These inputs are used since they provide

similar acoustic energy at the focus. The original lens

appears to cause more damage in the stone, but this is

expected in this case. While the acoustic energy is similar

FIG. 9. (Color online) Plots of experimental and numerical pressure profiles along the propagation axis, r ¼ 0, and in the focal plane, z ¼ 181:8 mm for the new

lens. (a) Propagation axis with 15.8 kV input. (b) Propagation axis with 16.8 kV input. (c) Focal plane with 15.8 kV input. (d) Focal plane with 16.8 kV input.

TABLE III. Comparison of lithotripter parameters calculated from experi-

mental and numerical pressure profiles at the focus for the new lens design.

Energy subscripts þ1, �1, and þ2 refer to the first compressive, first tensile,

and second compressive wave, respectively. Rh ¼ 6 mm was used for all

pulse energy calculations.

Source

voltage (kV)

Pþ
(MPa)

P�
(MPa)

tþ
(ls)

t�
(ls)

tr
(ns)

Experimental 15.8 38.2 �8.3 1.82 3.11 51.8

16.8 42.2 �9.0 1.80 3.13 18.6

Numerical 15.8 36.7 �6.6 1.80 3.07 44.7

16.8 38.7 �7.3 1.89 3.24 40.9

Source

voltage (kV)

Beam width

(mm)

Eþ1

(mJ)

E�1

(mJ)

Eþ2

(mJ)

Etotal

(mJ)

Experimental 15.8 10.4 29.9 9.8 0.0 39.9

16.8 10.8 38.7 12.1 0.0 51.3

Numerical 15.8 10.0 27.5 7.7 0.1 35.6

16.8 10.7 34.0 9.4 0.1 43.9
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for Rh ¼ 6 mm, the stone has a radius of 3 mm and so the

smaller beam width from the original lens leads to more

acoustic energy encountering the stone. Also recall that the

greater efficacy of the new lens includes cavitation effects

which are not modeled here.

The stress and damage results are preliminary work

meant to show the capabilities of the model. Rigorous com-

parison to fracture experiments is left for future work.

Nevertheless, this model gives similar distributions of maxi-

mum principal stress to that of Cleveland and Sapozhnikov37

and Sapozhnikov et al.38

V. DISCUSSION

In this work, a multiphysics computational model of a

refracting EM lithotripter was presented. Many computa-

tional models of the wave propagation and nonlinear shock

wave formation in ESWL have been developed, but none up

to now have modeled this common type of lithotripter. This

is most likely due to the fact that the focusing occurs by

refraction inside a solid lens compared to all other lithotrip-

ter types where the focusing occurs in water, usually by

reflection. This focusing type required a multiphysics

approach in order to combine these two domains. In addi-

tion, arbitrary boundaries between the elasticity and Euler

regions in the model allow for straightforward inclusion of

lens modifications, different stone shapes, or any additional

elastic solids, e.g., a stone holder. The model works seam-

lessly with AMR and could be applied to other domains

requiring interaction of shock waves in fluids and linear

elastic solids.

FIG. 10. (Color online) Plots of peak positive and peak negative pressure in

the focal plane (z ¼ 181:8 mm) for the new lens. Experimental data is

recorded in four directions from the z-axis ðxþ; x�; yþ; y�Þ. Numerical

data is mirrored across r ¼ 0 to aid in visualization. (a) 15.8 kV. (b)

16.8 kV.

FIG. 11. (Color online) Comparison of peak positive pressure ðPþÞ, peak

negative pressure ðP�Þ, and beam width for the new lens with available ex-

perimental data over the dynamic range of the lithotripter. Polynomial fits

are also shown (dotted lines for numerical and solid lines for experiment).

FIG. 12. Comparison of the maximum over time of the maximum principal stress (a) and the damage (b) in a cylindrical kidney stone simulant with height

7 mm and radius 3 mm for the original lens with 13.8 kV input versus the new lens with 16.8 kV input after the pulse has passed completely through.
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The model was successfully validated against experi-

mental results for a standard lens design. The predictive

capabilities of the model were also shown by comparing to

experiment with a modified lens. Numerical and experimen-

tal pressure profiles match well and most calculated lithotrip-

ter parameters fall within the error estimates of the FOPH

and model input. With regard to the chosen lens modifica-

tion, the model correctly predicts the weakening and length-

ening of the tensile wave, suppression of the second

compressive wave, and the increase in beam width caused

by the lens cut. This modified lens has been shown in other

work to create pressure distributions similar to the HM3

which improve the efficacy of refracting EM lithotrip-

ters.7,8,39 Further modifications of the lens, including sweeps

of lens geometry parameters, and the potential effect on

stones can now be tested without requiring the fabrication of

physical lenses.
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