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Purpose: To investigate the utility of five different standard measurement methods for determining
image uniformity for partially parallel imaging (PPI) acquisitions in terms of consistency across a
variety of pulse sequences and reconstruction strategies.
Methods: Images were produced with a phantom using a 12-channel head matrix coil in a 3T MRI
system (TIM TRIO, Siemens Medical Solutions, Erlangen, Germany). Images produced using echo-
planar, fast spin echo, gradient echo, and balanced steady state free precession pulse sequences were
evaluated. Two different PPI reconstruction methods were investigated, generalized autocalibrating
partially parallel acquisition algorithm (GRAPPA) and modified sensitivity-encoding (mSENSE)
with acceleration factors (R) of 2, 3, and 4. Additionally images were acquired with conventional,
two-dimensional Fourier imaging methods (R = 1). Five measurement methods of uniformity, rec-
ommended by the American College of Radiology (ACR) and the National Electrical Manufacturers
Association (NEMA) were considered. The methods investigated were (1) an ACR method and a
(2) NEMA method for calculating the peak deviation nonuniformity, (3) a modification of a NEMA
method used to produce a gray scale uniformity map, (4) determining the normalized absolute aver-
age deviation uniformity, and (5) a NEMA method that focused on 17 areas of the image to measure
uniformity. Changes in uniformity as a function of reconstruction method at the same R-value were
also investigated. Two-way analysis of variance (ANOVA) was used to determine whether R-value
or reconstruction method had a greater influence on signal intensity uniformity measurements for
partially parallel MRI.
Results: Two of the methods studied had consistently negative slopes when signal intensity unifor-
mity was plotted against R-value. The results obtained comparing mSENSE against GRAPPA found
no consistent difference between GRAPPA and mSENSE with regard to signal intensity uniformity.
The results of the two-way ANOVA analysis suggest that R-value and pulse sequence type produce
the largest influences on uniformity and PPI reconstruction method had relatively little effect.
Conclusions: Two of the methods of measuring signal intensity uniformity, described by the (NEMA)
MRI standards, consistently indicated a decrease in uniformity with an increase in R-value. Other
methods investigated did not demonstrate consistent results for evaluating signal uniformity in
MR images obtained by partially parallel methods. However, because the spatial distribution of
noise affects uniformity, it is recommended that additional uniformity quality metrics be investi-
gated for partially parallel MR images. © 2013 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4816306]
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1. BACKGROUND

Partially parallel imaging (PPI) involves the use of phased ar-
ray coils and the acquisition of fewer phase encoding (PE)
steps in order to reduce scan time.1, 2 This reduction in the
number of PE steps is often called the reduction factor and

denoted as R.1 The R-value indicates both that the number of
PE steps is reduced by the factor 1/R and also that the image
acquisition time is reduced by the factor 1/R. In conventional
MRI, reducing the number of PE steps would result in alias-
ing artifact. In the case of PPI, the reconstruction methods uti-
lize calibration scans and/or auto-calibration lines of data to

082302-1 Med. Phys. 40 (8), August 2013 © 2013 Am. Assoc. Phys. Med. 082302-10094-2405/2013/40(8)/082302/10/$30.00

http://dx.doi.org/10.1118/1.4816306
http://dx.doi.org/10.1118/1.4816306
http://dx.doi.org/10.1118/1.4816306
http://crossmark.crossref.org/dialog/?doi=10.1118/1.4816306&domain=pdf&date_stamp=2013-08-01


082302-2 Goerner et al.: Measuring uniformity in MRI with partially parallel imaging 082302-2

generate signal reception profiles for each coil element, which
are then used to unfold or interpolate PPI data in order to
avoid aliasing artifacts.

Analysis of signal uniformity in MRI was originally pre-
sented in a context that was already familiar to imaging scien-
tists working in nuclear medicine.3 There, the primary source
of image nonuniformities was the spatially dependent sensi-
tivity of photomultiplier tubes in Anger camera systems. In
conventional MRI, the most significant influence on image in-
tensity uniformity has been the geometry and sensitivity of ra-
dio frequency coil configurations.4 Additional sources of MR
image intensity nonuniformities include the homogeneity of
the excitation RF coil (particularly at higher fields),5 recon-
struction irregularities such as truncation artifacts6 and im-
age signal aliasing,7 electromagnetic properties of tissues that
cause susceptibility8 and dielectric effects,9 image uniformity
corrections and contamination by external noise.

In PPI, aliasing can be substantial because image domain
reconstruction algorithms tend to be built with the assump-
tion that signal aliasing is due exclusively to the partially par-
allel data acquisition strategy. Therefore, it is important to
avoid acquiring data from body parts that are larger than the
image field of view. An additional important source of im-
age nonuniformities inherent to PPI is spatially heterogeneous
noise propagation, which occurs because the encoding func-
tions used to generate parallel images are not orthogonal.10 In
partially parallel images this artifact presents as noisy patchy
regions in the image being studied. Thus the noise in partially
parallel images is increased beyond the noise increase that can
be attributed solely to reducing the number of data points ac-
quired during the image acceleration process. The effect of
noise propagation is usually described by the spatially depen-
dent g-factor,1, 11 which often is used as a figure of merit for
evaluating parallel imaging receiver coils.12–15

However, the purpose of evaluating image uniformity ex-
tends beyond providing a metric of image quality, often be-
ing used to provide a basis for undertaking uniformity cor-
rections. Many methods have been proposed to compensate
for the sensitivity irregularities in phased array and other coil
configurations. Belaroussi et al. reviewed over 40 methods
of nonuniformity correction.16 More recently a number of
groups have proposed regularization methods that can poten-
tially be used to reduce the effects of noise propagation in
parallel MRI. Regularization algorithms using the Tikhonov
method,17 wavelet basis sets,18 and an augmented Lagrangian
formalism,19 have been proposed specifically to improve par-
tially parallel MR images. These correction methods are
touted to improve both image intensity uniformity and overall
image signal-to-noise ratio (SNR) through the compensation
of the noise propagation characteristics inherent to parallel
imaging.

By their nature PPI MRI protocols11 employ image pro-
cessing methods, which lead to image quality characteris-
tics that differ fundamentally from conventional MR images.
This change in image processing methodology has led to a
re-evaluation of how SNR should be measured when PPI
is implemented.22, 23 However, in the current literature the
only investigations of the decrease in image intensity unifor-

mity with parallel imaging have been reported for specific
cases.14, 20 Uniformity has been formally investigated as a
metric for image quality assessment for PPI spine protocols.20

Uniformity has also been calculated using a method requiring
raw data in a breast coil study, which did not compare effects
of PPI on uniformity but the uniformity differences from three
coils.14 In general, an accurate and simple method for deter-
mining image intensity uniformity in PPI has not yet been
validated.21

The current study examines five standard methods of uni-
formity measurement to evaluate their adequacy in the context
of parallel imaging. The purpose of this study is to determine
if any of these standard methods will allow for protocol com-
parison when PPI is involved so that it could be used as an
extension to other routine quality control metrics. The strat-
egy of measuring uniformity changes with R was chosen since
both noise propagation and aliasing get worse with increasing
R values. It seems reasonable that a necessary requirement
for an appropriate uniformity metric in PPI is that it decreases
with increasing R values.

2. MATERIALS AND METHODS

2.A. Image acquisition

Images were obtained from a spherical phantom, 17.8 cm
in diameter (about the average size of a human head). The
phantom was produced by filling a #3 soccer ball with a dou-
ble bladder (Balden Series Z Soccer Ball PN S130Z-018) with
an aqueous solution. The solution consisted of 5.45 g NaCl
(99.99% pure) 5.29 ml of Magnevist per 1 l distilled water
and had a total volume of 2415 ml. This phantom was used in
and described in a previous study23 and developed by AAPM
Task Group #118 on “Parallel Imaging in MRI: Technology,
Applications, and Quality Control.” Images were acquired us-
ing a 12-channel matrix head coil (Siemens Medical Systems,
Erlangen, Germany) on a 3T MRI system (TIM Trio, Soft-
ware Version VB15A, Siemens Medical Systems, Erlangen,
Germany). Images were acquired using echo-planar imaging
(EPI), Fast Low Angle SHot (FLASH), balanced steady state
free precession (Tru-FISP), and turbo spin echo (TSE) pulse
sequences.24 The acquisition parameters for each of the pulse
sequences are listed in Table I.

The parameters in Table I were kept constant throughout
image acquisition except for the case of EPI. The EPI se-
quence does not benefit from PPI protocols unless TE is min-
imized. In addition to a set of EPI protocols where TR and
TE times were held constant, a second set of EPI images was
acquired. In this second set of EPI protocols the TE and TR
times were minimized at each R-value as shown in Table II.

Each pulse sequence was used to acquire images of the
phantom first without PPI implementation and then imaging
was repeated using the PPI methods, modified sensitivity-
encoding (mSENSE) and generalized autocalibrating par-
tially parallel acquisition algorithm (GRAPPA).1, 2 Conven-
tional images and PPI images with R values of 2, 3, and
4 were acquired in the axial orientation using two series,
with the PE direction both anterior–posterior (AP) and in the
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TABLE I. This table lists the imaging protocols that were used to acquire the images used for the SNR analysis in this study.

Sequence TR (ms) TE (ms) Slice thickness (mm) BW (Hz/pixel) Matrix FOV (mm × mm) Slice gap (mm) NEX ETL

EPI 1840 187 5 752 256 × 256 × 5 220 × 220 1 1 256
FLASH 175 4 5 240 256 × 256 × 5 220 × 220 1 1 N/A
Tru-FISP 6.88 3.44 5 244 256 × 256 × 5 220 × 220 1 1 N/A
TSE 1200 76 5 122 256 × 256 × 5 220 × 220 1 1 16

Note: ETL = echo train length; BW = bandwidth; TR = repetition time; TE = echo time; FOV = field of view (in this case transaxial); and NEX = number of excitations.

right–left (RL) orientation in order to evaluate the differences
in noise propagation artifacts.25 With each slice being an im-
age, this procedure resulted in 70 images per pulse sequence
with a total of 350 images analyzed for the current study. Im-
age analysis was automated by an algorithm developed in-
house using a commercial technical computing environment
for data visualization and analysis (MATLAB version 7.2, The
Mathworks, Inc, Natick, MA). The measurements performed
on the images included the five different standard uniformity
measurements, which are described below.

2.B. Uniformity measurements

The standard methods of MR image uniformity analysis,
published by National Electrical Manufacturers Association
(NEMA) and American College of Radiology (ACR), were
used.26–28

2.B.1. NEMA method 1, Peak deviation nonuniformity:
UN1

In this method the maximum (Smax) and minimum (Smin)
pixel values within a region of interest (ROI) that encom-
passes 75% of the volume of the phantom were measured and
used to calculate the peak deviation nonuniformity (N),

N = 100 · Smax − Smin

Smax + Smin
. (1)

The peak deviation nonuniformity measure is sensitive to the
SNR of an image. As SNR decreases, Smax and Smin diverge,
lowering computed peak deviation uniformity.3

In order to make results from Eq. (1) comparable to other
methods it was adjusted and replicates the uniformity equa-
tion provided by the ACR (Ref. 26) thus following the percent
image uniformity (PIU) definition [Eq. (2)]:

UN1 = 100 ·
(

1 − Smax − Smin

Smax + Smin

)
. (2)

TABLE II. List of minimum TE and TR values for the secondary EPI
protocol.

R TE (ms) TR (ms)

2 98 956
3 69 666
4 54 515

2.B.2. NEMA method 2, Gray scale uniformity map:
UN2

The second NEMA method was utilized as a precursor to
a method that was developed to obtain a new value for unifor-
mity. The original NEMA method creates a gray scale unifor-
mity map using the following procedure.27

A ROI at the center of the image is selected that includes
75% of the signal producing volume. The mean value of this
volume is S, each pixel value has an intensity value I, and F is
a fraction with a fixed value of 0.1 that specifies the width of
a histogram bin where

S · (1 − F ) < I < S · (1 + F ). (3)

Pixel values of I that fall within the criteria of Eq. (3) are
assigned an initial gray level value. Pixels that fall within the
range

S · (1 + F ) < I < S · (1 + 2 · F ) (4)

are assigned the next brighter gray level value. This process
is continued, with each gray level including pixels for which
I is

S · (1 + n · F ) < I < S · (1 + (n + 1) · F ), n = 1, 2, 3 . . .

(5)

until all pixels that are brighter than S have been assigned a
gray level. Pixels in the highest bin are then assigned the high-
est (white) intensity. Similarly, pixels with intensities less than
S × (1 − F) are assigned gray level values, with the lowest in-
tensity bin being assigned to black. Gray level bins in this case
are defined by

S · (1−(n+1) · F ) < I < S · (1 − n · F ), n = 1, 2, 3 . . .

(6)

until each pixel darker than S has been assigned a gray level
value.

Alternatively, five gray level representation groups can be
created with the following ranges for I:

A. I ≤ Sx0.8,
B. Sx0.8 < I ≤ Sx0.9,
C. Sx0.9 < I ≤ Sx1.1,
D. Sx1.1 < I ≤ Sx1.2, and
E. Sx1.2 ≤ I.

In the NEMA standard27 either of these methods utilizes the
assigned gray level values to produce an image which gives a
contour map of uniformity. This map however does not give
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a quantitative value to compare against other methods of uni-
formity or for protocol comparison. To remedy this, an exten-
sion of this method was developed to obtain a single value for
percent image uniformity.

First, the pixels were binned into five gray level values
as described in the alternative method and shown in groups
A–E above. These groups were then combined to produce
three separate groups 0–2:

Group 0 is the total number of pixels from group C.
Group 1 is the total number of pixels from groups B and

D.
Group 2 is the total number of pixels from groups A

and E.

Thus three groups containing pixels within 10% of the mean,
those between 10% and 20% of the mean and those greater
than or less than 20% of the mean were created. The number
of pixels in each of these groups was then used to compute a
PIU as follows, with group 0 intentionally being omitted:

UN2 = 100(1 − (0.5 · group1 + group2)). (7)

2.B.3. ACR method: UACR

A ROI that encompasses about 0.15% of the phantom vol-
ume is used to measure the areas of greatest intensity and low-
est intensity with the average values designated as ACRmax

and ACRmin, which are used to compute the PIU from the fol-
lowing formula:

UACR = 100

{
1 − (ACRmax − ACRmin)

(ACRmax + ACRmin)

}
. (8)

A larger UACR value indicates a more uniform image.26

2.B.4. Normalized absolute average deviation: UNAAD

The average pixel (Ȳ ) intensity within a ROI of 75% of
the phantom volume was found and then UNAAD calculated
using:27

UNAAD = 100

(
1 − 1

N · Y

N∑
i=1

∣∣Yi − Y
∣∣) , (9)

where Yi is the individual pixel value and N is the total num-
ber of pixels within the ROI used for the measure of mean
intensity. A larger UNAAD indicates a more uniform image.

2.B.5. NEMA method 3, Tic-Tac-Toe method: UTTT

A circular ROI covering 75% of the phantom volume was
used. Then 17 ROIs were placed within this region, nine were
evenly spaced in a checkerboard fashion in the center of the
image, four at the “corners,” and four in the middle edge of
each side. All of the ROIs were 7 × 7 pixels squared. An
example of ROI placement is depicted in Fig. 1. The mean
of each ROI was found and used to calculate the uniformity
using the equation below where Sn is the mean of each small

FIG. 1. This figure depicts the placement of ROIs in the UTTT method.
Each white square is a 7 × 7 pixel square and the white circle indicates the
75% central ROI used for the overall mean. The scale of this image is not
necessarily accurate in terms of pixel numbers. ROI numbers 2, 3, 15, and 16
indicated the “corners” of the circle.

ROI and S18 is the large 75% ROI:28

UTTT = 100 ·

⎛
⎜⎜⎜⎜⎜⎝1 −

17∑
n=1

|Sn − S18|
|Sn + S18|

17

⎞
⎟⎟⎟⎟⎟⎠ . (10)

2.C. Statistical analysis

All statistical analyses were completed using a biostatis-
tics, curve fitting, and graphing program (Prism 5, Graph Pad
Software, Inc, La Jolla, CA). Linear regressions were used to
find the average slope of the individual uniformity tests for
measured uniformity as a function of R-value. Linear regres-
sions were performed for each pulse sequence and at each
reconstruction method. Additionally, the differences in signal
intensity uniformity measured for the two methods of recon-
struction, GRAPPA and mSENSE with the same R-value and
pulse sequence, were investigated.

Three, two-way analysis of variance (ANOVA) were per-
formed to determine (1) the relative effects that R-value and
reconstruction method had on PIU values, (2) the effects R-
value and phase encode direction (PE) had on PIU values, and
(3) the effects of R-value and pulse sequence on PIU value.
Percent decrease in uniformity as a function of the increase in
R-value for each pulse sequence and reconstruction method
was also calculated.

3. RESULTS

When PPI methods are implemented aliasing as well as
noise propagation artifacts are often apparent especially in
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the case of the image-based reconstruction methods.11 The
appearance of this artifact as shown in Fig. 2(a) increases
with R-value, and is also more noticeable in the mSENSE-
reconstructed images compared to GRAPPA-reconstructed
images in Fig. 2(b). Based on this observation it is expected
that for most of the pulse sequences the slope from the lin-
ear fit of signal intensity uniformity versus R-value should be
negative, indicating a decrease in uniformity with increasing
R-value. The exception to this rule would be the EPI sequence
with minimum TR and TE time for which a positive slope
would be possible due to a decrease in susceptibility artifact29

and subsequent increase in uniformity.
Figures 3–7 respectively, display the UN1, UN2, UACR,

UNAAD, and UTTT measurement methods including each
pulse sequence and each PPI method acquired. The slopes
obtained by linear regression from the methods UN1 and
UN2 were all negative, except in the case of the EPI se-
quence used with minimum TR and TE. Method UNAAD
had positive slopes in the case of TSE both with GRAPPA
and mSENSE reconstruction. Also the slope was positive
with FLASH and mSENSE reconstruction. Method UACR
had positive slopes with sequence EPI with GRAPPA re-
construction with TE and TR held constant. TRUFisp with
mSENSE reconstruction also had a positive slope and FLASH
with mSENSE reconstruction also had a positive slope. The
UTTT results were positive at EPI GRAPPA with TE and TR
held constant and at TSE with both GRAPPA and mSENSE
reconstruction.

Average slopes and standard deviations across all pulse se-
quences and reconstruction methods were calculated with the
exclusion of EPI with minimum TR and TE. Of the two meth-
ods with all negative slopes UN1 and UN2, UN1 had on aver-
age a more negative slope at −4.00 ± 4.2 across all sequences
and reconstruction methods. UN2 had an average slope of
−1.03 ± 1.4. Additionally UNAAD had an average slope of
−1.02 ± 1.8, UACR had an average slope of −0.5 ± 0.82, and
UTTT had an average slope of 0.004 ± 0.2. The differences
between uniformity with PPI method GRAPPA and the equiv-
alent mSENSE protocol and R-value were also compared. For
each pulse sequence measured there were three R values and
two PE directions resulting in six comparable mSENSE and
GRAPPA values per pulse sequence and uniformity measure-
ment method. To compare the GRAPPA and mSENSE val-
ues the GRAPPA uniformity value was subtracted from the
mSENSE uniformity value. Table III displays the number of
times GRAPPA uniformity was greater than mSENSE unifor-
mity. The slopes between equivalent GRAPPA and mSENSE
protocols were also compared. The UN1 method was the
only method where mSENSE had a more negative slope than
GRAPPA. The average mSENSE slope was 1.12 units less
than the average GRAPPA slope when the UN1 method was
employed with a standard deviation of ±0.6. In the case of
the TSE sequence each method of uniformity measurement
with the exception of UN1 indicated that GRAPPA images
had a more negative slope than mSENSE images. Addition-
ally when the FLASH sequence was used GRAPPA slopes
were more negative than mSENSE slopes using all unifor-
mity metrics with the exception of UN1 and UTTT. All other

FIG. 2. Displayed in (a), noise propagation artifact is evident in this image
taken with a TRUFisp pulse sequence using mSENSE reconstruction with an
R-value of 4. (b) Images produced by a FLASH pulse sequence demonstrate
noise propagation for mSENSE and GRAPPA reconstruction at R values of
2, 3, and 4. Noise propagation artifact increases with increasing R-value and
is more visible in mSENSE than in GRAPPA images.
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FIG. 3. This figure displays the UN1 uniformity measurement method of each pulse sequence and PPI method acquired. The x-axis indicates R-value. At
R = 1 there was no parallel imaging implemented. The y-axis indicates PIU where 100 is a perfectly uniform image, i.e., all pixels have the same value.

protocols with the exception of TRUFisp with UACR method
employed indicated that GRAPPA had a more negative slope
than mSENSE. As expected a visual inspection of the im-
ages demonstrated more noise propagation with increasing
R-value as well as increased residual aliasing. These prob-
lems also were more apparent in mSENSE reconstructions
than GRAPPA reconstructions.

Three two-way ANOVA tests were performed on each of
the five uniformity measurement methods with P-value <0.05
indicating significance. These tests determined how much ef-
fect R-value and reconstruction method had on image inten-

sity uniformity, how much effect R-value and phase encode
direction had on uniformity, and how much effect R-value
and pulse sequence had on uniformity. EPI results with mini-
mum TE and TR were excluded from two-way ANOVA anal-
ysis because the TR and TE were different at each R-value
and thus a two-way ANOVA analysis would not be appropri-
ate. The results of all the two-ANOVA tests are displayed in
Table IV.

The results for the two-way ANOVA which involved pulse
sequence and R-value were the same for each method of uni-
formity measurement method. Each method indicated that

FIG. 4. This figure displays the UN2 uniformity measurement method of each pulse sequence and PPI method acquired. The x-axis indicates R-value. At
R = 1 there was no parallel imaging implemented. The y-axis indicates PIU where 100 is a perfectly uniform image, i.e., all pixels have the same value.
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FIG. 5. This figure displays the UACR uniformity measurement method of each pulse sequence and PPI method acquired. The x-axis indicates R-value. At
R = 1 there was no parallel imaging implemented. The y-axis indicates PIU where 100 is a perfectly uniform image, i.e., all pixels have the same value.

pulse sequence type significantly affected uniformity (P-value
≤0.0003) with an average effect on variance of 87.92% and
a standard deviation of ±5.8%. For reconstruction method
and R-value the two-way ANOVA indicated that the effect
of reconstruction method was not significant for all of the
measurement methods (P values > 0.05), however with the
UTTT method it indicated that reconstruction method was
responsible for 69.6% of variance. The R-value was found
to be significant in all methods of uniformity measurement
(P-value < 0.05) except for UTTT where it was responsi-
ble for 6.21% of the variance (P-value = 0.85). The two-

way ANOVA for phase encode direction and R-value indi-
cated that phase encode was significant in UTTT (P-value
= 0.0313) and UNAAD (P-value = 0.0253) tests where it was
responsible for 72.53% and 0.7% of variance, respectively. R-
value was shown to be significant for methods UN1 (P-value
= 0.0216), UN2 (P-value < 0.0001), and UNAAD (P-value
<0.0001), with an average variance responsibility of 96.65%.
In the case of UACR and UTTT the two-way ANOVA indi-
cated that R-value was not significant with UACR reporting
R-value to be responsible for 60.75% (P-value = 0.3561) of
variance and UTTT for 12.66% (P-value = 0.5495).

FIG. 6. This figure displays the UNAAD uniformity measurement method of each pulse sequence and PPI method acquired. The x-axis indicates R-value. At
R = 1 there was no parallel imaging implemented. The y-axis indicates PIU where 100 is a perfectly uniform image, i.e., all pixels have the same value.
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FIG. 7. This figure displays the UTTT uniformity measurement method of each pulse sequence and PPI method acquired. The x-axis indicates R-value. At
R = 1 there was no parallel imaging implemented. The y-axis indicates PIU where 100 is a perfectly uniform image, i.e., all pixels have the same value.

TABLE III. This table displays the number of measurements that indicated
GRAPPA had a higher uniformity than mSENSE with the same R-value and
PE direction. The left column indicates the measurement method used and the
top row indicates the pulse sequence used. EPI min indicates an EPI sequence
where TR and TE were minimized with changes in R-value. The total number
of measurements was 6 for each sequence and 30 overall, thus 30 in the total
column is the optimal number.

Total EPI EPI min TRUFisp TSE FLASH

UN1 20 6 4 5 3 2
UN2 17 5 4 5 2 1
UACR 11 6 3 0 2 0
UNAAD 18 6 4 5 3 0
UTTT 24 6 5 6 3 4

4. DISCUSSION

The results obtained from this study demonstrated how
various methods of uniformity measurement in MRI reflect
well-defined uniformity changes in partially parallel MR im-
ages. The known changes in image intensity uniformity due
to increasing acceleration value, R, were used to evaluate the
appropriateness of each metric. In general, those measure-
ment methods that only take into consideration portions of
the image, offer less robust and less accurate indications of
the true image intensity uniformity. The UN2 method overall
was found to be the most consistent metric for describing im-
age uniformity based on the principle that uniformity should
decrease with increasing R-value.

All of the investigated methods showed that uniformity in-
creased with increasing R-value in an EPI sequence where
TE and TR were minimized at each R interval. This was an
expected result since EPI images obtained with PPI methods

TABLE IV. This displays the results from all two-way ANOVA tests performed. Three tests were performed on each measurement method and the percent of
variation (% of variation) accounted for by the associated variable as well as the P values are displayed. The associated variables studied include: acceleration
factor (R-value), reconstruction method (recon), phase encode direction (PE-direction), and the pulse sequence used (pulse sequence).

Two-way ANOVA results

R-value and recon method R-value and PE-direction R-value and pulse sequence

R-value Recon R-value PE-direction R-value Pulse sequence

Uniformity % of % of % of % of % of % of
method variation P-value variation P-value variation P-value variation P-value variation P-value variation P-value

UN1 88 0.0104 8.93 0.06 91.13 0.0216 3.55 0.2515 2.32 0.0796 95.47 <0.0001
UN2 99.11 0.0013 0.05 0.6927 99.64 <0.0001 0.27 0.0539 5.19 0.1963 86.71 <0.0001
UACR 89.02 0.0325 4.01 0.2803 60.75 0.3561 1.06 0.7913 4.01 0.1049 91.62 <0.0001
UNAAD 96.18 0.0112 0.29 0.6559 99.18 <0.0001 0.7 0.0253 7.03 0.2414 80.37 0.0003
UTTT 6.21 0.8532 69.62 0.0605 12.66 0.5495 72.53 0.0313 0.61 0.9363 85.79 0.0003
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at minimum TE values have been shown to have better im-
age uniformities.29 The decrease in TE, which PPI allows in
EPI sequences, produces an increase SNR (Ref. 22) and re-
duces the variability of signal intensity as a function of po-
sition that is due to the nonuniform signal intensity profiles
obtained from phase array coil elements.

For non-EPI imaging, PPI uniformity should decrease with
increasing R-value and a metric that accurately measures uni-
formity in the case of PPI MRI should decrease with an in-
crease in R-value. The results of this investigation indicated
that only two of the measurement methods studied consis-
tently resulted in a decrease in uniformity with increasing R-
value. UN1 and UN2 both had negative slopes in every case
with the average of the UN1 method being more negative than
that of UN2 in every case. When the slopes were averaged
over each pulse sequence each metric, with the exception of
UACR, resulted in a negative slope. UACR had an average
slope of 0.004 and standard deviation of 0.18 so was within
one standard deviation of being negative. These results sug-
gest that each metric offers some reasonable insight into the
degree of uniformity associated with PPI methods in MRI.
However, the UN1 and UN2 methods would likely be the
most useful because they consistently offered negative slopes.

It should be considered as well that none of the methods
studied failed to have negative slopes in every case. Addition-
ally the UTTT method detected less uniformity in mSENSE
than GRAPPA images more often than any other method.
The UNAAD also detected less uniformity in mSENSE im-
ages compared to GRAPPA more often than the UN2 method.
Thus each of the methods of uniformity studied offers some
perspective into the effect of PPI on image uniformity. The
UACR method gives an indication of the range of pixel in-
tensities, but does not investigate pixels outside the minimal
and maximal range. The UNAAD method attempts to mea-
sure nonuniformity incorporating all pixels while normalizing
for signal intensity. This normalization process likely makes
it less sensitive to images with high signal intensities. The
UTTT method gives an indication of uniformity in defined
regions of an image but leaves out many pixels and regions
which could contain artifacts or noise that add or subtract to
image uniformity.

The differences in UN1 and UN2 should be closely con-
sidered. Of the five uniformity measurement methods studied
UN1 has the smallest sample size, using only two data points
from the entire MRI image in order to calculate uniformity,
which makes it more susceptible to random errors in the im-
age and does not give a full picture of image uniformity since,
for example, in the case of a 512 × 512 image containing a
circular phantom that spans 400 pixels only 0.0016% of the
information is used to quantify uniformity. The method UN2,
on the other hand, uses information from each pixel in the
image, increasing its power since 100% of the data provided
from the signal in the volume imaged is utilized. One possi-
ble advantage to the UN1 method is that it is more sensitive to
nonuniformities. This sensitivity can be observed when com-
paring Figs. 3–7, which clearly show that the UN1 data have
the most dramatic drop off in uniformity with increasing R-
value and also produce the most negative slopes on average

for each pulse sequence. One could conceive that the calcu-
lation of UN2 could be modified by changing the weighting
of the pixel categories, the number of categories used, or the
amount of deviation from the mean to place pixels in each
category. The situations for which these modifications would
be beneficial have not yet been investigated.

The two-way ANOVA results indicated that the R-value
has the greatest influence on changes in uniformity within
a sequence. Additionally the type of sequence used affected
uniformity even more dramatically than R-value and this
was the case with all uniformity metrics. Also, the two-way
ANOVA analysis of the effect of reconstruction method in-
dicated that there was little effect on uniformity due to the
method chosen or at least it was not comparable to the effect
that R-value had on uniformity.

The current study was limited by the fact that all the mea-
surements were taken on a single scanner, using a particular
RF coil and a unique phantom and software release. It must
be emphasized that the results presented here are applicable
only to this specific environment. Uniformity results are likely
to vary from vendor to vendor, software release to software
release, and under different reconstruction methods not just
limited to PPI. Further investigations need to be undertaken
to determine whether the results, reported here, hold for other
models of MRI systems, using different RF coil geometries
and for phantoms that simulate other body parts. In addition,
the FOV values included the whole phantom so that additional
aliasing in the images was minimized.

Image intensity uniformity has been investigated previ-
ously as a metric for evaluating the quality of image segmen-
tation and thresholding algorithms.30–32 In these formulations
the uniformity, Uα , of a feature over a region of area α is de-
fined as being inversely proportional to the variance of the
values of the feature being evaluated, at every pixel belonging
to that region. In the segmentation problem, multiple features
are typically evaluated so that overall uniformity is taken as
the average uniformity over all identified features. Typically
Uα is normalized so that a feature with all pixels having the
same intensity would produce a value of unity. Unlike the gen-
eral problem of image segmentation, in image quality evalua-
tion the medical physicist has control over the features being
evaluated through the design of the phantom. Typically flood
phantoms, like the one described for the current project, have
been used to analyze image intensity uniformity. In general,
the formulation of the definition of uniformity is typically
based on a choice between evaluating uniformity for one large
ROI or multiple smaller ROIs. This is the same distinction as
was found in the present study for the results obtained using
the UN1 and UN2 methods. Perhaps a more complete charac-
terization of image intensity uniformity would relate the uni-
formity metric to the scale at which the measurement is made.
An approach based on these speculations could conceivably
then allow some form of characterization of the texture of the
image. Experiments based on this approach will likely be fer-
tile topics for future investigations. These studies should aim
to develop the more promising signal intensity measurement
methods with the goal of making them both more sensitive
and more robust.
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5. CONCLUSIONS

The only image intensity uniformity measurement method,
of those investigated, that uses information from the entire
image, and thus takes into account the smaller and larger lo-
cal and total changes in pixel value was UN2, the gray scale
uniformity mapping method. The peak deviation nonunifor-
mity method, UN1, is limited in that it quantifies information
from only two of the pixels. Thus for measuring uniformity
with PPI in MRI, UN2 offered the most robust and consistent
measurement of PPI image uniformity of the standard meth-
ods considered. Future investigations should aim to evaluate
the utility of the UN2 method and extend its utility for quan-
tifying differences in image uniformity for different RF coil
configurations and different partially parallel MR image reg-
ularization methods.
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