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Hirschberg [J. Acoust. Soc. Am. 134, 9–12 (2013)] presents a commentary and criticisms of the vis-

cous flow model presented by Erath et al. [J. Acoust. Soc. Am. 130, 389–403 (2011)] that solves

for the asymmetric pressure loading on the vocal fold walls. This pressure loading arises from

asymmetric flow attachment to one vocal fold wall when the glottal channel forms a divergent con-

figuration. Hirschberg proposes an alternative model for the asymmetric loading based upon invis-

cid flow curvature at the glottal inlet. In this manuscript further evidence is provided in support of

the model of Erath et al. and the underlying assumptions, and demonstrates that the primary

criticisms presented by Hirschberg are unwarranted. The model presented by Hirschberg is com-

pared with the model from the original paper by Erath et al., and it is shown that each model

describes different and complementary aspects of divergent glottal flows.
VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4812775]
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I. INTRODUCTION

Hirschberg1 comments on the manuscript by Erath

et al.,2 which presents, for the first time, an analytical model

of the asymmetric loading experienced by the vocal folds

during the divergent phases of the phonatory cycle. The

asymmetric pressure loading on the vocal folds is generated

by the fluid flow within the glottis that asymmetrically

attaches to one wall, while fully-separating from the oppos-

ing wall for divergent glottal orientations. Prior to this publi-

cation, the majority of numerical studies using reduced-order

vocal fold models3 assumed one-dimensional flow within the

glottis, despite considerable experimental evidence of the

two-dimensionality of the flow.4,5 The model presented by

Erath et al.2 aims to provide a simple, computationally inex-

pensive method of incorporating asymmetric fluid flow, and

consequently asymmetric fluid loading, into reduced-order

vocal fold models, which has been found to have a

considerable impact on the vocal fold dynamics, particularly

when coupled with asymmetric tissue properties.6

The model, termed Boundary Layer Estimation of

Asymmetric Pressures (BLEAP), models the viscous flow in

the glottis using a boundary layer approach. The model is

applied during the divergent phases of the phonatory cycle

when the geometry and flow orientation is similar to that of

a diffuser in a state of two-dimensional stall.7 At the glottal

inlet, which defines the minimal glottal area for a divergent

configuration, the flow attaches to one wall (termed the flow

wall) and fully separates from the opposing wall (termed the

non-flow wall). The pressure along the flow wall slowly

recovers from the pressure at the inlet, reaching atmospheric

pressure at the glottal exit. Along the non-flow wall the pres-

sure is assumed to be atmospheric along its entire length.

In his Comment, Hirschberg1 questions some of the

physical reasoning and assumptions made in the BLEAP

model derivation. He proposes an alternate inviscid model

based upon the force of the wall on the fluid required to turn

the flow such that it attaches to the flow wall; hereafter this

model will be referred to as the “flow curvature” model. In
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this manuscript we specifically address the two major

criticisms in the Comment.

II. RESPONSE TO CRITICISMS

The fluid mechanics of intraglottal flows during diver-

gent glottal phase can be approximately discretized into

three regions, as shown in Fig. 1: (A) a convergent inlet sec-

tion, (B) a flow curvature section, and (C) a divergent sec-

tion. The convergent inlet section (A) is traditionally

modeled using a combination of Bernoulli’s equation and

the continuity equation to relate pressure, velocity, and area;

this is a valid approach due to the strong favorable pressure

gradient and thin boundary layers.

Both the BLEAP model2 and the flow curvature model1

aim to predict the asymmetric pressure loadings that occur

during the divergent phase of the phonatory cycle when the

glottal flow pattern becomes asymmetric. Hirschberg’s flow

curvature model accounts for asymmetric pressures arising

from streamline curvature at the inlet using an inviscid flow

assumption. While valid at the inlet of the glottis (region B)

where the boundary layer is very thin, downstream of the

inlet this model implies constant wall jet height with equal

pressure on both the flow and non-flow walls; this is not sup-

ported by experimental observation or physical intuition,

since the adverse pressure gradient promotes rapid boundary

layer growth in this region (this will be definitively shown in

Sec. II A). Consequently, the flow curvature model proposed

by Hirschberg1 is not applicable in region (C). Conversely

the viscous BLEAP model accounts for the pressure recovery

in the attached wall jet along the straight-walled section of

the flow wall due to viscosity, thereby determining the pres-

sure difference that is observed experimentally between the

flow and non-flow walls; that is, the flow behavior that

occurs in region (C). However, the BLEAP approach, as

stated in the original manuscript,2 neglects the flow curva-

ture at the glottal inlet (region B) and the consequential load-

ing on the flow wall that precedes the evolution of the wall

jet along the straight-walled section of the diffuser.

In his Comment, Hirschberg1 cites two major criticisms

of the physics of the BLEAP model: (1) the pressure gradient

across the shear layer in the wall jet and the related use of

the Bernoulli equation in the core of the wall jet, and (2) the

temporal discontinuity in the force on the flow wall that

arises from the lack of dependence of the asymmetric force

with the minimum glottal area. In this section we address

these two criticisms.

A. Pressure concerns

The viscous BLEAP model implicitly assumes that the

attached wall jet consists of three regions: a boundary layer

that grows along the flow wall; an “inviscid jet core;” and a

shear layer at the interface of the wall jet and the “dead

water” region formed when the flow separates from the non-

flow wall at the glottal inlet. The wall jet decelerates as it

propagates along the wall due to the action of viscosity,

which is primarily relegated to the boundary layer and shear

layer regions. In his Comment, Hirschberg notes an apparent

contradiction in our model, stating that BLEAP predicts “a

transversal pressure discontinuity across the shear layer sep-

arating the wall-jet from the dead water region,” which he

states “is physically impossible because a shear layer (or

streamline in a frictionless model) cannot sustain a pressure

difference” unless the flow is inherently viscous. Based on

these arguments he concludes that the use of the Bernoulli

equation in the wall jet, as applied in the BLEAP model, is

invalid. There are two conditions that must be satisfied in

order to justify the use of the Bernoulli equation in the

BLEAP formulation: (1) the actual flow (and our model of

it) is viscous, as opposed to inviscid; and (2) viscous losses

in the core of the jet are negligibly small.

As to point (1), glottal flows are a known viscous phe-

nomenon, see for example, the recent review paper by Mittal

et al.8 Furthermore, a confined, viscous, asymmetrically sep-

arated flow can support a transverse pressure gradient, as

evidenced by cross-channel pressure differences in diffuser

flows.7,9 It is clarified, however, that the BLEAP approach

does not attempt to model the details of the transverse pres-

sure gradient across the shear layer. Rather, it computes the

pressure in the inviscid jet core based on the streamwise ve-

locity decay and imposes it on the flow wall using boundary

layer assumptions. Experimental measurements indicate that

the pressure on the non-flow wall is approximately atmos-

pheric within the glottis, and thus the BLEAP model makes

an ad hoc assignment of atmospheric pressure to this wall. In

short, BLEAP models the pressures along the walls, and not

in the entirety of the glottis.

The latter point (2) stands in need of more considera-

tion. A derivation of Bernoulli’s equation requires the inte-

gration of Euler’s equations along a streamline. To get from

the Navier-Stokes equations to Euler’s equations, one gener-

ally assumes that the fluid viscosity is zero, and thus the vis-

cous terms are eliminated. However, it is also possible to

arrive at Euler’s equations in a viscous flow if the viscous

stresses are zero due to the behavior of the velocity field.

This is the case, for example, in uniform flow, whereby all

velocity gradients are zero and the viscous terms vanish

identically. Therefore, in order for the viscous terms to be

negligible in the wall jet core, and consequently for

Bernoulli’s equation to be applicable in this region (along a

streamline), either the flow must be inviscid, which is not

the case as per point (1), or the velocity profile in this

region must be uniform and the viscous normal stresses
FIG. 1. Approximate regions of validity of the (A) Bernoulli flow model,

(B) flow curvature model (Ref. 1), and (C) BLEAP model (Ref. 2).
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(e.g., l@u/@x) must be small. These conditions should be

met if the boundary layer and shear layer growth rates are

sufficiently low that these regions do not merge within the

glottis and the viscous normal stresses are negligible.

In support of point (2), Fig. 2 shows the phase-averaged

velocity profiles obtained used particle image velocimetry at

the glottal inlet, midline, and exit for driven vocal fold mod-

els at a 20� included glottal angle and a life-sized volumetric

flow rate of Q¼ 159.4 mL/s at a phase of t/Topen¼ 0.7, where

t is time and Topen is the period of the open phase. As the

wall jet progresses along the medial surface, the peak veloc-

ity decreases and the jet spreads. These profiles emphasize

the importance of utilizing a viscous modeling approach in

the diffusing portion of the glottis since the boundary layer

grows to �y/d¼ 1 (i.e., the initial wall jet height) by the

glottal exit, and the velocity magnitude decreases appreci-

ably. These observations confirm that Hirschberg’s applica-

tion of an inviscid flow description downstream of the glottal

inlet, which implies negligible boundary layer growth and

constant velocity magnitude, is inappropriate. The central

core region, however, retains a relatively blunt profile

throughout the glottis, suggesting minimal viscous dissipa-

tion in this section, which would imply the Bernoulli equa-

tion is valid in the jet core, despite nonzero fluid viscosity.

Bernoulli’s equation is used to relate the wall pressure to the

velocity in the core of the wall jet using standard boundary

layer arguments. It is emphasized that this relationship is

only valid in the inviscid core of the attached wall jet, and

that the velocity need not be constant. That is, the velocity

decay observed in in vivo and in vitro experiments is cap-

tured using our viscous flow approach (see Fig. 2).

The validity of using Bernoulli’s equation to compute

the pressure along the wall from the velocity decay in the

core of the wall jet is corroborated by Fig. 3, which shows

the total pressure along a streamline in the core of the wall

jet as it passes through the straight-walled section of the glot-

tis for static vocal fold models with a transglottal pressure

drop of 15 cm H2O and a total included glottal angle of 10�.
The data are plotted such that x¼ 0 corresponds to the loca-

tion of the minimal glottal area. The pressure along the

streamline is assumed equal to the experimentally measured

static wall pressure based upon the standard boundary layer

argument of @p/@y � 0, where p is the static pressure. The

total pressure, computed as p0¼ p þ 1/2qV2, where q is the

fluid density and V is the velocity magnitude, should be con-

stant in the absence of viscous losses, or decrease if the

losses are significant. The uncertainty in the total pressure is

approximately 60.25 cm H2O. We note that within the ex-

perimental uncertainty the total pressure does not decrease,

confirming that viscous losses in the wall jet core are negligi-

ble and validating the use of Bernoulli’s equation in the jet

core in the BLEAP model. These calculations were repeated

using experimental data over a range of glottal angles and

transglottal pressure drops,10 with all instances yielding the

same result, although they are not shown here for brevity.

Finally, Hirschberg questions the use of Eq. (18) in the

BLEAP manuscript2 [Eq. (1) of the Comment] as it does not

include the centripetal acceleration term to account for the

derivation of the velocity in a non-inertial reference frame.

This observation is correct. A typographical error in the orig-

inal manuscript resulted in an incorrect form of the equation.

The correct form of the equation is given as:

pðxÞ¼piþ1=2q½U2
i �UðxÞ2�þ1=2X2

z ½x2þ2xxoffþx2
off �;
(1)

where all variables are defined as in Erath et al.2

B. Temporal force discontinuity and amin dependence

In his Comment, Hirschberg is critical of the fact that

the force predicted by the BLEAP model is discontinuous,

and independent of the minimum glottal area amin. The

BLEAP model depends on a flow parameter n that is directly

related to the streamwise pressure gradient in the wall jet

core; for BLEAP, n is negative due to the adverse pressure

in the glottis in divergent configurations (a value of n¼ 0

corresponds to the zero pressure gradient Blasius boundary

layer). As discussed in the original manuscript,2 the value of

n should be a function of the glottal angle, going from zero

when the walls are nearly parallel and becoming more nega-

tive as the divergence angle increases. Since the “BLEAP”

force is directly proportional to n, it too should go from zero

when n¼ 0 to a maximum value when the adverse pressure

gradient is on the verge of causing flow separation. The

exact dependence of n on the glottal angle is non-trivial,

however, due to the complex nature of the glottal flow field.

As such, in the original manuscript we opted to select an

“average” n for all glottal angles, with the understanding

that more work is required to find the correct function relat-

ing n to the divergence angle (this is stated explicitly in the

original publication). As will be seen in Sec. III, when a

model incorporating a variable n value is used, the BLEAP

FIG. 2. Velocity profiles extracted normal to the wall at the (A) glottal inlet;

(B) midpoint of the medial surface; and (C) near the glottal exit, for a life-

size flow rate Q¼ 159.4 mL/s and a total included glottal angle of 20�.

FIG. 3. Total pressure along a streamline in the wall jet core for a static

vocal fold model with a transglottal pressure drop of 15 cm H2O and a total

included glottal angle of 10�.
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force is no longer discontinuous at the onset of the divergent

glottal phase.

Similarly, the force predicted by the BLEAP model is

independent of amin because it depends upon the velocity at

amin, which is also constant, and discontinuous at closing.

This is a result of the assumption of constant subglottal pres-

sure (that is, the lungs are a constant pressure source) that

was utilized in the initial formulation to enable a comparison

with existing data. This can be rectified by using an alternate

subglottal pressure model; e.g., one that incorporates fluid-

structure-acoustic interactions (i.e., “level 2” acoustic inter-

actions),11 meaning the transglottal pressure drop will no

longer be independent of area.

III. COMPARISON BETWEEN BLEAP AND
HIRSCHBERG’S MODEL

In summary, it is broadly accepted that Bernoulli’s

equation is valid in region (A), Hirschberg’s flow curvature

model1 handily accounts for the flow curvature section in

region (B), and the BLEAP model describes the flow devel-

opment and consequent pressure recovery in the divergent,

straight-walled section of region (C). Thus, it is the recom-

mendation of the authors that Hirschberg’s flow curvature

model and the BLEAP model should be used in conjunction

to describe the overall flow physics and fluid loading during

divergent phases of the glottal cycle.

The forces predicted by the BLEAP and flow curvature

models are compared in Fig. 4 at a constant subglottal pres-

sure of 1.5 kPa to give a sense of relative magnitudes and

temporal variations of these forces. Both forces are zero

when the glottis is either closed or in a convergent configura-

tion, while both forces are negative, that is, they aid in clos-

ing, when the glottis is divergent. Two BLEAP models are

presented, one with the constant n simplification originally

described in Erath et al.,2 and the other with a variable n that

is linearly related to the glottal divergence angle. BLEAP

with constant n has a discontinuity in the force at the start of

the divergent portions of the phase, and again when the glot-

tis closes, leading to one of Hirschberg’s criticisms discussed

previously. The magnitude of the BLEAP force in this case

is linearly proportional to ps. Employing a variable n elimi-

nates the discontinuity at the start of the divergent phase. A

discontinuity still exists at closing since the glottis closes

while still in a divergent configuration. This is a conse-

quence of the subglottal pressure model that is employed, as

opposed to the BLEAP method itself. The BLEAP and flow

curvature forces are of the same order, demonstrating that

both flow turning and pressure recovery along the flow wall

are important in determining the overall loadings in the di-

vergent passage, giving credence to the recommendation

that both the flow curvature and BLEAP models should be

used in conjunction with each other to provide the most

accurate description of the pressure loading conditions.

IV. CONCLUSIONS

In this Response we have provided further evidence in

support of the assumptions explicit and implicit in the BLEAP

model, most notably regarding the use of Bernoulli’s equation

in the core of the wall jet and in the use of a glottal angle de-

pendent n value to eliminate force discontinuities at the incep-

tion of glottal divergence. We have also discussed the merits

and limitations of both the BLEAP model and the flow curva-

ture model introduced by Hirschberg in his Comment. We

have shown that although the flow curvature model predicts

the pressure loading due to streamline curvature at the glottal

inlet, it is incapable of predicting the viscous pressure recovery

that occurs due to the diffusing glottal walls downstream of

the inlet. Conversely, the BLEAP model does not account for

streamline curvature, although it does capture the viscous pres-

sure recovery. As such, each model has its region of validity

and the two regions are, in fact, complementary. Furthermore,

we have shown that the magnitudes of the forces predicted by

the two models are of the same order and thus neither can nor

should be neglected based on relative importance. Rather, it is

the recommendation of the authors that both models be used in

conjunction by researchers using reduced-order vocal fold

models, particularly in studies involving asymmetric tissue

properties.
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