
Impact of bioinformatic procedures in the development and
translation of high-throughput molecular classifiers in Oncology

Charles Ferté1,2,3,#, Andrew D. Trister1,4,#, Erich Huang1,5,6, Brian M. Bot1, Justin Guinney1,
Frederic Commo1,2,3, Solveig Sieberts1, Fabrice André2,3, Benjamin Besse2,3, Jean-Charles
Soria2,3, and Stephen H. Friend1

1Sage Bionetworks, Seattle, WA
2Department of Medical Oncology, Institut Gustave Roussy, Villejuif, France
3INSERM U981, Université Paris XI, Villejuif, France
4Department of Radiation Oncology, University of Washington, Seattle, WA
5Institute for Genome Sciences and Policy, Duke University, Durham, NC
6Department of Surgery, Duke University Medical Center, Durham, NC

Abstract
The progressive introduction of high-throughput molecular techniques in the clinic allows for the
extensive and systematic exploration of multiple biological layers of tumors. Molecular profiles
and classifiers generated from these assays represent the foundation of what the National
Academy describes as the future of ‘precision medicine.’ However, the analysis of such complex
data requires the implementation of sophisticated bioinformatic and statistical procedures. It is
critical that oncology practitioners be aware of the advantages and limitations of the methods used
to generate classifiers in order to usher them into the clinic. This article uses publicly available
expression data from NSCLC patients to first illustrate the challenges of experimental design and
pre-processing of data prior to clinical application and highlights the challenges of high-
dimensional statistical analysis. It provides a roadmap for the translation of such classifiers to
clinical practice and make key recommendations for good practice.

Introduction
As high-throughput molecular technologies become ubiquitous and as antineoplastic agents
are increasingly directed against specific molecular aberrations, modeling the relationship
between genomic features and prognosis or therapeutic response provides the substrate for
precision medicine (1). Over the past decade, very few biomarkers have reached the required
level of evidence to be implemented in the clinic (2), and a dearth of genomic signatures
generated from the aforementioned technologies have been approved for clinical use (3).
Ironically, as the molecular data available in repositories rapidly expand; effective, validated
translation of these data to bedside diagnostics or target discovery remains a vexing
challenge. Apart from the typical statistical challenges facing biomarker studies (4), there
are unique issues that accompany high-dimensional genomic platforms that present
obstacles to generating performant genomic signatures. Unfortunately, many of these issues
are obscure to the larger oncology community.
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Herein, we highlight problems associated with developing molecular signatures at each
phase of development: 1) data curation and pre-processing, 2) statistical analysis, 3) and the
infrastructure required for effective translation in cancer research and clinical settings. To
demonstrate each of these issues we focus on gene expression data, though the discussion is
applicable to many types of high dimensional data. Each section of this review includes
pertinent figures of analysis performed following recommendations for best practice (Table
1). For both educational and reproducibility purposes, we provide real data (available
through Synapse, the collaborative compute space developed at Sage Bionetworks, under the
Synapse ID ‘syn87682’: https://www.synapse.org/#!Synapse:syn87682) and companion R
scripts (available on GitHub: https://github.com/Sage-Bionetworks/Ferte-et-al-Review)

PART 1: Experimental design and data pre-processing
Importance of experimental design—As in any scientific study, thoughtful
experimental design increases the chance that the question being explored can be answered
by the experimental data collected. A justified critique of many molecular signatures is that
too little attention is paid toward typical statistical issues such as proper experimental
design, sample size planning, patient selection and clinical data curation (4). As with clinical
trials, appropriate selection of a patient cohort, endpoint of interest, and sample size
determination must be performed a priori. Other common errors include the unbalance of
clinico-pathological, treatment and survival characteristics between training and validation
cohorts. Particularly, the incompatibility of follow-up between data sets results in responses
that may not be comparable.

With regards to sample size calculation, several web accessible tools are available to ensure
adequate statistical power (5,6). Fig. 1A presents the results of the data curation process for
a gene expression classifier designed to predict three year overall survival in patients with
early stage non-small cell lung cancer (NSCLC), which will be a motivating example
throughout this review.

Quality assessment of molecular data—Pre-analytical quality assessment of the
molecular data is necessary not only when processing ‘raw’ data (data collected directly
from the assay platforms prior to normalization) but continuously throughout all steps of
data analysis. Methods for assessing global structure in the data, such as principal
component analysis (PCA) and clustering, are used to detect outliers, or confounding
artifacts in the data that must be abated before data modeling may proceed (7–10). To this
end, a number of publicly available tools such as arrayQualityMetrics (9), EDASeq (10), or
FastQC (Babraham institute, UK) are widely used.

Inherent biases in high dimensional data—Many high-dimensional -omic
technologies estimate the abundance of targeted elements by measuring the signal of labeled
probes designed to hybridize to the specific targets (features) (7,11). These signal intensities
are commonly represented by a matrix of n by p elements where n is the number of samples
and p is the number of molecular features. The objective of any analysis using high-
dimensional molecular data is to infer the relationships between biological or clinical
endpoints. Complicating these analyses is the presence of unwanted variables that arise from
the specific technology platform, study design or uncontrolled biological sample
heterogeneity (7,10,12–16). In most cases, technical artifacts such as dye, probe, platform,
technician, and run-time batch are the most common source of latent structure in the data.
Known and unknown biological variability not related to the design and endpoints of a study
can also influence detecting signal above noise (14). For instance, histological grade is often
associated with higher necrosis in the tumor tissue and ultimately affects signal intensities
but may have little influence on the predicted clinical endpoint (17). The objectives of these
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pre-processing methods are (i) to remove all latent structure and technical artifacts seen in
the data while (ii) preserving the influence of the biological variables of interest.

Background correction—Since the binding or hybridization events at the core of most
array-based –omics technologies are stochastic, there is a degree of non-specific binding that
alters the signal and must be accounted for (7,9). Many vendors provide adequate software
or hardware design to explore and reduce the influence of non-specific binding. However,
accepting these default corrections may also introduce additional biases.

While next generation sequencing (NGS) technologies obviate many biases present in array
technologies, and therefore do not require background correction, they give rise to new
unwanted biases such as base-call error and coverage biases—and others that have yet to be
fully elucidated (10,11,16).

Normalization—The objective of normalization or standardization is to make the data
comparable across experiments by making the distributions the same. Many studies aiming
to develop oncologic molecular predictors, including the original NSCLC studies discussed
in detail in this review, utilize unsupervised normalization methods (18–21). Unsupervised
normalization methods (e.g. linear scaling, cross-validated splines (22), running median
lines (23), loess smoothers (7) and quantile normalization (7)) remove bias across samples
perceived to be due to technical variation blind to the experimental design and biological
differences. The types of transformations applied in these methods vary widely and it is
exceedingly important to understand that each impact the downstream model performance
differently. Oncologists should note that, as with any normalization procedure, these
techniques may obscure the biological signal while removing the latent structure of the data,
making quality control challenging.

Several drawbacks render these methods difficult to translate into clinical practice. First,
they require large datasets to perform adequately. Consequently, normalization cannot be
applied on individual samples. Second, training and testing sets must be pre-processed
together, necessitating simultaneous access to full training and testing datasets. As an
example of the differences between five commonly used methods, we visualize the
individual results on four publicly available early-stage NSCLC Affymetrix gene expression
datasets (Fig. 1). PCA of the results clearly reveal that: (i) all methods transform the
structure of the data (Fig. 1B), (ii) these transformations are different across normalization
methods (Fig. 1B), (iii) intra-study normalization (Fig. 1C RMA and SNM call-out) does not
remove artifactual segregation between studies requiring further inter-study rescaling (Fig.
1D). These differences highlight the importance of beginning with raw data when
developing molecular signatures to minimize hidden biases made by previous assumptions.
Unfortunately, raw data are often not available for subsequent analysis (Supplementary
Table 1) (22). Searching for consistent patterns across multiple high-dimensional molecular
datasets can also be done using meta-analysis techniques (24–26). Differences in individual
study sample sizes and patient populations can often not be taken into account when study-
level estimates are used. Pooling ‘raw’ or patient-level data and fitting appropriately
stratified models across studies, while complex, is the only way to sufficiently control for
these biases (25,26).

Supervised normalization—Supervised normalization incorporates information about
confounding variables and variables of interest that can dramatically affect the performance
of high-dimensional molecular models (12,27,28). Although experimental batch is the most
frequently recognized source of latent structure, other environmental (29), genetic (30) and
demographic (31) effects are inherent in each individual experiment. Several methods like
SVA, SNM and ComBat (13,14,32) are designed to solve the effects of these variables on
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data structure, but their employment is rarely described in detail in molecular signature
papers (17,33).

Specific pre-processing procedures for next generation sequencing (NGS)—
NGS is a rapidly evolving field and its data are increasingly incorporated in the development
of classifiers (34–36). Furthermore, these technologies have been used to elucidate many
important biological differences among pediatric tumors. Recently, the International Cancer
Genome Consortium (ICGC) PedBrain Tumor Project demonstrated the excellent use of
NGS to elucidate the genetic complexities inherent in medulloblastoma (37). Drawbacks
similar to those seen with gene expression microarrays also exist in NGS technologies and
specific pre-processing methods are required (10,11). Particularly, the short length of the
nucleotide sequences produced (reads are typically 50 to 150 nucleotides in length)
necessitates assembly and annotation frameworks when reconstructing the genome for
variant analysis purpose (such as with detecting SNPs, MNPs, InDels) (38). These
technologies are also increasingly used to quantify gene expression, and just as in
microarray experiments, they require close consideration of latent variables when assessing
a perceived signal (39). Specific pre-processing methods to estimate gene expression have
been introduced: reads per kilobase per million (RPKM), GC-content normalization,
normalization to “housekeeping” genes, quantile normalization) (10,40–43).

PART 2: Issues with development of classifiers in the context of high-dimensional data
Impact of high dimensional data on analysis design—In the context of molecular
profiling, “high-dimensional” data are generated such that the number of features (p) is
much larger than the number of samples (n) (p ≫ n). Any subsequent analysis suffers from
the “curse of dimensionality,” that an association between a molecular feature and a clinical
outcome of interest may occur by chance, a phenomenon known as “false discovery” (44).
The most commonly utilized methods to address false discovery are based on work by
Benjamini-Hochberg, Holm and Bonferroni (45–47). Additionally, there is the potential for
“overfitting” of a classifier in the training dataset, which reduces the resultant classifier’s
performance on new data. Until the number of samples approaches the number of features
(n≈p), strategies to minimize overfitting involve reducing the dimensions of the model space
(44). These methods take advantage of the high correlation between subsets of variables,
virtually eliminating (principal component regression, lasso) or ‘shrinking’ (ridge
regression, support vector machine, elastic net) non-essential features (48). A detailed
discussion of these methods is beyond the scope of this review and has been addressed
comprehensively elsewhere (49).

Little consistency across classifiers developed by different methods—
Classifiers developed with different methods on the same data set often result in similar
predictive performance, but exhibit little overlap in the features selected (Fig. 2). By
reducing the dimensions of data, the models represent only one from multiple possible
solutions (also called local optima). While we believe there is a global optimum (the best of
all possible solutions), finding this solution is often computationally intractable. Sometimes,
the aggregation of multiple models into a consensus classifier may result in improved
predictive performance (Fig. 2). Ultimately, how the knowledgeable oncologist incorporates
these different models for decision-making remains a challenging and still open question.

Internal validation performance assessment—Cross-validation and bootstrapping
are the most widely used internal validation methods. These methods are performed by
developing a classifier on a subset of samples and then testing the resultant classifier on
held-out samples (48). Investigators must be aware that cross-validation and bootstrap
methods are aimed to estimate prediction error and do not preclude testing the model in an
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external dataset (external validation). Internal validation methods are also used to improve
the robustness of the model against noise inherent in the data.

External validation and clinical utility—Ultimately, since the clinical utility of the
model is highly dependent upon its ability to correctly predict an endpoint in an external
dataset, particular attention must be paid to performance metrics. A typical measure of the
performance for binary classifiers (i.e. predicting binary outcome such as tumor recurrence),
is based upon the receiver operating characteristic curve (ROC), which illustrates the
variation of true-positive and false-positive rates along the variation of the discrimination
threshold (50). In the case of predicting a continuous endpoint, root-mean squared error
(RMSE) or R2 are frequently computed. When assessing time-to-event or survival endpoints
the most commonly used metrics are concordance index and time-dependent AUC (4,51,52).

Oncologists should be aware that Kaplan-Meier curves and log-rank comparisons estimate
differences in hazard across predicted risk groups but do not assess predictive performance.
The most striking example of the disconnect between discrimination and prediction is recent
work that showed random signatures in breast cancer are associated with outcome (53). The
discerning clinician tasked with assessing the validity of a particular signature should
demand reporting of additional statistical performance metrics. An illustrative comparison of
ROC-AUC, Kaplan-Meier estimates and heatmap results is in Fig. 3. Additionally, the
medical utility of any molecular model must to be formally addressed with regard to clinico-
pathological covariates or scores currently used in the clinic.

PART 3: Issues with the effective translation of the classifiers into the clinic
Translating modern classifiers to the bedside requires not only robust preprocessing and
analytical methods, but also the infrastructure for incorporating high-dimensional molecular
data into the clinical and translational research.

A first critical issue relates to the clinical environment of the assays used to generate the
molecular data. Currently, a unique biopsy is performed on one tumor site per patient at a
single time point over the course of the disease. However, a growing body of evidence
demonstrates that the molecular data derived from ”single site, single time point” biopsies
are highly context-specific and may provide a biased representation of the disease state (54–
56). Indeed, these data can vary depending on biopsy location given intratumoral
heterogeneity (54) and the discordance between the primary site and metastases (56). The
time at which a sample is obtained is also a source of variation since the relevance of an
oncogenic driver may change along the sequence of antineoplastic treatments (55) or during
the natural history of the disease itself (56). Multiple assessments are usually not perfomed
at bedside due to technical, safety and ethical constraints. However, emerging technologies,
such as circulating tumor cells (57), circulating DNA (58) or next generation functional
imaging could allow for dynamic sampling.

Secondly, mechanisms must be in place for appropriate clinical evaluation of classifiers to
concretely translate them to the bedside. Although retrospective analysis on completed
prospective trials can be performed in certain circumstances, true prospective validation
remains the gold standard (59). Several prospective clinical trial designs are optimized to
validate biomarkers: biomarker-stratified design, enrichment design, biomarker strategy
design, multiple hypothesis design, maker based strategy design (60–65). Unfortunately,
these designs were developed for the phase I–II context, and are thus not powered to capture
the complexity of cancer biology and do not support inference analyses in large populations.
Recently introduced adaptive signature designs address this caveat, using randomized phase
III trial designs to develop and validate classifiers (66,67).
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The recent scandal at Duke surrounding the use of microarrays to drive clinical trials
highlights the need for peer access to both the data and methods used to generate complex
biomarkers. As discussed in the recent National Academies report, “Toward Precision
Medicine” (1), before a prospective clinical trial incorporating molecular classifiers is
begun, the analytic process by which these classifiers are generated must be reproducible
and transparent. Furthermore, all developmental assumptions about clinical endpoints and
parameterization of the models should be made explicit, including explicit annotations of
treatment and inclusion criteria that are distributed with the data in standard format like
MIAME (68). Taking a cue from the world of software development, genomics researchers
are progressively incorporating improved operating principles such as version control for
scientific source code in platforms favoring open access such as GitHub, and displaying
enriched content in dedicated sites such as COSMIC, cBioPortal, GenePattern.

Furthermore, making these data and methods truly accessible has the potential to
dramatically increase the efficiency of research by enabling the identification of new
avenues of research and avoiding the futile reproduction of strategies that may not work. To
this end, dedicated compute spaces allowing for transparent and reproducible collaboration
could enable the access of models in real time independent of the cycle time of peer-
reviewed journals. Synapse is one such system that integrates unique data URLs,
provenance, cloud computing, and markup to provide a cohesive communication of a data-
intensive study (69). At a fundamental level, adequate community assessment of published
models mandates that authors make data and code available (60). Publishers are also
beginning to introduce new ways to share data such as with Nature: Scientific Data to
improve data transparency, citation and curation.

Ideally, published models should provide simple interfaces where clinicians can quickly
obtain predictions for individual patients based on their molecular and clinical features in a
manner similar to Adjuvant! Online (70). Though, molecular classifiers are more that a
simple combination of genes and specific issues need to be addressed when translating these
tools at bedside for a unique patient setting (Fig. 4). In that regard, the modern oncologist
must come to terms with the ever-changing nature of genomic science, with the ultimate risk
of being left behind.

Conclusion
Many investigators believe that effective analysis of high dimensional molecular data is the
key to controlling cancer. It is a widespread assumption that molecular classifiers represent
the foundation of individualized oncologic care. To optimize the translation of these tools in
to the clinic, the oncology community needs to be aware of the strengths and limitations of
the specific bioinformatics and statistical methods used in the development of classifiers.
Unless molecular classifiers are truly able to discern key clinical issues, the promise of
precision medicine will remain elusive and the clinical impact will remain limited. The drive
toward precision medicine depends on cross-disciplinary training necessary for the next
generation of oncologists to lead these research endeavors. Developing competencies in
cancer biology, biostatistics, computational biology, molecular biology, and computer
science in addition to patient care will be crucial to training the next leaders of the field.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Overview of the pre-processing framework. Effects on the structure of the data are
represented by principle component plots for four NSCLC gene expression datasets
processed separately. (A) A Table to represent the number of raw data (CEL files) included
in study as a result of the data curation process. As the classifier is for early-stage patients,
an explicit decision was made to only include those who are pathological stage IA to IIIA,
who did not receive induction or adjuvant chemotherapy and patients for whom overall
survival (OS) data are available. In addition, only patients who underwent complete tumor
resection were included. Finally, gene expression outliers were identified graphically and
removed from further analyses. (B) Unprocessed data analyzed by principal component
analysis plot (C) Effect of five widely used unsupervised (RMA (Robust Multi-array
Average) (71), gcRMA (GC Robust Multi-array Average) (72), MAS5.0 (Affymetrix
Multiarray Suite 5.0) (73), dCHIP (DNA Chip Analyzer) (74) and fRMA (frozen Robust
Multiarray Analysis) (75)) and one supervised (SNM) (14) normalization methods on the
structure of the data. The effect of normalization on only the patients included in the
Directors Challenge dataset are shown in the callouts from SNM and RMA with batch
represented by different colors on principal component plot. (D) Principal component plot of
SNM normalized data normalized to unit variance and 0 mean. The data and code to
generate these plots are made available (see supplementary material).
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Figure 2.
Signatures developed using different methods have similar prediction performance (Panel
A) and present very little consistency with each other (Panel B). (A) Receiver-operating
characteristic curves of six widely used statistical methods (logistic regression, elastic net,
bootstrapped elastic net, random forest, principal component regression and partial least
square regression) in predicting the probability of 3 year OS. The Director’s challenge and
the Zhu et al. datasets are used as training and validation set, respectively. The ROC AUC
(receiving operating characteristic curves area under the curve) and their 95% confidence
interval are computed for each method. Note that all curves overlap with one another. (B)
The number of features selected with each method are presented, as well as the number of
genes that overlap from each method. Note the very small overlap of features across the
different models, confirming that multiple and different solutions (local optima) of a same
problem may lead to similar prediction results.
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Figure 3.
Comparison of receiver-operating characteristic curves, Kaplan-Meier survival prediction
and heatmaps for six commonly used statistical methods (bootstrapped elastic net, elastic
net, logistic regression, partial least square regression, principle component regression and
random forest) ordered by performance on ROC. Log-rank test is used to report p-value of
the differences of good outcome and poor outcome groups (as defined by median) for
Kaplan-Meier predictors. The patients included in each group in Kaplan-Meier analysis are
coded in the unsupervised clustering among the validation dataset in each heatmap (magenta
for good outcome, blue for poor outcome). Many clinicians and cancer biologists reading a
molecular classifier paper will expect heatmaps and Kaplan-Meier curves, yet such figures
are not optimal to evaluate the model performance. However, observing a significant
difference in survival between the groups does not guarantee a significant performance of
the model and a performant model does not guarantee true clustering of genes in the
heatmaps. Notably, the ROC curves show performance differences, while the log-rank p
values are less useful in this context. Furthermore, models that perform the best here
(bootstrapped ElasticNet) do not exhibit marked structure in heatmaps, while poorly
performing models (principle component regression) misleadingly exhibit sharper
delineation of features in their heatmaps. The logistic regression analysis was performed on
clinical covariates alone, and therefore no heatmaps of gene expression can be computed.
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Figure 4.
Challenges in the translation at bedside of a validated molecular classifier. Described are the
steps taken by the modern oncologist when obtaining a prediction of a validated classifier
for a single patient. Passing through these steps, particular problems and their potential
solutions are highlighted in red boxes. To embrace precision medicine, the modern
oncologist needs to develop or access competencies in molecular biology and in
computational biology, in addition to clinical oncology.
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Table 1

practical issues and recommendations for the development and the translation of molecular classifiers in
oncology

Step of development
and translation

Issue Proposal for best-practice

Experimental design Selection and curation of the
datasets

Cross-talk between Oncologists, Biostatisticians and Bioinformaticians is
warranted to choose the most appropriate data
Appropriate selection of the samples according to the clinical and
biological variables
Heterogeneity of the clinico-pathological variables between datasets
should be evaluated and possibly adjusted
Sample size assessment should be processed a priori

Pre-processing step Latent unwanted structure
embedded in data has the potential
to dramatically impact the analysis
Importance of preprocessing
procedures on subsequent data
analysis is neglected
When translating the classifier at
bedside, pre-processing a unique
sample is challenging

Raw data should be used for all subsequent analysis
All the pre-processing steps should be described explicitly (including the
normalization, the re-scaling and the correction for adjustment variables
employed)
Pre-processing code and pre-analytical plots showing the structure of the
data should be provided
Use of reference or housekeeper features.
Use of universal or control samples as reference to be processed
simultaneously to the patient sample.

Statistical analysis Multiple comparisons
Resubstitution bias
Large p - small n
Robustness of the model (multiple
local optima)

Report multiple correction adjustments for all statistics
Validation data should be kept entirely and wholly separated from the
training data to ensure no potential for contamination
Apply methods that address the large p small n problem (e.g. ridge
regression, lasso, principal component regression, partial least squares,
etc.)
Internal assessment of the performance of the model (cross-validation,
bootstrapping)
The analysis method and the code used to process it should be made
publicly available

Performance assessment Generalization of the model in other
dataset(s)
Kaplan-Meier plots and heatmaps
are not adequate to assess the
performance of the model
Medical or biological utility

Stability of the performance must be validated in external dataset(s)
ROC AUC is relevant for binary endpoints; RMSE and R2 are relevant for
continuous endpoint; time dependent AUC or concordance index are
relevant for survival endpoints.
The performance of the classifier must be compared with existing
standard estimators

Clinical development Routine measurement of molecular
classifiers is limited
Current clinical trial designs do not
incorporate biomarkers
Limits on testing of archival
pathology specimens

Expand the routine capture of pathological specimens and data in the
clinic.
Incorporate biomarker validation in the design of clinical trials (crosstalk
with biostatistician required)
Ensure the samples of the patients enrolled in ongoing and future
prospective trials are preserved for subsequent and unplanned analysis
provided appropriate consents are given.

Translation at bedside Molecular data derived from
current sampling standards are
highly context specific (intra-
tumoral heterogeneity, treatment
effect, host effect, etc.)
Uncertainty of the results of the
classifiers are rarely revealed to the
oncologist
Poor training in modern
technologies and methods is a
major limit in the translation of
molecular classifiers at bedside

Increase the number of tumor samples to achieve a better representation of
the disease. (Sequential biopsies, primary and metastatic sites)
Confidence intervals of the results should be provided to the oncologist
for the decision to be made in the patient’s context.
Promote the cross-training of oncologists and cancer biologists in
computational biology, systems biology and biostatistics
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